Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.001
Filtrar
1.
Sci Rep ; 14(1): 13168, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849397

RESUMO

Autism spectrum disorder (ASD) is a pervasive neurodevelopmental condition characterized by social interaction deficits, communication impairments, repetitive behaviors, and sensory sensitivities. While the etiology of ASD is multifaceted, abnormalities in glutamatergic neurotransmission and synaptic plasticity have been implicated. This study investigated the role of metabotropic glutamate receptor 8 (mGlu8) in modulating long-term potentiation (LTP) in a rat model of ASD induced by prenatal valproic acid (VPA) exposure. To induce an animal model with autism-like characteristics, pregnant rats received an intraperitoneal injection of 500 mg/kg of sodium valproate (NaVPA) on embryonic day 12.5. High-frequency stimulation was applied to the perforant path-dentate gyrus (PP-DG) synapse to induce LTP, while the mGlu8 receptor agonist (S)-3,4-dicarboxyphenylglycine (DCPG) was administered into the DG. The results revealed that VPA-exposed rats exhibited reduced LTP compared to controls. DCPG had contrasting effects, inhibiting LTP in controls and enhancing it in VPA-exposed rats. Moreover, reduced social novelty preference index (SNPI) in VPA-exposed rats was reversed by intra-DG administration of S-3,4-DCPG. In conclusion, our study advances our understanding of the complex relationship between glutamatergic neurotransmission, synaptic plasticity, and VPA-induced autism model. The findings suggest that mGlu8 receptor dysfunction plays a role in the impaired synaptic plasticity seen in ASD.


Assuntos
Giro Denteado , Modelos Animais de Doenças , Potenciação de Longa Duração , Efeitos Tardios da Exposição Pré-Natal , Receptores de Glutamato Metabotrópico , Sinapses , Ácido Valproico , Animais , Ácido Valproico/farmacologia , Ácido Valproico/efeitos adversos , Potenciação de Longa Duração/efeitos dos fármacos , Feminino , Gravidez , Ratos , Giro Denteado/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Via Perfurante/efeitos dos fármacos , Transtorno Autístico/induzido quimicamente , Glicina/análogos & derivados , Glicina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ratos Sprague-Dawley , Transtorno do Espectro Autista/induzido quimicamente , Masculino
2.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230221, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853554

RESUMO

Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and is the leading known single-gene cause of autism spectrum disorder. Patients with FXS display varied behavioural deficits that include mild to severe cognitive impairments in addition to mood disorders. Currently, there is no cure for this condition; however, there is an emerging focus on therapies that inhibit mechanistic target of rapamycin (mTOR)-dependent protein synthesis owing to the clinical effectiveness of metformin for alleviating some behavioural symptoms in FXS. Adiponectin (APN) is a neurohormone that is released by adipocytes and provides an alternative means to inhibit mTOR activation in the brain. In these studies, we show that Fmr1 knockout mice, like patients with FXS, show reduced levels of circulating APN and that both long-term potentiation (LTP) and long-term depression (LTD) in the dentate gyrus (DG) are impaired. Brief (20 min) incubation of hippocampal slices in APN (50 nM) was able to rescue both LTP and LTD in the DG and increased both the surface expression and phosphorylation of GluA1 receptors. These results provide evidence for reduced APN levels in FXS playing a role in decreasing bidirectional synaptic plasticity and show that therapies which enhance APN levels may have therapeutic potential for this and related conditions.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Adiponectina , Giro Denteado , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Camundongos Knockout , Plasticidade Neuronal , Animais , Síndrome do Cromossomo X Frágil/fisiopatologia , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/metabolismo , Giro Denteado/metabolismo , Giro Denteado/efeitos dos fármacos , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Adiponectina/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Receptores de AMPA/metabolismo
3.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230234, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853565

RESUMO

How the two pathognomonic proteins of Alzheimer's disease (AD); amyloid ß (Aß) and tau, cause synaptic failure remains enigmatic. Certain synthetic and recombinant forms of these proteins are known to act concurrently to acutely inhibit long-term potentiation (LTP). Here, we examined the effect of early amyloidosis on the acute disruptive action of synaptotoxic tau prepared from recombinant protein and tau in patient-derived aqueous brain extracts. We also explored the persistence of the inhibition of LTP by different synaptotoxic tau preparations. A single intracerebral injection of aggregates of recombinant human tau that had been prepared by either sonication of fibrils (SτAs) or disulfide bond formation (oTau) rapidly and persistently inhibited LTP in rat hippocampus. The threshold for the acute inhibitory effect of oTau was lowered in amyloid precursor protein (APP)-transgenic rats. A single injection of synaptotoxic tau-containing AD or Pick's disease brain extracts also inhibited LTP, for over two weeks. Remarkably, the persistent disruption of synaptic plasticity by patient-derived brain tau was rapidly reversed by a single intracerebral injection of different anti-tau monoclonal antibodies, including one directed to a specific human tau amino acid sequence. We conclude that patient-derived LTP-disrupting tau species persist in the brain for weeks, maintaining their neuroactivity often in concert with Aß. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Encéfalo , Potenciação de Longa Duração , Proteínas tau , Potenciação de Longa Duração/efeitos dos fármacos , Animais , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ratos , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Ratos Transgênicos , Masculino , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos
4.
PLoS One ; 19(5): e0302850, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748711

