Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.716
Filtrar
1.
Nanotechnology ; 35(36)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38861959

RESUMO

Here we report the liquid-solid interaction in droplet-based triboelectric nanogenerators (TENG) for estimation of human Na+/K+levels. The exploitation of PVDF-HFP encapsulated WS2as active layer in the droplet-based TENG (DTENG) leads to the generation of electrical signal during the impact of water droplet. Comparison over the control devices indicates that surface quality and dielectric nature of the PVDF-HFP/WS2composite largely dictates the performance of the DTENG. The demonstration of excellent sensitivity of the DTENG towards water quality indicates its promising application towards water testing. In addition, the alteration in output signal with slightest variation in ionic concentration (Na+or K+) in water has been witnessed and is interpreted with charge transfer and ion transfer processes during liquid-solid interaction. The study reveals that the ion mobility largely affects the ion adsorption process on the active layer of PVDF-HFP/WS2and thus generates distinct output profiles for diverse ions like Na+and K+. Following that, the DTENG characteristics have been exploited to artificial urine where the varying output signals have been recorded for variation in urinary Na+ion concentration. Therefore, the deployment of PVDF-HFP/WS2in DTENG holds promising application towards the analyse of ionic characteristics of body fluids.


Assuntos
Potássio , Sódio , Sódio/química , Sódio/urina , Sódio/análise , Humanos , Potássio/química , Potássio/urina , Potássio/análise , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Fontes de Energia Elétrica , Sulfetos/química
2.
Anal Chem ; 96(26): 10835-10840, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38889097

RESUMO

G-quadruplex (G4) DNA is considered as a prospective therapeutic target due to its potential biological significance. To understand G4 biological roles and function, a G4-specific fluorescent probe is necessary. However, it is difficult for versatile G4 to precisely recognize without perturbing their folding dynamics. Herein, we reported that flavone P0 can be a fluorescent probe for G4 DNA-specific recognition and have developed a highly selective detection of K+ ion by dimeric G4/P0 system. When comparing various nucleic acid structures, including G4, i-motif, ss/ds-DNA, and triplex, an apparent fluorescence enhancement is observed in the presence of G4 DNA for 85-fold, but only 8-fold for non-G4 DNA. Furthermore, based on fluorescent probe of flavone P0 for G4 DNA screening, the noncovalent dimeric G4/P0 system is exploited as a K+ sensor, that selectively responds to K+ with a 513-fold fluorescence enhancement and a detection range for K+ ion concentration from 0 to 500 mM. This K+ sensor also has a remarkably anti-interference ability for other metal cations, especially for a high concentration of Na+. These results have demonstrated that flavone P0 is an efficient tool for monitoring G-quadruplex DNA and endows flavone P0 with bioanalytical and medicinal applications.


Assuntos
DNA , Flavonas , Corantes Fluorescentes , Quadruplex G , Potássio , Flavonas/química , Corantes Fluorescentes/química , Potássio/química , Potássio/análise , DNA/química , Espectrometria de Fluorescência
3.
Nat Commun ; 15(1): 5275, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902227

RESUMO

DNA binding transcription factors possess the ability to interact with lipid membranes to construct ion-permeable pathways. Herein, we present a thiazole-based DNA binding peptide mimic TBP2, which forms transmembrane ion channels, impacting cellular ion concentration and consequently stabilizing G-quadruplex DNA structures. TBP2 self-assembles into nanostructures, e.g., vesicles and nanofibers and facilitates the transportation of Na+ and K+ across lipid membranes with high conductance (~0.6 nS). Moreover, TBP2 exhibits increased fluorescence when incorporated into the membrane or in cellular nuclei. Monomeric TBP2 can enter the lipid membrane and localize to the nuclei of cancer cells. The coordinated process of time-dependent membrane or nuclear localization of TBP2, combined with elevated intracellular cation levels and direct G-quadruplex (G4) interaction, synergistically promotes formation and stability of G4 structures, triggering cancer cell death. This study introduces a platform to mimic and control intricate biological functions, leading to the discovery of innovative therapeutic approaches.


