Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.667
Filtrar
1.
PLoS One ; 19(10): e0309321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39432492

RESUMO

Optimizing crops for synergistic soil carbon (C) sequestration can enhance CO2 removal in food and bioenergy production systems. Yet, in bioenergy systems, we lack an understanding of how intraspecies variation in plant traits correlates with variation in soil biogeochemistry. This knowledge gap is exacerbated by both the heterogeneity and difficulty of measuring belowground traits. Here, we provide initial observations of C and nutrients in soil and root and stem tissues from a common garden field site of diverse, natural variant, Populus trichocarpa genotypes-established for aboveground biomass-to-biofuels research. Our goal was to explore the value of such field sites for evaluating genotype-specific effects on soil C, which ultimately informs the potential for optimizing bioenergy systems for both aboveground productivity and belowground C storage. To do this, we investigated variation in chemical traits at the scale of individual trees and genotypes and we explored correlations among stem, root, and soil samples. We observed substantial variation in soil chemical properties at the scale of individual trees and specific genotypes. While correlations among elements were observed both within and among sample types (soil, stem, root), above-belowground correlations were generally poor. We did not observe genotype-specific patterns in soil C in the top 10 cm, but we did observe genotype associations with soil acid-base chemistry (soil pH and base cations) and bulk density. Finally, a specific phenotype of interest (high vs low lignin) was unrelated to soil biogeochemistry. Our pilot study supports the usefulness of decade-old, genetically-variable, Populus bioenergy field test plots for understanding plant genotype effects on soil properties. Finally, this study contributes to the advancement of sampling methods and baseline data for Populus systems in the Pacific Northwest, USA. Further species- and region-specific efforts will enhance C predictability across scales in bioenergy systems and, ultimately, accelerate the identification of genotypes that optimize yield and carbon storage.


Assuntos
Carbono , Genótipo , Raízes de Plantas , Populus , Solo , Populus/genética , Populus/metabolismo , Solo/química , Carbono/metabolismo , Carbono/análise , Raízes de Plantas/genética , Biomassa , Produtos Agrícolas/genética , Caules de Planta/genética , Caules de Planta/química
2.
BMC Plant Biol ; 24(1): 920, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39354343

RESUMO

Populus cathayana × canadansis 'Xinlin 1' ('P.'xin lin 1') with the characteristics of rapid growth and high yield, is frequently attacked by herbivorous insects. However, little is known about how it defenses against Hyphantria cunea (H. cunea) at molecular and biochemical levels. Differences in the transcriptome and metabolome were analyzed after 'P. 'xin lin 1' leaves were fed to H. cunea for 0h, 2h, 4h, 8h, 16h and 24h. In the five comparison groups including 2h vs. CK, 4h vs. CK, 8h vs. CK, 16h vs. CK, and 24h vs. CK, a total of 8925 genes and 842 metabolites were differentially expressed. A total of 825 transcription factors (TFs) were identified, which encoded 56 TF families. The results showed that the top four families with the highest number of TFs were AP2/ERF, MYB, C2C2, bHLH. Analyses of leaves which were fed to H. cunea showed that the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were significantly enriched in plant hormone signal transduction pathway, MAPK signaling pathway, flavonoid, flavone and flavonol and anthocyanin biosynthesis pathway. Additionally, there were a number of genes significantly up-regulated in MAPK signaling pathway. Some compounds involved in plant hormone signal transduction and flavonoid/flavone and flavonol/ anthocyanin pathways such as jasmonic acid (JA), jasmonoyl-L-Isoleucine (JA-Ile), kaempferol and cyanidin-3-O-glucoside were induced in infested 'P.'xin lin 1'. This study provides a new understanding for exploring the dynamic response mechanism of poplar to the infestation of H. cunea.


Assuntos
Populus , Transcriptoma , Populus/genética , Populus/metabolismo , Herbivoria , Animais , Metaboloma , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Folhas de Planta/genética , Perfilação da Expressão Gênica , Metabolômica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
3.
BMC Genomics ; 25(1): 920, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39358710