RESUMO

BACKGROUND AND AIM: Vascular dementia (VD) is a common type of dementia. This study aimed to evaluate the effects of low and high doses of lutein administration in bilateral-carotid vessel occlusion (2VO) rats. EXPERIMENTAL PROCEDURE: The rats were divided into the following groups: the control, sham-, vehicle (2VO+V) groups, and two groups after 2VO were treated with lutein 0.5 (2VO+LUT-o.5) and 5mg/kg (2VO+LUT-5). The passive-avoidance and Morris water maze were performed to examine fear and spatial memory. The field-potential recording was used to investigate the properties of basal synaptic transmission (BST), paired-pulse ratio (PPR), as an index for measurement of neurotransmitter release, and long-term potentiation (LTP). The hippocampus was removed to evaluate hippocampal cells, volume, and MDA level. RESULT: Treatment with low and high doses improves spatial memory and LTP impairment in VD rats, but only the high dose restores the fear memory, hippocampal cell loss, and volume and MDA level. Interestingly, low-dose, but not high-dose, increased PPR. However, BST recovered only in the high-dose treated group. CONCLUSIONS: Treatment with a low dose might affect neurotransmitter release probability, but a high dose affects postsynaptic processes. It seems likely that low and high doses improve memory and LTP through different mechanisms.


Assuntos
Demência Vascular , Modelos Animais de Doenças , Hipocampo , Potenciação de Longa Duração , Luteína , Plasticidade Neuronal , Animais , Demência Vascular/tratamento farmacológico , Demência Vascular/fisiopatologia , Ratos , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Luteína/farmacologia , Luteína/administração & dosagem , Luteína/uso terapêutico , Memória/efeitos dos fármacos , Ratos Wistar , Memória Espacial/efeitos dos fármacos , Relação Dose-Resposta a Droga , Aprendizagem em Labirinto/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
5.
Alzheimers Res Ther ; 16(1): 109, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750512

RESUMO

BACKGROUND: As one major symptom of Alzheimer's disease (AD), anterograde amnesia describes patients with an inability in new memory formation. The crucial role of the entorhinal cortex in forming new memories has been well established, and the neuropeptide cholecystokinin (CCK) is reported to be released from the entorhinal cortex to enable neocortical associated memory and long-term potentiation. Though several studies reveal that the entorhinal cortex and CCK are related to AD, it is less well studied. It is unclear whether CCK is a good biomarker or further a great drug candidate for AD. METHODS: mRNA expressions of CCK and CCK-B receptor (CCKBR) were examined in two mouse models, 3xTg AD and CCK knock-out (CCK-/-) mice. Animals' cognition was investigated with Morris water maze, novel object recognition test and neuroplasticity with in-vitro electrophysiological recording. Drugs were given intraperitoneally to animals to investigate the rescue effects on cognitive deficits, or applied to brain slices directly to explore the influence in inducement of long-term potentiation. RESULTS: Aged 3xTg AD mice exhibited reduced CCK mRNA expression in the entorhinal cortex but reduced CCKBR expression in the neocortex and hippocampus, and impaired cognition and neuroplasticity comparable with CCK-/- mice. Importantly, the animals displayed improved performance and enhanced long-term potentiation after the treatment of CCKBR agonists. CONCLUSIONS: Here we provide more evidence to support the role of CCK in learning and memory and its potential to treat AD. We elaborated on the rescue effect of a promising novel drug, HT-267, on aged 3xTg AD mice. Although the physiological etiology of CCK in AD still needs to be further investigated, this study sheds light on a potential pharmaceutical candidate for AD and dementia.


Assuntos
Doença de Alzheimer , Amnésia Anterógrada , Colecistocinina , Modelos Animais de Doenças , Camundongos Transgênicos , Receptor de Colecistocinina B , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Camundongos , Receptor de Colecistocinina B/genética , Receptor de Colecistocinina B/agonistas , Receptor de Colecistocinina B/deficiência , Amnésia Anterógrada/tratamento farmacológico , Colecistocinina/metabolismo , Córtex Entorrinal/efeitos dos fármacos , Córtex Entorrinal/metabolismo , Masculino , Camundongos Knockout , Camundongos Endogâmicos C57BL , Potenciação de Longa Duração/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos
6.
Mol Pain ; 20: 17448069241258110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38744422