Assuntos
DNA , Quadruplex G , Peptidomiméticos , Humanos , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Peptidomiméticos/metabolismo , DNA/metabolismo , DNA/química , Potássio/metabolismo , Potássio/química , Linhagem Celular Tumoral , Sódio/metabolismo , Núcleo Celular/metabolismo , Canais Iônicos/metabolismo , Canais Iônicos/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química
4.
J Phys Chem B ; 128(25): 5950-5965, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38875355

RESUMO

The guanine-rich telomeric repeats can form G-quadruplexes (G4s) that alter the accessibility of the single-stranded telomeric overhang. In this study, we investigated the effects of Na+ and K+ on G4 folding and accessibility through cation introduction and exchange. We combined differential scanning calorimetry (DSC), circular dichroism (CD), and single molecule Förster resonance energy transfer (smFRET) to monitor the stability, conformational dynamics, and complementary strand binding accessibility of G4 formed by single-stranded telomeric DNA. Our data showed that G4 formed through heating and slow cooling in K+ solution exhibited fewer conformational dynamics than G4 formed in Na+ solution, which is consistent with the higher thermal stability of G4 in K+. Monitoring cation exchange with real time smFRET at room temperature shows that Na+ and K+ can replace each other in G4. When encountering high K+ at room or body temperature, G4 undergoes a slow conformational rearrangement process which is mostly complete by 2 h. The slow conformational rearrangement ends with a stable G4 that is unable to be unfolded by a complementary strand. This study provides new insights into the accessibility of G4 forming sequences at different time points after introduction to a high K+ environment in cells, which may affect how the nascent telomeric overhang interacts with proteins and telomerase.


Assuntos
DNA de Cadeia Simples , Quadruplex G , Potássio , Telômero , Potássio/química , Potássio/metabolismo , Telômero/química , Telômero/metabolismo , Humanos , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Transferência Ressonante de Energia de Fluorescência , Sódio/química , Sódio/metabolismo , Conformação de Ácido Nucleico , Dicroísmo Circular , Varredura Diferencial de Calorimetria
5.
Mikrochim Acta ; 191(6): 299, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709371

RESUMO

Gold nanoclusters are a smart platform for sensing potassium ions (K+). They have been synthesized using bovine serum albumin (BSA) and valinomycin (Val) to protect and cap the nanoclusters. The nanoclusters (Val-AuNCs) produced have a red emission at 616 nm under excitation with 470 nm. In the presence of K+, the valinomycin polar groups switch to the molecule's interior by complexing with K+, forming a bracelet structure, and being surrounded by the hydrophobic exterior conformation. This structure allows a proposed fluorometric method for detecting K+ by switching between the Val-AuNCs' hydrophilicity and hydrophobicity, which induces the aggregation of gold nanoclusters. As a result, significant quenching is seen in fluorescence after adding K+. The quenching in fluorescence in the presence of K+ is attributed to the aggregation mechanism. This sensing technique provides a highly precise and selective sensing method for K+ in the range 0.78 to 8 µM with LOD equal to 233 nM. The selectivity of Val-AuNCs toward K+ ions was investigated compared to other ions. Furthermore, the Val-AuNCs have novel possibilities as favorable sensor candidates for various imaging applications. Our detection technique was validated by determining K+ ions in postmortem vitreous humor samples, which yielded promising results.


Assuntos
Corantes Fluorescentes , Ouro , Nanopartículas Metálicas , Potássio , Soroalbumina Bovina , Valinomicina , Ouro/química , Valinomicina/química , Potássio/análise , Potássio/química , Nanopartículas Metálicas/química , Soroalbumina Bovina/química , Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos , Limite de Detecção , Animais , Interações Hidrofóbicas e Hidrofílicas , Bovinos
6.
Bioresour Technol ; 403: 130851, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782189

RESUMO

A new method for green synthesis of activated carbon using chitosan-based hydrogel precursors is reported. Chitosan-based hydrogel materials are designed to absorb trace amounts of non-toxic and non-corrosive activating agent K2CO3 from dilute aqueous solution. The K2CO3 impregnated hydrogels are further freeze-dried and converted to activated carbons with tuneable pore structure by a single-step pyrolysis. Activated carbon with highest pore volume of 0.76 cm3/g and surface area of 2026 m2/g is obtained by using K2CO3 as low as 0.23 g per gram of chitosan hydrogel. It can adsorb maximum CO2 of 4.2 mmol/g at 25 °C and 1 bar. This study demonstrates that biopolymer hydrogels impregnated with trace amounts of K2CO3 are excellent precursor materials to design high surface area carbons for CO2 capture.