RESUMO

The Lateral Organ Boundaries Domain (LBD) proteins, an exclusive family of transcription factors (TFs) found solely in plants, play pivotal roles in lateral organogenesis, stress adaptation, secondary growth, and hormonal signaling responses. In this study, a total of 55 PtLBD TFs from Populus trichocarpa were identified and systematically classified into two subfamilies, designated as subfamily-I and subfamily-II with seven distinct groups based on phylogenetic analysis. Gene structure detection indicated that the difference of phase numbers linking adjacent exons contribute to the variations in splicing patterns among different PtLBD groups. Numerous transcription factor binding sites and cis-elements pertinent to hormone signaling pathways and stress response mechanisms were identified within the upstream promoter regions of the PtLBD genes. Thirty-five PtLBDs were found to be engaged in either tandem or segmental duplications, and genomic collinearity analysis revealed a stronger alignment between PtLBD genes and eudicots plants compared to their relationship with monocots. GO enrichment and temporal-spatio expression patterns showed that PtLBD7 from subfamily-I and PtLBD20 from subfamily-II, along with other 13 PtLBDs, were involved in plant growth and development biological processes. The multilayered hierarchical gene networks (ML-hGRN) mediated by PtLBD7 and PtLBD20 indicated that PtLBDs were mainly function in poplar growth and stress tolerance through a multifaceted and intricate regulatory machinery. This study lays a solid groundwork for delving deeper into the roles and underlying mechanisms of LBD transcription factors in poplar, specifically those related to plant hormones and stress tolerance.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genoma de Planta , Filogenia , Proteínas de Plantas , Populus , Fatores de Transcrição , Populus/genética , Populus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Perfilação da Expressão Gênica
4.
Physiol Plant ; 176(5): e14556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39356004

RESUMO

Nigrospora oryzae, a newly identified pathogen, is responsible for poplar leaf blight, causing significant harm to poplar growth. Here, we describe, for the first time, a biological control method for the control of poplar leaf blight via the applications of 3 dominant Trichoderma strains/species. In this study, dominant Trichoderma species/strains with the potential for biocontrol were identified and then further characterised via dual culture assays, volatile organic compounds (VOCs), and culture filtrates. The biocontrol efficacy of these strains against N. oryzae was found to exceed 60%. Furthermore, the reactive oxygen species (ROS) content in Populus davidiana × P. alba var. pyramidalis (PdPap) leaves pretreated with these Trichoderma strains significantly decreased. Furthermore, pretreatment of PdPap with a combination of these Trichoderma (Tcom) resulted in 9.71-fold and 1.95-fold increases in peroxidase (POD) and superoxide dismutase (SOD) activity, respectively, and 3.87-fold decrease in the MDA content compared to controls. Moreover, Tcom pretreatment activated the salicylic acid (SA) and jasmonic acid (JA) pathway-dependent defence responses of poplar, upregulating pathogenesis-related protein (PR) and MYC proto-oncogene (MYC-R) by more than 12-fold and 17.32-fold, respectively. In addition, Trichoderma treatments significantly increased the number of lateral roots, aboveground biomass, and stomata number and density of PdPap, and Tcom was superior to the single pretreatments. The soil pH also became weakly acidic in these pretreatments, which is beneficial for the growth of PdPap seedlings. These findings indicate that these dominant Trichoderma strains can effectively increase biocontrol and poplar growth promotion.


Assuntos
Ascomicetos , Doenças das Plantas , Folhas de Planta , Populus , Populus/microbiologia , Populus/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Ascomicetos/fisiologia , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Trichoderma/fisiologia , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Agentes de Controle Biológico
5.
PeerJ ; 12: e18292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39465144

RESUMO

Gene expression is regulated by transcription factors binding to cis-elements in promoters. However, efficient cis-elements for genetic engineering are rarely reported. In this study, we identified an 11 bp cis-element in the PtoCP1 promoter that drives strong constitutive gene expression in Populus tomentosa. A 2,270 bp promoter region upstream of the PtoCP1 gene's translation start site was cloned and named ProPtoCP1. This promoter controls GUS reporter gene expression in the roots, leaves, and stems of Arabidopsis seedlings. Based on the location and density of cis-elements, the PtoCP1 promoter was divided into four fragments by 5'-end deletions. GUS staining and RT-qPCR revealed a key cis-element at -466 to -441 bp essential for gene expression. Further analysis showed that the MYB-TGACG cis-element is a positive regulator, whereas neither MYB nor TGACG alone drove gene expression. This study enhances our understanding of gene expression regulation by cis-elements and provides a valuable tool for genetic engineering.