RESUMO

Recent studies using different experimental approaches demonstrate that silent synapses may exist in the adult cortex including the sensory cortex and anterior cingulate cortex (ACC). The postsynaptic form of long-term potentiation (LTP) in the ACC recruits some of these silent synapses and the activity of calcium-stimulated adenylyl cyclases (ACs) is required for such recruitment. It is unknown if the chemical activation of ACs may recruit silent synapses. In this study, we found that activation of ACs contributed to synaptic potentiation in the ACC of adult mice. Forskolin, a selective activator of ACs, recruited silent responses in the ACC of adult mice. The recruitment was long-lasting. Interestingly, the effect of forskolin was not universal, some silent synapses did not undergo potentiation or recruitment. These findings suggest that these adult cortical synapses are not homogenous. The application of a selective calcium-permeable AMPA receptor inhibitor 1-naphthyl acetyl spermine (NASPM) reversed the potentiation and the recruitment of silent responses, indicating that the AMPA receptor is required. Our results strongly suggest that the AC-dependent postsynaptic AMPA receptor contributes to the recruitment of silent responses at cortical LTP.


Assuntos
Adenilil Ciclases , Colforsina , Giro do Cíngulo , Potenciação de Longa Duração , Animais , Camundongos , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Colforsina/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Masculino , Receptores de AMPA/metabolismo , Camundongos Endogâmicos C57BL , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Cálcio/metabolismo
7.
Pharmacol Biochem Behav ; 240: 173779, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38688436

RESUMO

The use of a selective serotonin reuptake inhibitor fluoxetine in depression during pregnancy and the postpartum period might increase the risk of affective disorders and cognitive symptoms in progeny. In animal models, maternal exposure to fluoxetine throughout gestation and lactation negatively affects the behavior of the offspring. Little is known about the effects of maternal fluoxetine on synaptic transmission and plasticity in the offspring cerebral cortex. During pregnancy and lactation C57BL/6J mouse dams received fluoxetine (7.5 mg/kg/day) with drinking water. Female offspring mice received intraperitoneal injections of the selective 5-HT7 receptor antagonist SB 269970 (2.5 mg/kg) for 7 days. Whole-cell and field potential electrophysiological recordings were performed in the medial prefrontal cortex (mPFC) ex vivo brain slices. Perinatal exposure to fluoxetine resulted in decreased field potentials and impaired long-term potentiation (LTP) in layer II/III of the mPFC of female young adult offspring. Neither the intrinsic excitability nor spontaneous excitatory postsynaptic currents were altered in layer II/III mPFC pyramidal neurons. In mPFC slices obtained from fluoxetine-treated mice that were administered SB 269970 both field potentials and LTP magnitude were restored and did not differ from controls. Treatment of fluoxetine-exposed mice with a selective 5-HT7 receptor antagonist, SB 269970, normalizes synaptic transmission and restores the potential for plasticity in the mPFC of mice exposed in utero and postnatally to fluoxetine.


Assuntos
Fluoxetina , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Fenóis , Córtex Pré-Frontal , Efeitos Tardios da Exposição Pré-Natal , Receptores de Serotonina , Sulfonamidas , Animais , Fluoxetina/farmacologia , Feminino , Camundongos , Córtex Pré-Frontal/efeitos dos fármacos , Receptores de Serotonina/efeitos dos fármacos , Receptores de Serotonina/metabolismo , Gravidez , Plasticidade Neuronal/efeitos dos fármacos , Fenóis/farmacologia , Sulfonamidas/farmacologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Antagonistas da Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Potenciação de Longa Duração/efeitos dos fármacos
8.
Neurobiol Aging ; 139: 20-29, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583392

RESUMO

Brazilian green propolis (propolis) is a chemically complex resinous substance that is a potentially viable therapeutic agent for Alzheimer's disease. Herein, propolis induced a transient increase in intracellular Ca2+ concentration ([Ca2+]i) in Neuro-2A cells; moreover, propolis-induced [Ca2+]i elevations were suppressed prior to 24-h pretreatment with amyloid-ß. To reveal the effect of [Ca2+]i elevation on impaired cognition, we performed memory-related behavioral tasks in APP-KI mice relative to WT mice at 4 and 12 months of age. Propolis, at 300-1000 mg/kg/d for 8 wk, significantly ameliorated cognitive deficits in APP-KI mice at 4 months, but not at 12 months of age. Consistent with behavioral observations, injured hippocampal long-term potentiation was markedly ameliorated in APP-KI mice at 4 months of age following repeated propolis administration. In addition, repeated administration of propolis significantly activated intracellular calcium signaling pathway in the CA1 region of APP-KI mice. These results suggest a preventive effect of propolis on cognitive decline through the activation of intracellular calcium signaling pathways in CA1 region of AD mice model.