Assuntos
Dióxido de Carbono , Carbonatos , Quitosana , Potássio , Dióxido de Carbono/química , Carbonatos/química , Adsorção , Quitosana/química , Potássio/química , Hidrogéis/química , Porosidade , Carvão Vegetal/química , Carbono/química , Água/química , Reagentes de Ligações Cruzadas/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química
7.
Environ Sci Pollut Res Int ; 31(23): 34726-34737, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38714615

RESUMO

Activated carbon was prepared from distilled spent grains (DSG) using K2CO3 activation and chitosan modification. The effects of activator dosage, activation temperature, and the incorporation of chitosan as a nitrogen source on the adsorption performance were studied in this paper. The activated carbons were characterised by scanning electron microscopy, X-ray photoelectron spectroscopy, and nitrogen and carbon dioxide gas adsorption. Under the optimal conditions, the BET-specific surface area, total pore volume, and microporous volume of the activated carbon were as high as 1142 m2/g, 0.62 cm3/g, and 0.40 cm3/g, respectively. Chitosan was used as the nitrogen source, and surface modification was carried out concurrently with the K2CO3 activation process. The results revealed a carbon dioxide adsorption capacity of 5.2 mmol/g at 273.15 K and 1 bar without a nitrogen source, which increased to 5.76 mmol/g after chitosan modification. The isosteric heat of adsorption of CO2 all exceed 20 kJ/mol, hinting at the coexistence of both physisorption and chemisorption. The adsorption behaviour of the DSG-based activated carbon can be well-described by the Freundlich model.


Assuntos
Dióxido de Carbono , Carvão Vegetal , Adsorção , Dióxido de Carbono/química , Carvão Vegetal/química , Carbonatos/química , Quitosana/química , Nitrogênio/química , Potássio/química
8.
Talanta ; 275: 126196, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705018

RESUMO

We have developed an innovative optical emission spectrometry imaging device integrating a diode laser for sample introduction and an atmospheric pressure plasma based on dielectric barrier discharge for atomization and excitation. By optimizing the device parameters and ensuring appropriate leaf moisture, we achieved effective imaging with a lateral resolution as low as 50 µm. This device allows for tracking the accumulation of Cd and related species such as K, Zn, and O2+∙, in plant leaves exposed to different Cd levels and culture times. The results obtained are comparable to established in-lab imaging and quantitative methods. With its features of compact construction, minimal sample preparation, ease of operation, and low limit of detection (0.04 µg/g for Cd), this novel methodology shows promise as an in-situ elemental imaging tool for interdisciplinary applications.


Assuntos
Pressão Atmosférica , Cádmio , Folhas de Planta , Cádmio/análise , Cádmio/química , Folhas de Planta/química , Gases em Plasma/química , Zinco/química , Zinco/análise , Análise Espectral/métodos , Potássio/análise , Potássio/sangue , Potássio/química
9.
J Am Chem Soc ; 146(19): 13406-13416, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38698549

RESUMO

Bioluminescent indicators are power tools for studying dynamic biological processes. In this study, we present the generation of novel bioluminescent indicators by modifying the luciferin molecule with an analyte-binding moiety. Specifically, we have successfully developed the first bioluminescent indicator for potassium ions (K+), which are critical electrolytes in biological systems. Our approach involved the design and synthesis of a K+-binding luciferin named potassiorin. Additionally, we engineered a luciferase enzyme called BRIPO (bioluminescent red indicator for potassium) to work synergistically with potassiorin, resulting in optimized K+-dependent bioluminescence responses. Through extensive validation in cell lines, primary neurons, and live mice, we demonstrated the efficacy of this new tool for detecting K+. Our research demonstrates an innovative concept of incorporating sensory moieties into luciferins to modulate luciferase activity. This approach has great potential for developing a wide range of bioluminescent indicators, advancing bioluminescence imaging (BLI), and enabling the study of various analytes in biological systems.