Assuntos
Regulação da Expressão Gênica de Plantas , Populus , Regiões Promotoras Genéticas , Populus/genética , Populus/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genes Reporter
6.
Sci Adv ; 10(42): eadq4941, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39423261

RESUMO

Renewable alternatives for nonelectrifiable fossil-derived chemicals are needed and plant matter, the most abundant biomass on Earth, provide an ideal feedstock. However, the heterogeneous polymeric composition of lignocellulose makes conversion difficult. Lignin presents a formidable barrier to fermentation of nonpretreated biomass. Extensive chemical and enzymatic treatments can liberate fermentable carbohydrates from plant biomass, but microbial routes offer many advantages, including concomitant conversion to industrial chemicals. Here, testing of lignin content of nonpretreated biomass using the cellulolytic thermophilic bacterium, Anaerocellum bescii, revealed that the primary microbial degradation barrier relates to methoxy substitutions in lignin. This contrasts with optimal lignin composition for chemical pretreatment that favors high S/G ratio and low H lignin. Genetically modified poplar trees with diverse lignin compositions confirm these findings. In addition, poplar trees with low methoxy content achieve industrially relevant levels of microbial solubilization without any pretreatments and with no impact on tree fitness in greenhouse.


Assuntos
Biomassa , Fermentação , Lignina , Populus , Lignina/metabolismo , Populus/metabolismo , Populus/genética , Bactérias/metabolismo , Bactérias/genética , Plantas/metabolismo
7.
Ying Yong Sheng Tai Xue Bao ; 35(9): 2511-2517, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39435814

RESUMO

Photodegradation driven by solar radiation has been confirmed as an important driving factor for litter decomposition. However, previous single-site studies could not quantify the relative contribution of variation in solar radiation to litter decomposition. To address it, we conducted a field experiment in Heshan National Field Research Station of Forest Ecosystem, Guangdong (Heshan Station, south subtropical climate), Jigongshan Ecological Research Station, Xinyang, Henan (Jigongshan Station, north subtropical climate) and Daqinggou Ecological Research Station, Institute of Applied Ecology, Chinese Academy of Sciences (Daqinggou Station, temperate climate) at intervals of 10 degrees. We examined litter decomposition of Populus davidiana and Larix olgensis, two species with significant differences in initial litter quality through an in-situ spectral-attenuation experiment. Treatments included full-spectrum, No-UV-B (attenuating UV-B radiation <315 nm) and No-UV & Blue (attenuating all UV and blue wavelengths <500 nm). After nearly 1-year decomposition, litter dry mass remaining of P. davidiana and L. olgensis under full-spectrum treatment was lowest at Heshan (30.2% and 36.3%), and highest at Jigongshan (37.3% and 45.8%). Among all sites, litter dry mass remaining was lowest under the full-spectrum, and lower than that of No-UV-B and No-UV & blue. UV and blue light significantly increased litter mass loss of P. davidiana and L. olgensis, with contributions of 59.7% and 57.0% (Heshan), 46.4% and 42.1% (Jigongshan), and 39.0% and 45.9% (Daqinggou), respectively. The contribution of UV-A and blue light (315-500 nm) was greater than UV-B (280-315 nm); the cumulative irradiance, soil temperature and moisture were the main driving factors for litter photodegradation.


Assuntos
Larix , Folhas de Planta , Populus , Luz Solar , Populus/efeitos da radiação , Populus/metabolismo , Populus/crescimento & desenvolvimento , China , Folhas de Planta/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/química , Larix/crescimento & desenvolvimento , Larix/efeitos da radiação , Florestas , Ecossistema , Raios Ultravioleta , Fotólise
8.
Int J Mol Sci ; 25(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39337538

RESUMO

Drought stress seriously threatens plant growth. The improvement of plant water use efficiency (WUE) and drought tolerance through stomatal regulation is an effective strategy for coping with water shortages. Epidermal patterning factor (EPF)/EPF-like (EPFL) family proteins regulate stomatal formation and development in plants and thus contribute to plant stress adaptation. Here, our analysis revealed the presence of 14 PeEPF members in the Populus euphratica genome, which exhibited a relatively conserved gene structure with 1-3 introns. Subcellular localisation prediction revealed that 9 PeEPF members were distributed in the chloroplasts of P. euphratica, and 5 were located extracellularly. Phylogenetic analysis indicated that PeEPFs can be divided into three clades, with genes within the same clade revealing a relatively conserved structure. Furthermore, we observed the evolutionary conservation of PeEPFs and AtEPF/EPFLs in certain domains, which suggests their conserved function. The analysis of cis-acting elements suggested the possible involvement of PeEPFs in plant response to multiple hormones. Transcriptomic analysis revealed considerable changes in the expression level of PeEPFs during treatment with polyethylene glycol and abscisic acid. The overexpression of PeEPF2 resulted in low stomatal density in transgenetic lines. These findings provide a basis for gaining insights into the function of PeEPFs in response to abiotic stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Estômatos de Plantas , Populus , Populus/genética , Populus/crescimento & desenvolvimento , Populus/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genômica/métodos , Família Multigênica , Estresse Fisiológico/genética , Secas
9.
Int J Mol Sci ; 25(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39337672