Assuntos
Doença de Alzheimer , Cálcio , Disfunção Cognitiva , Modelos Animais de Doenças , Própole , Animais , Própole/uso terapêutico , Própole/administração & dosagem , Própole/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/psicologia , Doença de Alzheimer/etiologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/tratamento farmacológico , Cálcio/metabolismo , Camundongos Transgênicos , Sinalização do Cálcio/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Peptídeos beta-Amiloides/metabolismo , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Camundongos
9.
Behav Brain Res ; 466: 114974, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38554850

RESUMO

Polygala tenuifolia Wild is an ancient traditional Chinese medicine. Its main component, tenuifolin (TEN), has been proven to improve cognitive impairment caused by neurodegenerative diseases and ovariectomy. However, there was hardly any pharmacological research about TEN and its potential gender differences. Considering the reduction of TEN on learning and memory dysfunction in ovariectomized animals, therefore, we focused on the impact of TEN in different mice genders in the current study. Spontaneous alternation behavior (SAB), light-dark discrimination, and Morris water maze (MWM) tests were used to evaluate the mice's learning and memory abilities. The field excitatory postsynaptic potential (fEPSP) of the hippocampal CA1 region was recorded using an electrophysiological method, and the morphology of the dendritic structure was examined using Golgi staining. In the behavioral experiments, TEN improved the correct rate in female mice in the SAB test, the correct rate in the light-dark discrimination test, and the number of crossing platforms in the MWM test. Additionally, TEN reduced the latency of female mice rather than male mice in light-dark discrimination and MWM tests. Moreover, TEN could significantly increase the slope of fEPSP in hippocampal Schaffer-CA1 and enhance the total length and the number of intersections of dendrites in the hippocampal CA1 area in female mice but not in male mice. Collectively, the results of the current study showed that TEN improved learning and memory by regulating long-term potentiation (LTP) and dendritic structure of hippocampal CA1 area in female mice but not in males. These findings would help to explore the improvement mechanism of TEN on cognition and expand the knowledge of the potential therapeutic value of TEN in the treatment of cognitive impairment.


Assuntos
Região CA1 Hipocampal , Dendritos , Diterpenos do Tipo Caurano , Potenciação de Longa Duração , Animais , Feminino , Masculino , Região CA1 Hipocampal/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Camundongos , Dendritos/efeitos dos fármacos , Memória/efeitos dos fármacos , Fatores Sexuais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia
10.
Neuroscience ; 545: 148-157, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513764

RESUMO

In this study, the electrophysiological and biochemical consequences of repeated exposure to morphine in male rats on glutamatergic synaptic transmission, synaptic plasticity, the expression of GABA receptors and glutamate receptors at the temporoammonic-CA1 synapse along the longitudinal axis of the hippocampus (dorsal, intermediate, ventral, DH, IH, VH, respectively) were investigated. Slice electrophysiological methods, qRT-PCR, and western blotting techniques were used to characterize synaptic plasticity properties. We showed that repeated morphine exposure (RME) reduced excitatory synaptic transmission and ability for long-term potentiation (LTP) in the VH as well as eliminated the dorsoventral difference in paired-pulse responses. A decreased expression of NR2B subunit in the VH and an increased expression GABAA receptor of α1 and α5 subunits in the DH were observed following RME. Furthermore, RME did not affect the expression of NR2A, AMPA receptor subunits, and γ2GABAA and GABAB receptors in either segment of the hippocampus. In sum, the impact of morphine may differ depending on the region of the hippocampus studied. A distinct change in the short- and long-term synaptic plasticity along the hippocampus long axis due to repeated morphine exposure, partially mediated by a change in the expression profile of glutamatergic receptor subunits. These findings can be useful in further understanding the cellular mechanism underlying deficits in information storage and, more generally, cognitive processes resulting from chronic opioid abuse.


Assuntos
Morfina , Plasticidade Neuronal , Ratos Sprague-Dawley , Animais , Masculino , Morfina/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Ratos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Entorpecentes/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Receptores de GABA-A/metabolismo , Receptores de GABA-A/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Receptores de GABA/metabolismo , Receptores de GABA/efeitos dos fármacos
11.
Mol Psychiatry ; 29(4): 1114-1127, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38177353

RESUMO

The discovery that subanesthetic doses of (R, S)-ketamine (ketamine) and (S)-ketamine (esketamine) rapidly induce antidepressant effects and promote sustained actions following drug clearance in depressed patients who are treatment-resistant to other therapies has resulted in a paradigm shift in the conceptualization of how rapidly and effectively depression can be treated. Consequently, the mechanism(s) that next generation antidepressants may engage to improve pathophysiology and resultant symptomology are being reconceptualized. Impaired excitatory glutamatergic synapses in mood-regulating circuits are likely a substantial contributor to the pathophysiology of depression. Metaplasticity is the process of regulating future capacity for plasticity by priming neurons with a stimulation that alters later neuronal plasticity responses. Accordingly, the development of treatment modalities that specifically modulate the duration, direction, or magnitude of glutamatergic synaptic plasticity events such as long-term potentiation (LTP), defined here as metaplastogens, may be an effective approach to reverse the pathophysiology underlying depression and improve depression symptoms. We review evidence that the initiating mechanisms of pharmacologically diverse rapid-acting antidepressants (i.e., ketamine mimetics) converge on consistent downstream molecular mediators that facilitate the expression/maintenance of increased synaptic strength and resultant persisting antidepressant effects. Specifically, while the initiating mechanisms of these therapies may differ (e.g., cell type-specificity, N-methyl-D-aspartate receptor (NMDAR) subtype-selective inhibition vs activation, metabotropic glutamate receptor 2/3 antagonism, AMPA receptor potentiation, 5-HT receptor-activating psychedelics, etc.), the sustained therapeutic mechanisms of putative rapid-acting antidepressants will be mediated, in part, by metaplastic effects that converge on consistent molecular mediators to enhance excitatory neurotransmission and altered capacity for synaptic plasticity. We conclude that the convergence of these therapeutic mechanisms provides the opportunity for metaplasticity processes to be harnessed as a druggable plasticity mechanism by next-generation therapeutics. Further, targeting metaplastic mechanisms presents therapeutic advantages including decreased dosing frequency and associated diminished adverse responses by eliminating the requirement for the drug to be continuously present.