Assuntos
Luciferases , Medições Luminescentes , Potássio , Potássio/metabolismo , Potássio/química , Animais , Medições Luminescentes/métodos , Camundongos , Luciferases/química , Luciferases/metabolismo , Humanos , Engenharia de Proteínas , Substâncias Luminescentes/química , Luciferina de Vaga-Lumes/química , Luciferina de Vaga-Lumes/metabolismo
10.
J Phys Chem A ; 128(17): 3370-3386, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38652083

RESUMO

Biomass reburning is an efficient and low-cost way to control nitric oxide (NO), and the abundant potassium (K) element in biomass affects the heterogeneous reaction between NO and biochar. Due to the incomplete simulation of the NO heterogeneous reduction reaction pathway at the molecular level and the unclear catalytic effect of K element in biochar, further research is needed on the possible next reaction and the influencing mechanism of the element. After the products of the existing reaction pathways are referenced, two reasonably simplified biochar structural models are selected as the basic reactants to study the microscopic mechanism for further NO heterogeneous reduction on the biochar surface before and after doping with the K atom based on density functional theory. In studying the two further NO heterogeneous reduction reaction pathways, we find that the carbon monoxide (CO) molecule fragment protrudes from the surface of biochar models with the desorption of N2 at the TS4 transition state, and the two edge types of biochar product models obtained by simulation calculation are Klein edge and ac56 edge observed in the experiment. In studying the catalytic effect of potassium in biochar, we find that the presence of K increases the heat release of adsorption of NO molecules, reduces the energy barrier of the rate-determining step in the nitrogen (N2) generation and desorption process (by 50.88 and 69.97%), and hinders the CO molecule from desorbing from the biochar model surface. Thermodynamic and kinetic analyses also confirm its influence. The study proves that the heterogeneous reduction reaction of four NO molecules on the surface of biochar completes the whole reaction process and provides a basic theoretical basis for the emission of nitrogen oxides (NOx) during biomass reburning.


Assuntos
Carvão Vegetal , Teoria da Densidade Funcional , Óxido Nítrico , Potássio , Carvão Vegetal/química , Potássio/química , Óxido Nítrico/química , Oxirredução , Propriedades de Superfície , Adsorção , Modelos Químicos , Monóxido de Carbono/química
11.
Chem Biodivers ; 21(5): e202400315, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484117

RESUMO

Pineapple (Ananas comosus), the succulent and vibrant tropical fruit, is a symbol of exoticism and sweetness that captures the hearts and palates of people around the world. The pineapple peel, often considered as waste, has garnered attention for its potential applications. The pineapple peel is rich in essential nutrients, including calcium, potassium, vitamin C, carbohydrates, dietary fiber, and water, making it beneficial for the digestive system, weight management, and overall balanced nutrition. It contains significant amounts of sugars such as sucrose, glucose, and fructose, along with citric acid as the predominant organic acid. The peel also contains bromelain, a proteolytic enzyme known for its digestive properties. Studies have highlighted the pharmacological properties of pineapple peel, such as its potential anti-parasitic effects, alleviation of constipation, and benefits for individuals with irritable bowel syndrome (IBS). Efforts are being made to promote the utilization of pineapple peel as a valuable resource rather than mere waste. Its applications range from the production of vinegar, alcohol, and citric acid to the development of various food products, including squash, syrup, jelly, and pickles. Further research and innovation are required to fully explore the potential of pineapple peel and establish sustainable practices for its utilization, contributing to waste reduction and the development of value-added products.


Assuntos
Ananas , Humanos , Ananas/química , Frutas/química , Valor Nutritivo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ácido Ascórbico/química , Potássio/química , Carboidratos/química
12.
Anal Chem ; 96(10): 4023-4030, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412242