RESUMO

Aquaporins (AQPs) play an essential role in membrane water transport during plant responses to water stresses centered on conventional upstream signals. Phytohormones (PHs) regulate plant growth and yield, working with transcription factors to help plants withstand environmental challenges and regulate physiological and chemical processes. The AQP gene family is important, so researchers have studied its function and regulatory system in numerous species. Yet, there is a critical gap the understanding of many of their molecular features, thus our full knowledge of AQPs is far-off. In this study, we undertook a broad examination of the AQP family gene in Populus euphratica via bioinformatics tools and analyzed the expression patterns of certain members in response to drought, salt, and hormone stress. A total of 22 AQP genes were examined in P. euphratica, and were categorized into four main groups, including TIPs, PIPs, SIPs, and NIPs based on phylogenetic analysis. Comparable exon-intron gene structures were found by gene structure examination, and similarities in motif number and pattern within the same subgroup was determined by motif analysis. The PeuAQP gene family has numerous duplications, and there is a distinct disparity in how the members of the PeuAQP family react to post-translational modifications. Abiotic stress and hormone responses may be mediated by AQPs, as indicated by the abundance of stress response elements found in 22 AQP genes, as revealed by the promoter's cis-elements prediction. Expression pattern analysis reveals that selected six AQP genes from the PIP subgroup were all expressed in the leaves, stem, and roots with varying expression levels. Moreover, qRT-PCR analysis discovered that the majority of the selected AQP members were up- or down-regulated in response to hormone treatment and abiotic stress. Remarkably, PeuAQP14 and PeuAQP15 appeared to be highly responsive to drought stress and PeuAQP15 exhibited a high response to salt stress. The foliar application of the phytohormones (SA, IAA, GA3, MeJA, and ABA) were found to either activate or inhibit PeuAQP, suggesting that they may mitigate the effects of water shortage of poplar water stress. The present work enhances our knowledge of the practical roles of AQPs in stress reactions and offers fundamental information for the AQP genes in poplar species. It also highlights a direction for producing new varieties of poplar species with drought, salt, and hormone tolerance and holds substantial scientific and ecological importance, offering a potential contribution to the conservation of poplar species in arid regions.


Assuntos
Aquaporinas , Secas , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Reguladores de Crescimento de Plantas , Populus , Estresse Salino , Populus/genética , Populus/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Estresse Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Genoma de Planta , Perfilação da Expressão Gênica
10.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273303

RESUMO

Expansins are cell wall (CW) proteins that mediate the CW loosening and regulate salt tolerance in a positive or negative way. However, the role of Populus trichocarpa expansin A6 (PtEXPA6) in salt tolerance and the relevance to cell wall loosening is still unclear in poplars. PtEXPA6 gene was transferred into the hybrid species, Populus alba × P. tremula var. glandulosa (84K) and Populus tremula × P. alba INRA '717-1B4' (717-1B4). Under salt stress, the stem growth, gas exchange, chlorophyll fluorescence, activity and transcription of antioxidant enzymes, Na+ content, and Na+ flux of root xylem and petiole vascular bundle were investigated in wild-type and transgenic poplars. The correlation analysis and principal component analysis (PCA) were used to analyze the correlations among the characteristics and principal components. Our results show that the transcription of PtEXPA6 was downregulated upon a prolonged duration of salt stress (48 h) after a transient increase induced by NaCl (100 mM). The PtEXPA6-transgenic poplars of 84K and 717-1B4 showed a greater reduction (42-65%) in stem height and diameter growth after 15 days of NaCl treatment compared with wild-type (WT) poplars (11-41%). The Na+ accumulation in roots, stems, and leaves was 14-83% higher in the transgenic lines than in the WT. The Na+ buildup in the transgenic poplars affects photosynthesis; the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT); and the transcription of PODa2, SOD [Cu-Zn], and CAT1. Transient flux kinetics showed that the Na+ efflux of root xylem and leaf petiole vascular bundle were 1.9-3.5-fold greater in the PtEXPA6-transgenic poplars than in the WT poplars. PtEXPA6 overexpression increased root contractility and extensibility by 33% and 32%, indicating that PtEXPA6 increased the CW loosening in the transgenic poplars of 84K and 717-1B4. Noteworthily, the PtEXPA6-promoted CW loosening was shown to facilitate Na+ efflux of root xylem and petiole vascular bundle in the transgenic poplars. We conclude that the overexpression of PtEXPA6 leads to CW loosening that facilitates the radial translocation of Na+ into the root xylem and the subsequent Na+ translocation from roots to leaves, resulting in an excessive Na+ accumulation and consequently, reducing salt tolerance in transgenic poplars. Therefore, the downregulation of PtEXPA6 in NaCl-treated Populus trichocarpa favors the maintenance of ionic and reactive oxygen species (ROS) homeostasis under long-term salt stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Populus , Estresse Salino , Sódio , Populus/genética , Populus/metabolismo , Populus/crescimento & desenvolvimento , Populus/efeitos dos fármacos , Sódio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Xilema/metabolismo , Xilema/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Tolerância ao Sal/genética , Transporte Biológico
11.
Tree Physiol ; 44(10)2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39231271