Assuntos
Antidepressivos , Ketamina , Plasticidade Neuronal , Humanos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Plasticidade Neuronal/efeitos dos fármacos , Ketamina/farmacologia , Ketamina/uso terapêutico , Animais , Depressão/tratamento farmacológico , Potenciação de Longa Duração/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
12.
J Alzheimers Dis ; 92(4): 1413-1426, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911940

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by amyloid-ß peptide (Aß) deposition. Aß accumulation induces oxidative stress, leading to mitochondrial dysfunction, apoptosis, and so forth. Octadecaneuropeptide (ODN), a diazepam-binding inhibitor (DBI)-derived peptide, has been reported to have antioxidant properties. However, it is unclear whether ODN has neuroprotective effects in AD. OBJECTIVE: To profile the potential effects of ODN on AD. METHODS: We established a mouse model of AD via microinjection of Aß in the lateral ventricle. Utilizing a combination of western blotting assays, electrophysiological recordings, and behavioral tests, we investigated the neuroprotective effects of ODN on AD. RESULTS: DBI expression was decreased in AD model mice and cells. Meanwhile, ODN decreased Aß generation by downregulating amyloidogenic AßPP processing in HEK-293 cells stably expressing human Swedish mutant APP695 and BACE1 (2EB2). Moreover, ODN could inhibit Aß-induced oxidative stress in primary cultured cells and mice, as reflected by a dramatic increase in antioxidants and a decrease in pro-oxidants. We also found that ODN could reduce oxidative stress-induced apoptosis by restoring mitochondrial membrane potential, intracellular Ca2+ and cleaved caspase-3 levels in Aß-treated primary cultured cells and mice. More importantly, intracerebroventricular injection of ODN attenuated cognitive impairments as well as long-term potentiation in Aß-treated mice. CONCLUSION: These results suggest that ODN may exert a potent neuroprotective effect against Aß-induced neurotoxicity and memory decline via its antioxidant effects, indicating that ODN may be a potential therapeutic agent for AD.


Assuntos
Doença de Alzheimer , Encéfalo , Disfunção Cognitiva , Inibidor da Ligação a Diazepam , Neuropeptídeos , Fármacos Neuroprotetores , Estresse Oxidativo , Fragmentos de Peptídeos , Animais , Humanos , Camundongos , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Células Cultivadas , Disfunção Cognitiva/complicações , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Inibidor da Ligação a Diazepam/farmacologia , Inibidor da Ligação a Diazepam/uso terapêutico , Modelos Animais de Doenças , Células HEK293 , Potenciação de Longa Duração/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neuropeptídeos/farmacologia , Neuropeptídeos/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico
13.
Cells ; 11(2)2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35053378

RESUMO

Nicotine addiction develops predominantly during human adolescence through smoking. Self-administration experiments in rodents verify this biological preponderance to adolescence, suggesting evolutionary-conserved and age-defined mechanisms which influence the susceptibility to nicotine addiction. The hippocampus, a brain region linked to drug-related memory storage, undergoes major morpho-functional restructuring during adolescence and is strongly affected by nicotine stimulation. However, the signaling mechanisms shaping the effects of nicotine in young vs. adult brains remain unclear. MicroRNAs (miRNAs) emerged recently as modulators of brain neuroplasticity, learning and memory, and addiction. Nevertheless, the age-dependent interplay between miRNAs regulation and hippocampal nicotinergic signaling remains poorly explored. We here combined biophysical and pharmacological methods to examine the impact of miRNA-132/212 gene-deletion (miRNA-132/212-/-) and nicotine stimulation on synaptic functions in adolescent and mature adult mice at two hippocampal synaptic circuits: the medial perforant pathway (MPP) to dentate yrus (DG) synapses (MPP-DG) and CA3 Schaffer collaterals to CA1 synapses (CA3-CA1). Basal synaptic transmission and short-term (paired-pulse-induced) synaptic plasticity was unaltered in adolescent and adult miRNA-132/212-/- mice hippocampi, compared with wild-type controls. However, nicotine stimulation promoted CA3-CA1 synaptic potentiation in mature adult (not adolescent) wild-type and suppressed MPP-DG synaptic potentiation in miRNA-132/212-/- mice. Altered levels of CREB, Phospho-CREB, and acetylcholinesterase (AChE) expression were further detected in adult miRNA-132/212-/- mice hippocampi. These observations propose miRNAs as age-sensitive bimodal regulators of hippocampal nicotinergic signaling and, given the relevance of the hippocampus for drug-related memory storage, encourage further research on the influence of miRNAs 132 and 212 in nicotine addiction in the young and the adult brain.