RESUMO

Fluorescent DNA nanosensors have been widely used due to their unique advantages, among which the near-infrared (NIR) imaging mode can provide deeper penetration depth and lower biological background for the nanosensors. However, efficient NIR quenchers require ingenious design, complex synthesis, and modification, which severely limit the development of NIR DNA nanosensors. Label-free strategies based on G-quadruplex (G4) and NIR G4 dyes were first introduced into in situ extracellular imaging, and a novel NIR sensing strategy for the specific detection of extracellular targets is proposed. The strategy avoids complex synthesis and site-specific modification by controlling the change of the NIR signal through the formation of a G4 nanostructure. A light-up NIR DNA nanosensor based on potassium ion (K+)-sensitive G4 chain PS2.M was constructed to verify the strategy. PS2.M forms a stable G4 nanostructure in the presence of K+ and activates the NIR G4 dye CSTS, thus outputting NIR signals. The nanosensor can rapidly respond to K+ with a linear range of 5-50 mM and has good resistance to interference. The nanosensor with cholesterol can provide feedback on the changes in extracellular K+ concentration in many kinds of cells, serving as a potential tool for the study of diseases such as epilepsy and cancer, as well as the development of related drugs. The strategy can be potentially applied to the NIR detection of a variety of extracellular targets with the help of functional DNAs such as aptamer and DNAzyme.


Assuntos
Corantes Fluorescentes , Nanoestruturas , Corantes Fluorescentes/química , DNA/química , Potássio/química
13.
Adv Mater ; 36(19): e2312352, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38301140

RESUMO

Developing artificial ion transport systems, which process complicated information and step-wise regulate properties, is essential for deeply comprehending the subtle dynamic behaviors of natural channel proteins (NCPs). Here a photo-controlled logic-gated K+ channel based on single-chain random heteropolymers containing molecular motors, exhibiting multi-core processor-like properties to step-wise control ion transport is reported. Designed with oxygen, deoxygenation, and different wavelengths of light as input signals, complicated logical circuits comprising "YES", "AND", "OR" and "NOT" gate components are established. Implementing these logical circuits with K+ transport efficiencies as output signals, multiple state transitions including "ON", "Partially OFF" and "Totally OFF" in liposomes and cancer cells are realized, further causing step-wise anticancer treatments. Dramatic K+ efflux in the "ON" state (decrease by 50% within 7 min) significantly induces cancer cell apoptosis. This integrated logic-gated strategy will be expanded toward understanding the delicate mechanism underlying NCPs and treating cancer or other diseases is expected.


Assuntos
Apoptose , Luz , Humanos , Potássio/metabolismo , Potássio/química , Canais de Potássio/metabolismo , Linhagem Celular Tumoral , Ativação do Canal Iônico , Lipossomos/química , Lipossomos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Lógica
14.
Anal Chem ; 96(6): 2651-2657, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38306178

RESUMO

In vivo sensing of the dynamics of ions with high selectivity is essential for gaining molecular insights into numerous physiological and pathological processes. In this work, we report an ion-selective micropipette sensor (ISMS) through the integration of functional crown ether-encapsulated metal-organic frameworks (MOFs) synthesized in situ within the micropipette tip. The ISMS features distinctive sodium ion (Na+) conduction and high selectivity toward Na+ sensing. The selectivity is attributed to the synergistic effects of subnanoconfined space and the specific coordination of 18-crown-6 toward potassium ions (K+), which largely increase the steric hindrance and transport resistance for K+ to pass through the ISMS. Furthermore, the ISMS exhibits high stability and sensitivity, facilitating real-time monitoring of Na+ dynamics in the living rat brain during spreading of the depression events process. In light of the diversity of crown ethers and MOFs, we believe this study paves the way for a nanofluidic platform for in vivo sensing and neuromorphic electrochemical sensing.


Assuntos
Éteres de Coroa , Estruturas Metalorgânicas , Éteres de Coroa/química , Sódio/química , Íons/química , Potássio/química
15.
Small ; 20(26): e2311802, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38258398

RESUMO

Conductive polymers are recognized as ideal candidates for the development of noninvasive and wearable sensors for real-time monitoring of potassium ions (K+) in sweat to ensure the health of life. However, the low ion-to-electron transduction efficiency and limited active surface area hamper the development of high-performance sensors for low-concentration K+ detection in the sweat. Herein, a wearable K+ sensor is developed by tailoring the nanostructure of polypyrrole (PPy), serving as an ion-to-electron transduction layer, for accurately and stably tracing the K+ fluctuation in human sweat. The PPy nanostructures can be tailored from nanospheres to nanofibers by controlling the supramolecular assembly process during PPy polymerization. Resultantly, the ion-to-electron transduction efficiency (17-fold increase in conductivity) and active surface area (1.3-fold enhancement) are significantly enhanced, accompanied by minimized water layer formation. The optimal PPy nanofibers-based K+ sensor achieved a high sensitivity of 62 mV decade-1, good selectivity, and solid stability. After being integrated with a temperature sensor, the manufactured wearable sensor realized accurate monitoring of K+ fluctuation in the human sweat.