RESUMO

Soil salinization has become a global problem and high salt concentration in soil negatively affects plant growth. In our previous study, we found that overexpression of PsAMT1.2 from Populus simonii could improve the salt tolerance of poplar, but the physiological and molecular mechanism was not well understood. To explore the regulation pathway of PsAMT1.2 in salt tolerance, we investigated the morphological, physiological and transcriptome differences between the PsAMT1.2 overexpression transgenic poplar and the wild type under salt stress. The PsAMT1.2 overexpression transgenic poplar showed better growth with increased net photosynthetic rate and higher chlorophyll content compared with wild type under salt stress. The overexpression of PsAMT1.2 increased the catalase, superoxide dismutase, peroxidase and ascorbate peroxidase activities, and therefore probably enhanced the reactive oxygen species clearance ability, which also reduced the degree of membrane lipid peroxidation under salt stress. Meanwhile, the PsAMT1.2 overexpression transgenic poplar maintained a relatively high K+/Na+ ratio under salt stress. RNA-seq analysis indicated that PsAMT1.2 might improve plant salt tolerance by regulating pathways related to the photosynthetic system, chloroplast structure, antioxidant activity and anion transport. Among the 1056 differentially expressed genes, genes related to photosystem I and photosystem II were up-regulated and genes related to chloride channel protein-related were down-regulated. The result of the present study would provide new insight into regulation mechanism of PsAMT1.2 in improving salt tolerance of poplar.


Assuntos
Plantas Geneticamente Modificadas , Populus , Tolerância ao Sal , Populus/genética , Populus/fisiologia , Populus/metabolismo , Tolerância ao Sal/genética , Plantas Geneticamente Modificadas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Fotossíntese
12.
New Phytol ; 244(4): 1143-1167, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39267260

RESUMO

Monolignol serves as the building blocks to constitute lignin, the second abundant polymer on Earth. Despite two decades of diligent efforts, complete identification of all metabolites in the currently proposed monolignol biosynthesis pathway has proven elusive. This limitation also hampers their potential application. One of the primary obstacles is the challenge of assembling a collection of all molecules, because many are commercially unavailable or prohibitively costly. In this study, we established systematic pipelines to synthesize all 24 molecules through the conversions between functional groups on a core structure followed by the application to other core structures. We successfully identified all of them in Populus trichocarpa and Eucalyptus grandis, two representative species respectively from malpighiales and myrtales in angiosperms. Knowledge about monolignol metabolite chemosynthesis and identification will form the foundation for future studies.


Assuntos
Eucalyptus , Lignina , Populus , Populus/metabolismo , Eucalyptus/metabolismo , Lignina/biossíntese , Lignina/metabolismo , Vias Biossintéticas
13.
Microbiome ; 12(1): 173, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267187

RESUMO

BACKGROUND: Trees are associated with a broad range of microorganisms colonising the diverse tissues of their host. However, the early dynamics of the microbiota assembly microbiota from the root to shoot axis and how it is linked to root exudates and metabolite contents of tissues remain unclear. Here, we characterised how fungal and bacterial communities are altering root exudates as well as root and shoot metabolomes in parallel with their establishment in poplar cuttings (Populus tremula x tremuloides clone T89) over 30 days of growth. Sterile poplar cuttings were planted in natural or gamma irradiated soils. Bulk and rhizospheric soils, root and shoot tissues were collected from day 1 to day 30 to track the dynamic changes of fungal and bacterial communities in the different habitats by DNA metabarcoding. Root exudates and root and shoot metabolites were analysed in parallel by gas chromatography-mass spectrometry. RESULTS: Our study reveals that microbial colonisation triggered rapid and substantial alterations in both the composition and quantity of root exudates, with over 70 metabolites exclusively identified in remarkably high abundances in the absence of microorganisms. Noteworthy among these were lipid-related metabolites and defence compounds. The microbial colonisation of both roots and shoots exhibited a similar dynamic response, initially involving saprophytic microorganisms and later transitioning to endophytes and symbionts. Key constituents of the shoot microbiota were also discernible at earlier time points in the rhizosphere and roots, indicating that the soil constituted a primary source for shoot microbiota. Furthermore, the microbial colonisation of belowground and aerial compartments induced a reconfiguration of plant metabolism. Specifically, microbial colonisation predominantly instigated alterations in primary metabolism in roots, while in shoots, it primarily influenced defence metabolism. CONCLUSIONS: This study highlighted the profound impact of microbial interactions on metabolic pathways of plants, shedding light on the intricate interplay between plants and their associated microbial communities. Video Abstract.