Assuntos
Envelhecimento/genética , Hipocampo/fisiologia , MicroRNAs/metabolismo , Plasticidade Neuronal/genética , Nicotina/farmacologia , Acetilcolinesterase/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Giro Denteado/efeitos dos fármacos , Giro Denteado/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Plasticidade Neuronal/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
14.
Life Sci ; 293: 120349, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35065162

RESUMO

AIMS: Propofol, the most commonly used intravenous anesthetic, is known for its protective effect in various human and animal disease models such as post-traumatic stress disease (PTSD). However, it still needs efforts to clarify the effect of propofol on fear memory extinction and the relevant mechanisms. METHODS: Fear memory extinction was examined in PTSD mice model. Thirty-six mice were randomly divided into three groups: a shock + propofol group (sh + Pro), shock + normal saline group (sh + NS), and sham group. The mice were treated with propofol (150 mg/kg) or normal saline (of the same volume) intraperitoneally 30 min after the conditioning. These mice's behavior was analysed with contextual test, sucrose preference test (SPT) and Morris water maze (MWM). Additionally, the synaptic plasticity of the hippocampus was examined by long-term potentiation (LTP) and long-term depression (LTD). KEY FINDINGS: Compared with the sham group, the sh + NS group showed increased freezing time and depressive behavior, meanwhile the sh + Pro group showed minor behavioral changes. What's more, we found that propofol rescued the impaired long-term potentiation (LTP) and long-term depression (LTD) in hippocampus of PTSD mice. All these suggest that propofol can accelerate fear memory extinction and change synaptic plasticity of PTSD mice. SIGNIFICANCE: The study proved that propofol can protect the mice from PTSD by reserving synaptic plasticity and brought a new insight into PTSD treatment indicating that propofol maybe a potential cure for PTSD.


Assuntos
Hipocampo/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Propofol/uso terapêutico , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Animais , Hipocampo/fisiologia , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/uso terapêutico , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Propofol/farmacologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/psicologia
15.
Biomed Pharmacother ; 147: 112663, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35093759

RESUMO

Memory-enhancing agents have long been required for various reasons such as for obtaining a good score in a test in the young and for retaining memory in the aged. Although many studies have found that several natural products may be good candidates for memory enhancement, there is still a need for better agents. The present study investigated whether rubrofusarin, an active ingredient in Cassiae semen, enhances learning and memory in normal mice. Passive avoidance and Morris water maze tests were performed to determine the memory-enhancing ability of rubrofusarin. To investigate synaptic function, hippocampal long-term potentiation (LTP) was measured. Western blotting was performed to determine protein levels. To investigate neurite outgrowth, DCX immunohistochemistry and cell culture were utilised. Rubrofusarin (1, 3, 10, 30 mg/kg) enhanced memory in passive avoidance and Morris water maze tests. Moreover, rubrofusarin ameliorated scopolamine-induced memory impairment. In the rubrofusarin-treated group, high-frequency stimulation induced higher LTP in the hippocampal Schaffer-collateral pathway compared to the control group. The rubrofusarin-treated group showed a higher number of DCX-positive immature neurons with an increase in the length of dendrites compared to the control group in the hippocampal dentate gyrus region. In vitro experiments showed that rubrofusarin facilitated neurite outgrowth in neuro2a cells through extracellular signal-regulated kinase (ERK). Finally, we found that extracellular signal-regulated kinase (ERK) is required for rubrofusarin-induced enhancement of neurite outgrowth, learning and memory. These results demonstrate that rubrofusarin enhances learning and memory and neurite outgrowth, and these might need activation of ERK pathway.


Assuntos
Cognição/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Pironas/farmacologia , Animais , Técnicas de Cultura de Células , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Pironas/administração & dosagem
16.
J Med Chem ; 65(1): 217-233, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34962802

RESUMO

Cognitive impairment and learning ability of the brain are directly linked to synaptic plasticity as measured in changes of long-term potentiation (LTP) and long-term depression (LTD) in animal models of brain diseases. LTD reflects a sustained reduction of the synaptic AMPA receptor content based on targeted clathrin-mediated endocytosis. AMPA receptor endocytosis is initiated by dephosphorylation of Tyr876 on the C-terminus of the AMPAR subunit GluA2. The brain-specific striatal-enriched protein tyrosine phosphatase (STEP) is responsible for this process. To identify new, highly effective inhibitors of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) internalization, we performed structure-based design of peptides able to inhibit STEP-GluA2-CT complex formation. Two short peptide derivatives were found as efficient in vitro inhibitors. Our in vivo experiments evidenced that both peptides restore the memory deficits and display anxiolytic and antidepressant effects in a scopolamine-treated rat model. The interference peptides identified and characterized here represent promising lead compounds for novel cognitive enhancers and/or behavioral modulators.