Assuntos
Nanofibras , Polímeros , Potássio , Pirróis , Dispositivos Eletrônicos Vestíveis , Nanofibras/química , Pirróis/química , Polímeros/química , Potássio/química , Potássio/análise , Humanos , Técnicas Biossensoriais/métodos , Elétrons , Íons , Suor/química , Condutividade Elétrica
16.
Appl Spectrosc ; 78(2): 243-250, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38083817

RESUMO

This study was dedicated to developing analytical methods for determining macronutrients (Ca, K, and Mg) in soy leaf samples with and without petioles. The study's primary purpose was to present Laser-induced breakdown spectroscopy (LIBS) as a viable alternative for directly analyzing leaf samples using chemometric tools to interpret the data obtained. The instrumental condition chosen for LIBS was 70 mJ of laser pulse energy, 1.0 µs of delay time, and 100 µm of spot size, which was applied to 896 samples: 305 of soy without petioles and 591 of soy with petioles. The reference values of the analytes for the proposition of calibration models were obtained using inductively coupled plasma optical emission spectroscopy (ICP-OES) technique. Twelve normalization modes and two calibration strategies were tested to minimize signal variations and sample matrix microheterogeneity. The following were studied: multivariate calibration using partial least squares and univariate calibration using the area and height of several selected emission lines. The notable normalization mode for most models was the Euclidean norm. No analyte showed promising results for univariate calibrations. Micronutrients, P and S, were also tested, and no multivariate models presented satisfactory results. The models obtained for Ca, K, and Mg showed good results. The standard error of calibration ranged from 2.3 g/kg for Ca in soy leaves without petioles with two latent variables to 5.0 g/kg for K in soy leaves with petioles with two latent variables.


Assuntos
Lasers , Espectroscopia Fotoeletrônica/métodos , Análise Espectral/métodos , Cálcio/análise , Cálcio/química , Potássio/análise , Potássio/química , Magnésio/análise , Magnésio/química
17.
Int J Biol Macromol ; 255: 128113, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977459

RESUMO

Plant-based analogs have been developed to mimic foods from animal sources by using ingredients from vegetable sources. Among the strategies to produce plant-based structures is the gelation of mixtures between plant proteins and polysaccharides. In this study, our aim was to investigate gels of pea proteins and gellan gum with high protein concentration and the addition of salt (potassium and sodium chloride). In the first step, a qualitative mapping was performed to select pea protein and gellan gum concentrations to produce self-sustainable gels. After that, the effect of salt addition was investigated for the formulations containing 10-15 % (wt) pea protein and 0.5-1 % (wt) gellan gum. The results showed that the gels containing potassium ions were more rigid and less deformable, with lesser water loss by syneresis. The morphological analysis showed a spatial exclusion of pea protein from the gel network mainly structured by the gellan gum. While potassium ions led to a more compact network, calcium ions promoted higher pores in the structure. Depending on the composition, the mechanical properties of gels were similar to some products from animal sources. So, the information obtained from these gels can be applied to the structuring of formulations in the development of plant-based analogs.


Assuntos
Proteínas de Ervilha , Animais , Polissacarídeos Bacterianos/química , Géis/química , Íons , Potássio/química
18.
Acta Histochem ; 126(1): 152120, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38041896

RESUMO

BACKGROUND: Previously, we have demonstrated that eccrine sweat gland cells (ESGCs) can reconstruct the three-dimensional (3D) structure of eccrine sweat glands (ESGs). However, there is still a need to explore source cells capable of regenerating ESG to address the issue of ESG regeneration in ESGC-deficient conditions, such as severe burns. METHODS: The epidermal cells and dermal cells in adult rat ventral foot skin (ESG-bearing) were isolated. The isolated single epidermal cells and dermal cells were mixed with Matrigel, and then the mixture was implanted into the axillary/inguinal fat pads of nude mice. Five weeks after implantation, the Matrigel plugs were harvested and the morphology and differentiation of the cells were examined by H&E staining and fluorescent immunohistochemical staining for ESG markers, such as Na+ -K+ -2Cl- cotransporter 1 (NKCC1), Na+ -K+ -ATPase (NKA), Foxa1 and K14. RESULTS: The epidermal cells and dermal cells of adult rat ventral foot skin can reconstruct 3D structure and express specific markers of ESGs in skin, such as NKCC1, NKA and Foxa1, indicating the ESG-phenotypic differentiation of the 3D structures. Double immunofluorescence staining showed that some 3D structures expressed both the myoepithelial cell marker alpha-SMA and the common marker K14 of duct cells and myoepithelial cells, while some 3D structures expressed only K14, indicating that ESG-like 3D structures differentiated into duct-like and secretory coiled cells. CONCLUSION: Epidermal and dermal cells from adult ESG-bearing skin can be used as a cell source for ESG regeneration.


Assuntos
Glândulas Écrinas , Epiderme , Animais , Camundongos , Ratos , Diferenciação Celular , Fator 3-alfa Nuclear de Hepatócito , Camundongos Nus , Pele , Sódio/química , Potássio/química , Cloro/química
19.
Nucleic Acids Res ; 52(1): 448-461, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37986223

RESUMO

Metal ions are essential components for the survival of living organisms. For most species, intracellular and extracellular ionic conditions differ significantly. As G-quadruplexes (G4s) are ion-dependent structures, changes in the [Na+]/[K+] ratio may affect the folding of genomic G4s. More than 11000 putative G4 sequences in the human genome (hg19) contain at least two runs of three continuous cytosines, and these mixed G/C-rich sequences may form a quadruplex or a competing hairpin structure based on G-C base pairing. In this study, we examine how the [Na+]/[K+] ratio influences the structures of G/C-rich sequences. The natural G4 structure with a 9-nt long central loop, CEBwt, was chosen as a model sequence, and the loop bases were gradually replaced by cytosines. The series of CEB mutations revealed that the presence of cytosines in G4 loops does not prevent G4 folding or decrease G4 stability but increases the probability of forming a competing structure, either a hairpin or an intermolecular duplex. Slow conversion to the quadruplex in vitro (in a potassium-rich buffer) and cells was demonstrated by NMR. 'Shape-shifting' sequences may respond to [Na+]/[K+] changes with delayed kinetics.


Assuntos
Quadruplex G , Potássio , Sódio , Humanos , Espectroscopia de Ressonância Magnética , Mutação , Potássio/química , Sódio/química
20.
J Chem Phys ; 159(14)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37815107

RESUMO

Experimentally, in the presence of the crowding agent polyethylene glycol (PEG), sodium ions compact double-stranded DNA more readily than potassium ions. Here, we have used molecular dynamics simulations and the "ion binding shells model" of DNA condensation to provide an explanation for the observed variations in condensation of short DNA duplexes in solutions containing different monovalent cations and PEG; several predictions are made. According to the model we use, externally bound ions contribute the most to the ion-induced aggregation of DNA duplexes. The simulations reveal that for two adjacent DNA duplexes, the number of externally bound Na+ ions is larger than the number of K+ ions over a wide range of chloride concentrations in the presence of PEG, providing a qualitative explanation for the higher propensity of sodium ions to compact DNA under crowded conditions. The qualitative picture is confirmed by an estimate of the corresponding free energy of DNA aggregation that is at least 0.2kBT per base pair more favorable in solution with NaCl than with KCl at the same ion concentration. The estimated attraction free energy of DNA duplexes in the presence of Na+ depends noticeably on the DNA sequence; we predict that AT-rich DNA duplexes are more readily condensed than GC-rich ones in the presence of Na+. Counter-intuitively, the addition of a small amount of a crowding agent with high affinity for the specific condensing ion may lead to the weakening of the ion-mediated DNA-DNA attraction, shifting the equilibrium away from the DNA condensed phase.


Assuntos
DNA , Sódio , DNA/química , Sódio/química , Potássio/química , Pareamento de Bases , Polietilenoglicóis , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...