Assuntos
Bactérias , Fungos , Metaboloma , Microbiota , Raízes de Plantas , Brotos de Planta , Populus , Microbiologia do Solo , Populus/microbiologia , Populus/metabolismo , Populus/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Fungos/classificação , Fungos/metabolismo , Rizosfera , Exsudatos de Plantas/metabolismo
14.
Int J Biol Macromol ; 278(Pt 4): 134926, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39182878

RESUMO

LESION SIMULATING DISEASE1 (LSD) family genes play a key role in plant response to abiotic and biotic stress. However, their functions in the resistance of tree to drought stress are still largely not clear. Here, five LSD family genes in poplar genome were identified. Phylogenetic and collinear relationship analysis showed that they belonged to LSD, LSD-one-like 1 (LOL1) and LSD-one-like 2 (LOL2) subfamilies, and experienced two segmental duplication events. PagLSDs were highly conserved in gene structure, and all PagLSDs contained at least two LSD domains. Expression pattern and cis-acting element analyses showed that PagLSDs were widely expressed in different organs, significantly induced by polyethylene glycol, and possessed a great number of plant growth, development, plant hormones, and biotic and abiotic stress elements in their promoter regions. Further physiological experiments with transgenic poplar plants revealed that overexpression of PagLOL1b significantly enhanced the drought tolerance of transgenic plants. The improved drought tolerance was closely associated with the significant increase in stomatal closure, water use efficiency, antioxidant enzyme gene expression and antioxidant enzyme activity in transgenic plants. The results in our study imply that PagLOL1b has great potential in the engineering of new tree varieties resistant to drought stress.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Populus , Espécies Reativas de Oxigênio , Estresse Fisiológico , Água , Populus/genética , Populus/metabolismo , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Água/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética , Filogenia , Resistência à Seca
15.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39201733

RESUMO

The BTB (Broad-complex, tramtrack, and bric-a-brac) gene family, characterized by a highly conserved BTB domain, is implicated in a spectrum of biological processes, encompassing growth and development, as well as stress responses. Characterization and functional studies of BTB genes in poplar are still limited, especially regarding their response to hormones and biotic/abiotic stresses. In this study, we conducted an HMMER search in conjunction with BLASTp and identified 95 BTB gene models in Populus trichocarpa. Through domain motif and phylogenetic relationship analyses, these proteins were classified into eight families, NPH3, TAZ, Ankyrin, only BTB, BACK, Armadillo, TPR, and MATH. Collinearity analysis of poplar BTB genes with homologs in six other species elucidated evolutionary relationships and functional conservations. RNA-seq analysis of five tissues of poplar identified BTB genes as playing a pivotal role during developmental processes. Comprehensive RT-qPCR analysis of 11 BTB genes across leaves, roots, and xylem tissues revealed their responsive expression patterns under diverse hormonal and biotic/abiotic stress conditions, with varying degrees of regulation observed in the results. This study marks the first in-depth exploration of the BTB gene family in poplar, providing insights into the potential roles of BTB genes in hormonal regulation and response to stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Reguladores de Crescimento de Plantas , Proteínas de Plantas , Populus , Estresse Fisiológico , Populus/genética , Populus/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/genética , Genoma de Planta , Perfilação da Expressão Gênica
16.
BMC Plant Biol ; 24(1): 759, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39118015

RESUMO

BACKGROUND: Populus spp. is a crucial fast-growing and productive tree species extensively cultivated in the mid-latitude plains of the world. However, the impact of intensive cultivation management on gene expression in plantation remains largely unexplored. RESULTS: Precision water and fertilizer-intensive management substantially increased key enzyme activities of nitrogen transport, assimilation, and photosynthesis (1.12-2.63 times than CK) in Populus × euramericana 'Neva' plantation. Meanwhile, this management approach had a significant regulatory effect on the gene expression of poplar plantations. 1554 differential expression genes (DEGs)were identified in drip irrigation (ND) compared with conventional irrigation. Relative to ND, 2761-4116 DEGs, predominantly up-regulated, were identified under three drip fertilization combinations, among which 202 DEGs were mainly regulated by fertilization. Moreover, drip irrigation reduced the expression of cell wall synthesis-related genes to reduce unnecessary water transport. Precision drip and fertilizer-intensive management promotes the synergistic regulation of carbon and nitrogen metabolism and up-regulates the expression of major genes in nitrogen transport and assimilation processes (5 DEGs), photosynthesis (15 DEGs), and plant hormone signal transduction (11 DEGs). The incorporation of trace elements further enhanced the up-regulation of secondary metabolic process genes. In addition, the co-expression network identified nine hub genes regulated by precision water and fertilizer-intensive management, suggesting a pivotal role in regulating the growth of poplar. CONCLUSION: Precision water and fertilizer-intensive management demonstrated the ability to regulate the expression of key genes and transcription factor genes involved in carbon and nitrogen metabolism pathways, plant hormone signal transduction, and enhance the activity of key enzymes involved in related processes. This regulation facilitated nitrogen absorption and utilization, and photosynthetic abilities such as light capture, light transport, and electron transport, which faintly synergistically regulate the growth of poplar plantations. These results provide a reference for proposing highly efficient precision intensive management to optimize the expression of target genes.


Assuntos
Fertilizantes , Regulação da Expressão Gênica de Plantas , Populus , Populus/genética , Populus/crescimento & desenvolvimento , Populus/metabolismo , RNA-Seq , Irrigação Agrícola , Nitrogênio/metabolismo , Fotossíntese/genética , Água/metabolismo , Transcriptoma
17.
Ecotoxicol Environ Saf ; 283: 116843, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39128449

RESUMO

Fifteen poplar varieties were used in a field trial to investigate the phytoremediation efficiency, stress resistance, and wood property of poplar hybrid varieties with diverse genetic backgrounds under the composite pollution of heavy metals. The coefficient of variation and clone repeatability for growth traits and Cd concentration were large. The Cd accumulation of poplar varieties 107 and QHQ reached 1.9 and 1.7 mg, respectively, followed by QHB, Ti, 69, and Pa, in which Cd accumulation reached 1.3 mg. Most of the intra-specific hybrid varieties (69, QH1, SL4, T3, and ZL46) had low Cd concentrations and small biomass, resulting in weak Cd accumulation and low phytoremediation efficiency for Cd-polluted soil. By contrast, the inter-sectional and inter-specific hybrid varieties exhibited better growth performance and accumulated higher concentrations of heavy metals than the intra-specific hybrids. The bioconcentration factor and translocation factor of Hg, As, and Pb were less than 1, indicating that poplars have low phytoremediation efficiency for these heavy metals. The hybrids between section Aigeiros and Tacamahaca (QHQ and QHB) and the inter-specific hybrid 107 within section Aigeiros were more resistant to composite heavy metal stress than the other poplar varieties were partially because of their high levels of free proline that exceeded 93 µg·g-1 FW. According to the correlation analysis of the concentrations of the different heavy metals, the poplar roots absorbed different heavy metals in a cooperative manner, indicating that elite poplar varieties with superior capacity for accumulating diverse heavy metals can be bred feasibly. Compared with the intra-specific hybrid varieties, the inter-sectional (QHQ and QHB) and inter-specific (107) hybrid varieties had higher pollution remediation efficiency, larger biomass, higher cellulose content, and lower lignin content, which is beneficial for pulpwood. Therefore, breeding and extending inter-sectional (QHQ and QHB) and inter-specific hybrid varieties can improve the phytoremediation of composite pollution.


Assuntos
Biodegradação Ambiental , Cádmio , Chumbo , Metais Pesados , Populus , Poluentes do Solo , Populus/genética , Populus/efeitos dos fármacos , Populus/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Metais Pesados/análise , Metais Pesados/toxicidade , Cádmio/toxicidade , Cádmio/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Biomassa , Arsênio/metabolismo , Mercúrio/toxicidade , Mercúrio/metabolismo , Mercúrio/análise , Hibridização Genética
18.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000320