Assuntos
Cognição/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Proteínas Tirosina Fosfatases não Receptoras/antagonistas & inibidores , Receptores de AMPA/antagonistas & inibidores , Animais , Endocitose , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Plasticidade Neuronal , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Ratos , Ratos Wistar , Receptores de AMPA/metabolismo , Sinapses/efeitos dos fármacos
17.
Exp Neurol ; 347: 113892, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634309

RESUMO

Intrapleural injections of cholera toxin B conjugated to saporin (CTB-SAP) selectively eliminates respiratory (e.g., phrenic) motor neurons, and mimics motor neuron death and respiratory deficits observed in rat models of neuromuscular diseases. Additionally, microglial density increases in the phrenic motor nucleus following CTB-SAP. This CTB-SAP rodent model allows us to study the impact of motor neuron death on the output of surviving phrenic motor neurons, and the underlying mechanisms that contribute to enhancing or constraining their output at 7 days (d) or 28d post-CTB-SAP injection. 7d CTB-SAP rats elicit enhanced phrenic long-term facilitation (pLTF) through the Gs-pathway (inflammation-resistant in naïve rats), while pLTF is elicited though the Gq-pathway (inflammation-sensitive in naïve rats) in control and 28d CTB-SAP rats. In 7d and 28d male CTB-SAP rats and controls, we evaluated the effect of cyclooxygenase-1/2 enzymes on pLTF by delivery of the nonsteroidal anti-inflammatory drug, ketoprofen (IP), and we hypothesized that pLTF would be unaffected by ketoprofen in 7d CTB-SAP rats, but pLTF would be enhanced in 28d CTB-SAP rats. In anesthetized, paralyzed and ventilated rats, pLTF was surprisingly attenuated in 7d CTB-SAP rats and enhanced in 28d CTB-SAP rats (both p < 0.05) following ketoprofen delivery. Additionally in CTB-SAP rats: 1) microglia were more amoeboid in the phrenic motor nucleus; and 2) cervical spinal inflammatory-associated factor expression (TNF-α, BDNF, and IL-10) was increased vs. controls in the absence of ketoprofen (p < 0.05). Following ketoprofen delivery, TNF-α and IL-10 expression was decreased back to control levels, while BDNF expression was differentially affected over the course of motor neuron death in CTB-SAP rats. This study furthers our understanding of factors (e.g., cyclooxygenase-1/2-induced inflammation) that contribute to enhancing or constraining pLTF and its implications for breathing following respiratory motor neuron death.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Cetoprofeno/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Nervo Frênico/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Toxina da Cólera/toxicidade , Masculino , Microglia/metabolismo , Neurônios Motores/patologia , Doenças Neuromusculares/induzido quimicamente , Doenças Neuromusculares/patologia , Doenças Neuromusculares/fisiopatologia , Nervo Frênico/patologia , Ratos , Ratos Sprague-Dawley , Saporinas/toxicidade
18.
Neuropharmacology ; 202: 108840, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678377

RESUMO

Different types of memory are thought to rely on different types of synaptic plasticity, many of which depend on the activation of the N-Methyl-D Aspartate (NMDA) subtype of glutamate receptors. Accordingly, there is considerable interest in the possibility of using positive allosteric modulators (PAMs) of NMDA receptors (NMDARs) as cognitive enhancers. Here we firstly review the evidence that NMDA receptor-dependent forms of synaptic plasticity: short-term potentiation (STP), long-term potentiation (LTP) and long-term depression (LTD) can be pharmacologically differentiated by using NMDAR ligands. These observations suggest that PAMs of NMDAR function, depending on their subtype selectivity, might differentially regulate STP, LTP and LTD. To test this hypothesis, we secondly performed experiments in rodent hippocampal slices with UBP714 (a GluN2A/2B preferring PAM), CIQ (a GluN2C/D selective PAM) and UBP709 (a pan-PAM that potentiates all GluN2 subunits). We report here, for the first time, that: (i) UBP714 potentiates sub-maximal LTP and reduces LTD; (ii) CIQ potentiates STP without affecting LTP; (iii) UBP709 enhances LTD and decreases LTP. We conclude that PAMs can differentially regulate distinct forms of NMDAR-dependent synaptic plasticity due to their subtype selectivity.