RESUMO

The toxic metal cadmium (Cd) poses a serious threat to plant growth and human health. Populus euphratica calcium-dependent protein kinase 21 (CPK21) has previously been shown to attenuate Cd toxicity by reducing Cd accumulation, enhancing antioxidant defense and improving water balance in transgenic Arabidopsis. Here, we confirmed a protein-protein interaction between PeCPK21 and Arabidopsis nuclear transcription factor YC3 (AtNF-YC3) by yeast two-hybrid and bimolecular fluorescence complementation assays. AtNF-YC3 was induced by Cd and strongly expressed in PeCPK21-overexpressed plants. Overexpression of AtNF-YC3 in Arabidopsis reduced the Cd inhibition of root length, fresh weight and membrane stability under Cd stress conditions (100 µM, 7 d), suggesting that AtNF-YC3 appears to contribute to the improvement of Cd stress tolerance. AtNF-YC3 improved Cd tolerance by limiting Cd uptake and accumulation, activating antioxidant enzymes and reducing hydrogen peroxide (H2O2) production under Cd stress. We conclude that PeCPK21 interacts with AtNF-YC3 to limit Cd accumulation and enhance the reactive oxygen species (ROS) scavenging system and thereby positively regulate plant adaptation to Cd environments. This study highlights the interaction between PeCPK21 and AtNF-YC3 under Cd stress conditions, which can be utilized to improve Cd tolerance in higher plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cádmio , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Populus , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Cádmio/toxicidade , Cádmio/metabolismo , Populus/genética , Populus/metabolismo , Populus/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estresse Fisiológico/efeitos dos fármacos , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ligação Proteica
19.
Plant Physiol Biochem ; 214: 108924, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38991593

RESUMO

LBD (LATERAL ORGAN BOUNDARIES DOMAIN) transcription factors are key regulators of plant growth and development. In this study, we functionally characterized the PagLBD4 gene in Populus (Populus alba × Populus glandulosa). Overexpression of PagLBD4 (PagLBD4OE) significantly repressed secondary xylem differentiation and secondary cell wall (SCW) deposition, while CRISPR/Cas9-mediated PagLBD4 knockout (PagLBD4KO) significantly increased secondary xylem differentiation and SCW deposition. Consistent with the functional analysis, gene expression analysis revealed that SCW biosynthesis pathways were significantly down-regulated in PagLBD4OE plants but up-regulated in PagLBD4KO plants. We also performed DNA affinity purification followed by sequencing (DAP-seq) to identify genes bound by PagLBD4. Integration of RNA sequencing (RNA-seq) and DAP-seq data identified 263 putative direct target genes (DTGs) of PagLBD4, including important regulatory genes for SCW biosynthesis, such as PagMYB103 and PagIRX12. Together, our results demonstrated that PagLBD4 is a repressor of secondary xylem differentiation and SCW biosynthesis in Populus, which possibly lead to the dramatic growth repression in PagLBD4OE plants.


Assuntos
Diferenciação Celular , Parede Celular , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Populus , Fatores de Transcrição , Xilema , Populus/genética , Populus/metabolismo , Parede Celular/metabolismo , Parede Celular/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Xilema/metabolismo , Xilema/genética , Plantas Geneticamente Modificadas/metabolismo
20.
Plant Cell Environ ; 47(11): 4323-4336, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38963121

RESUMO

Perennial trees have a recurring annual cycle of wood formation in response to environmental fluctuations. However, the precise molecular mechanisms that regulate the seasonal formation of wood remain poorly understood. Our prior study indicates that VCM1 and VCM2 play a vital role in regulating the activity of the vascular cambium by controlling the auxin homoeostasis of the cambium zone in Populus. This study indicates that abscisic acid (ABA) affects the expression of VCM1 and VCM2, which display seasonal fluctuations in relation to photoperiod changes. ABA-responsive transcription factors AREB4 and AREB13, which are predominantly expressed in stem secondary vascular tissue, bind to VCM1 and VCM2 promoters to induce their expression. Seasonal changes in the photoperiod affect the ABA amount, which is linked to auxin-regulated cambium activity via the functions of VCM1 and VCM2. Thus, the study reveals that AREB4/AREB13-VCM1/VCM2-PIN5b acts as a molecular module connecting ABA and auxin signals to control vascular cambium activity in seasonal wood formation.


Assuntos
Ácido Abscísico , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Populus , Estações do Ano , Madeira , Populus/metabolismo , Populus/genética , Populus/crescimento & desenvolvimento , Ácido Abscísico/metabolismo , Madeira/metabolismo , Madeira/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Câmbio/metabolismo , Câmbio/crescimento & desenvolvimento , Câmbio/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fotoperíodo , Regiões Promotoras Genéticas/genética , Reguladores de Crescimento de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...