Assuntos
Potenciação de Longa Duração/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Regulação Alostérica , Animais , Benzimidazóis/farmacologia , Hipocampo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar
19.
Exp Neurol ; 350: 113929, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34813840

RESUMO

Obstructive sleep apnea-hypopnea syndrome (OSAHS) is widely known for its multiple systems damage, especially neurocognitive deficits in children. Since their discovery, adenosine A2A receptors (A2ARs) have been considered as key elements in signaling pathways mediating neurodegenerative diseases such as Huntington's and Alzheimer's, as well as cognitive function regulation. Herein, we investigated A2AR role in cognitive impairment induced by chronic intermittent hypoxia (CIH). Mice were exposed to CIH 7 h every day for 4 weeks, and intraperitoneally injected with A2AR agonist CGS21680 or A2AR antagonist SCH58261 half an hour before IH exposure daily. The 8-arm radial arm maze was utilized to assess spatial memory after CIH exposures.To validate findings using pharmacology, the impact of intermittent hypoxia was investigated in A2AR knockout mice. CIH-induced memory dysfunction was manifested by increased error rates in the radial arm maze test. The behavioral changes were associated with hippocampal pathology, neuronal apoptosis, and synaptic plasticity impairment. The stimulation of adenosine A2AR exacerbated memory impairment with more serious neuropathological damage, attenuated long-term potentiation (LTP), syntaxin down-regulation, and increased BDNF protein. Moreover, apoptosis-promoting protein cleaved caspase-3 was upregulated while anti-apoptotic protein Bcl-2 was downregulated. Consistent with these findings, A2AR inhibition with SCH58261 and A2AR deletion exhibited the opposite result. Overall, these findings suggest that A2AR plays a critical role in CIH-induced impairment of learning and memory by accelerating hippocampal neuronal apoptosis and reducing synaptic plasticity. Blockade of adenosine A2A receptor alleviates cognitive dysfunction after chronic exposure to intermittent hypoxia in mice.


Assuntos
Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Transtornos Cognitivos/prevenção & controle , Hipóxia Encefálica/tratamento farmacológico , Hipóxia Encefálica/psicologia , Receptor A2A de Adenosina/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caspase 3/metabolismo , Doença Crônica , Transtornos Cognitivos/induzido quimicamente , Disfunção Cognitiva , Hipocampo/patologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Desempenho Psicomotor/efeitos dos fármacos , Pirimidinas/uso terapêutico , Receptor A2A de Adenosina/genética , Triazóis/uso terapêutico
20.
J Neurosci ; 42(3): 350-361, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34815314

RESUMO

Highly correlated firing of primary afferent inputs and lamina I projection neurons evokes synaptic long-term potentiation (LTP), a mechanism by which ascending nociceptive transmission can be amplified at the level of the spinal dorsal horn. However, the degree to which neuromodulatory signaling shapes the temporal window governing spike-timing-dependent plasticity (STDP) at sensory synapses onto projection neurons remains unclear. The present study demonstrates that activation of spinal D1/D5 dopamine receptors (D1/D5Rs) creates a highly permissive environment for the production of LTP in male and female adult mouse spinoparabrachial neurons by promoting non-Hebbian plasticity. Bath application of the mixed D1/D5R agonist SKF82958 unmasked LTP at STDP pairing intervals that normally fail to alter synaptic efficacy. Furthermore, during D1/D5R signaling, action potential discharge in projection neurons became dispensable for LTP generation, and primary afferent stimulation alone was sufficient to induce strengthening of sensory synapses. This non-Hebbian LTP was blocked by the D1/D5R antagonist SCH 39166 or genetic deletion of D5R, and required activation of mGluR5 and intracellular Ca2+ release but was independent of NMDAR activation. D1/D5R-enabled non-Hebbian plasticity was observed across multiple neuronal subpopulations in the superficial dorsal horn but was more prevalent in spinoparabrachial neurons than interneurons. Interestingly, the ability of neonatal tissue damage to promote non-Hebbian LTP in adult projection neurons was not observed in D5R knock-out mice. Collectively, these findings suggest that joint spinal D1/D5R and mGluR5 activation can allow unfettered potentiation of sensory synapses onto the output neurons responsible for conveying pain and itch information to the brain.SIGNIFICANCE STATEMENT Synaptic LTP in spinal projection neurons has been implicated in the generation of chronic pain. Under normal conditions, plasticity at sensory synapses onto adult mouse spinoparabrachial neurons follows strict Hebbian learning rules, requiring coincident presynaptic and postsynaptic firing. Here, we demonstrate that the activation of spinal D1/D5Rs promotes a switch from Hebbian to non-Hebbian LTP so that primary afferent stimulation alone is sufficient to evoke LTP in the absence of action potential discharge in projection neurons, which required joint activation of mGluR5 and intracellular Ca2+ release but not NMDARs. These results suggest that D1/D5Rs cooperate with mGluR5 receptors in the spinal dorsal horn to powerfully influence the amplification of ascending nociceptive transmission to the brain.


Assuntos
Potenciação de Longa Duração/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D5/agonistas , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Benzazepinas/farmacologia , Cálcio/metabolismo , Agonistas de Dopamina/farmacologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D5/genética , Receptores de Dopamina D5/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA