Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(10): e0212024, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39287447

RESUMO

RNA viruses have evolved sophisticated strategies to exploit the limited encoded information within their typically compact genomes. One of them, named transcriptional slippage (TS), is characterized by the appearance of indels in nascent viral RNAs, leading to changes in the open reading frame (ORF). Although members of unrelated viral families express key proteins via TS, the available information about this phenomenon is still limited. In potyvirids (members of the Potyviridae family), TS has been defined by the insertion of an additional A at An motifs (n ≥ 6) in newly synthesized transcripts at a low frequency, modulated by nucleotides flanking the A-rich motif. Here, by using diverse experimental approaches and a collection of plant/virus combinations, we discover cases not following this definition. In summary, we observe (i) a high rate of single-nucleotide deletions at slippage motifs, (ii) overlapping ORFs acceded by slippage at an U8 stretch, and (iii) changes in slippage rates induced by factors not related to cognate viruses. Moreover, a survey of whole-genome sequences from potyvirids shows a widespread occurrence of species-specific An/Un (n ≥ 6) motifs. Even though many of them, but not all, lead to the production of truncated proteins rather than access to overlapping ORFs, these results suggest that slippage motifs appear more frequently than expected and play relevant roles during virus evolution. Considering the potential of this phenomenon to expand the viral proteome by acceding to overlapping ORFs and/or producing truncated proteins, a re-evaluation of TS significance during infections of RNA viruses is required.IMPORTANCETranscriptional slippage (TS) is used by RNA viruses as another strategy to maximize the coding information in their genomes. This phenomenon is based on a peculiar feature of viral replicases: they may produce indels in a small fraction of newly synthesized viral RNAs when transcribing certain motifs and then produce alternative proteins due to a change of the reading frame or truncated products by premature termination. Here, using plant-infecting RNA viruses as models, we discover cases expanding on previously established features of plant virus TS, prompting us to reconsider and redefine this expression strategy. An interesting conclusion from our study is that TS might be more relevant during RNA virus evolution and infection processes than previously assumed.


Assuntos
Genoma Viral , Fases de Leitura Aberta , Vírus de Plantas , RNA Viral , Transcrição Gênica , RNA Viral/genética , RNA Viral/metabolismo , Vírus de Plantas/genética , Potyviridae/genética , Vírus de RNA/genética , Plantas/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
2.
J Virol Methods ; 330: 115021, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39233059

RESUMO

This study describes production of polyclonal antibodies against recently reported novel potyvirid infecting alfalfa (Medicago sativa L.). The virus was first found in alfalfa seed material and later identified in plant samples collected from commercial alfalfa fields in Arizona, USA. It was classified as a novel species related to the members of the genus Ipomovirus and potentially representing a new genus in the family Potyviridae (Nemchinov et al., 2023b). Polyclonal antibodies were produced against the predicted viral coat protein expressed in bacterial cells and used in different types of immunoassays for specific detection of this emerging virus. They could be helpful in plant virus certification programs, screening of alfalfa germplasm, research on pathogenicity, biology, and geographic distribution of this emerging virus.


Assuntos
Anticorpos Antivirais , Medicago sativa , Doenças das Plantas , Medicago sativa/virologia , Doenças das Plantas/virologia , Anticorpos Antivirais/sangue , Potyviridae/genética , Potyviridae/isolamento & purificação , Potyviridae/classificação , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Estados Unidos , Arizona
3.
Viruses ; 16(9)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39339946

RESUMO

Cassava is an important food crop in western Kenya, yet its production is challenged by pests and diseases that require routine monitoring to guide development and deployment of control strategies. Field surveys were conducted in 2022 and 2023 to determine the prevalence, incidence and severity of cassava mosaic disease (CMD) and cassava brown streak disease (CBSD), whitefly numbers and incidence of cassava green mite (CGM) in six counties of western Kenya. Details of the encountered cassava varieties were carefully recorded to determine the adoption of improved varieties. A total of 29 varieties were recorded, out of which 13 were improved, although the improved varieties were predominant in 60% of fields and the most widely grown variety was MM96/4271. The CMD incidence was higher in 2022 (26.4%) compared to 2023 (10.1%), although the proportion of CMD attributable to whitefly infection was greater (50.6%) in 2023 than in 2022 (18.0%). The CBSD incidence in 2022 was 6.4%, while in 2023 it was 4.1%. The CMD incidence was significantly lower (5.9%) for the improved varieties than it was for the local varieties (35.9%), although the CBSD incidence did not differ significantly between the improved (2.3%) and local varieties (9.7%). Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) were both detected. Most infections were single CBSV infections (82.9%), followed by single UCBSV (34.3%) and coinfection with both viruses (16.7%). Whiteflies were more abundant in 2023, in which 28% of the fields had super-abundant populations of >100/plant, compared to 5% in 2022. KASP SNP genotyping designated 92.8% of the specimens as SSA-ECA for 2022, while it was 94.4% for 2023. The cassava green mite incidence was 65.4% in 2022 compared to 79.9% in 2023. This study demonstrates that cassava viruses, whiteflies and cassava green mites continue to be important constraints to cassava production in western Kenya, although the widespread cultivation of improved varieties is reducing the impact of cassava viruses. The more widespread application of high-quality seed delivery mechanisms could further enhance the management of these pests/diseases, coupled with wider application of IPM measures for whiteflies and mites.


Assuntos
Manihot , Doenças das Plantas , Manihot/virologia , Manihot/parasitologia , Quênia/epidemiologia , Doenças das Plantas/virologia , Doenças das Plantas/parasitologia , Animais , Hemípteros/virologia , Potyviridae/genética , Potyviridae/isolamento & purificação , Incidência , Psychodidae/virologia , Psychodidae/parasitologia
4.
Pest Manag Sci ; 80(10): 5256-5265, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38895838

RESUMO

BACKGROUND: Telosma mosaic virus (TelMV, Potyvirus, Potyviridae) is an emerging viral pathogen that threatens passion fruit plantations worldwide. However, an efficient strategy for controlling such a virus is not yet available. Cross protection is a phenomenon in which pre-infection of a plant with one mild strain prevents or delays subsequent infection by the same or closely related virus. HC-Pro is the potyviral encoded multifunctional protein involved in several steps of viral infection, including multiplication, movement, transmission and RNA silencing suppression. In this study, we tested whether it is possible to generate attenuated viral strains capable of conferring protection against severe TelMV infection by manipulating the HC-Pro gene. RESULTS: By introducing point mutation into the conserved motif FRNK of HC-Pro that is essential for RNA silencing suppression, we have successfully obtained three attenuated mutants of TelMV (R181K, R181D, and R181E, respectively). These attenuated TelMV mutants could systemically infect passion fruit plants without noticeable symptoms. Pre-inoculation of one of these attenuated mutants confers efficient protection against subsequent infection by severe TelMV strain. Moreover, we demonstrated that the HC-Pros harbored by the attenuated mutants exhibit reduced RNA silencing suppression activity in Nicotiana benthamiana leaves. CONCLUSION: The attenuated TelMV mutants developed in this study that are suitable for cross protection offer a practical, powerful tool to fight against TelMV for sustainable passion fruit production. © 2024 Society of Chemical Industry.


Assuntos
Passiflora , Doenças das Plantas , Proteínas Virais , Passiflora/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Doenças das Plantas/virologia , Doenças das Plantas/prevenção & controle , Arginina , Motivos de Aminoácidos , Potyviridae/genética , Potyviridae/fisiologia , Potyvirus/genética , Potyvirus/fisiologia , Nicotiana/virologia , Cisteína Endopeptidases
5.
Sci Rep ; 14(1): 12438, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816439

RESUMO

Cassava brown streak disease (CBSD) caused by Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) is the most economically important viral disease of cassava. As cassava is a vegetatively propagated crop, the development of rapid and sensitive diagnostics would aid in the identification of virus-free planting material and development of effective management strategies. In this study, a rapid, specific and sensitive real-time reverse transcription recombinase polymerase amplification (RT-RPA) assay was developed for real-time detection of CBSV and UCBSV. The RT-RPA was able to detect as little as 2 pg/µl of purified RNA obtained from infected cassava leaves, a sensitivity equivalent to that obtained by quantitative real-time reverse transcription PCR (qRT-PCR), within 20 min at 37 °C. Further, the RT-RPA detected each target virus directly from crude leaf and stem extracts, avoiding the tedious and costly isolation of high-quality RNA. The developed RT-RPA assay provides a valuable diagnostic tool that can be adopted by cassava seed certification and virus resistance breeding programs to ensure distribution of virus-free cassava planting materials to farmers. This is the first report on the development and validation of crude sap-based RT-RPA assay for the detection of cassava brown streak viruses (UCBSV and CBSV) infection in cassava plants.


Assuntos
Manihot , Doenças das Plantas , Potyviridae , Recombinases , Manihot/virologia , Doenças das Plantas/virologia , Potyviridae/genética , Potyviridae/isolamento & purificação , Recombinases/metabolismo , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Folhas de Planta/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Transcrição Reversa , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
6.
Virus Res ; 346: 199397, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38750679

RESUMO

The ipomoviruses (family Potyviridae) that cause cassava brown streak disease (cassava brown streak virus [CBSV] and Uganda cassava brown streak virus [UCBSV]) are damaging plant pathogens that affect the sustainability of cassava production in East and Central Africa. However, little is known about the rate at which the viruses evolve and when they emerged in Africa - which inform how easily these viruses can host shift and resist RNAi approaches for control. We present here the rates of evolution determined from the coat protein gene (CP) of CBSV (Temporal signal in a UCBSV dataset was not sufficient for comparable analysis). Our BEAST analysis estimated the CBSV CP evolves at a mean rate of 1.43 × 10-3 nucleotide substitutions per site per year, with the most recent common ancestor of sampled CBSV isolates existing in 1944 (95% HPD, between years 1922 - 1963). We compared the published measured and estimated rates of evolution of CPs from ten families of plant viruses and showed that CBSV is an average-evolving potyvirid, but that members of Potyviridae evolve more quickly than members of Virgaviridae and the single representatives of Betaflexiviridae, Bunyaviridae, Caulimoviridae and Closteroviridae.


Assuntos
Proteínas do Capsídeo , Evolução Molecular , Manihot , Filogenia , Doenças das Plantas , Potyviridae , Potyviridae/genética , Doenças das Plantas/virologia , Manihot/virologia , Proteínas do Capsídeo/genética
7.
Virus Res ; 345: 199389, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38714217

RESUMO

Saffron (Crocus sativus L.), a historically significant crop valued for its nutraceutical properties, has been poorly explored from a phytosanitary perspective. This study conducted a thorough examination of viruses affecting saffron samples from Spanish cultivars, using high-throughput sequencing alongside a systematic survey of transcriptomic datasets from Crocus sativus at the Sequence Read Archive. Our analysis unveiled a broad diversity and abundance, identifying 17 viruses across the 52 analyzed libraries, some of which were highly prevalent. This includes known saffron-infecting viruses and previously unreported ones. In addition, we discovered 7 novel viruses from the Alphaflexiviridae, Betaflexiviridae, Potyviridae, Solemoviridae, and Geminiviridae families, with some present in libraries from various locations. These findings indicate that the saffron-associated virome is more complex than previously reported, emphasizing the potential of phytosanitary analysis to enhance saffron productivity.


Assuntos
Crocus , Doenças das Plantas , Crocus/genética , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de Plantas/classificação , Vírus de Plantas/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Viroma/genética , Perfilação da Expressão Gênica , Transcriptoma , Filogenia , Genoma Viral , Potyviridae/genética , Potyviridae/isolamento & purificação , Flexiviridae/genética , Flexiviridae/classificação , Flexiviridae/isolamento & purificação
8.
Proc Natl Acad Sci U S A ; 121(21): e2401748121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739789

RESUMO

Potyviridae, the largest family of plant RNA viruses, includes many important pathogens that significantly reduce the yields of many crops worldwide. In this study, we report that the 6-kilodalton peptide 1 (6K1), one of the least characterized potyviral proteins, is an endoplasmic reticulum-localized protein. AI-assisted structure modeling and biochemical assays suggest that 6K1 forms pentamers with a central hydrophobic tunnel, can increase the cell membrane permeability of Escherichia coli and Nicotiana benthamiana, and can conduct potassium in Saccharomyces cerevisiae. An infectivity assay showed that viral proliferation is inhibited by mutations that affect 6K1 multimerization. Moreover, the 6K1 or its homologous 7K proteins from other viruses of the Potyviridae family also have the ability to increase cell membrane permeability and transmembrane potassium conductance. Taken together, these data reveal that 6K1 and its homologous 7K proteins function as viroporins in viral infected cells.


Assuntos
Nicotiana , Nicotiana/virologia , Nicotiana/metabolismo , Potyviridae/genética , Potyviridae/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Permeabilidade da Membrana Celular , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Viroporinas/metabolismo , Proteínas Viroporinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Vírus de Plantas/genética , Vírus de Plantas/fisiologia , Doenças das Plantas/virologia , Potássio/metabolismo
9.
Phytopathology ; 114(7): 1672-1679, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579745

RESUMO

Triticum mosaic virus (TriMV; genus Poacevirus; family Potyviridae) is an economically important virus in the Great Plains region of the United States. TriMV is transmitted by the wheat curl mite (Aceria tosichella) Type 2 genotype but not by Type 1. Helper component-proteinase (HC-Pro) is a vector transmission determinant for several potyvirids, but the role of HC-Pro in TriMV transmission is unknown. In this study, we examined the requirement of the HC-Pro cistron of TriMV for wheat curl mite (Type 2) transmission through deletion and point mutations and constructing TriMV chimeras with heterologous HC-Pros from other potyvirids. TriMV with complete deletion of HC-Pro failed to be transmitted by wheat curl mites at detectable levels. Furthermore, TriMV chimeras with heterologous HC-Pros from aphid-transmitted turnip mosaic virus and tobacco etch virus, or wheat curl mite-transmitted wheat streak mosaic virus, failed to be transmitted by wheat curl mites. These data suggest that heterologous HC-Pros did not complement TriMV for wheat curl mite transmission. A decreasing series of progressive nested in-frame deletions at the N-terminal region of HC-Pro comprising amino acids 3 to 125, 3 to 50, 3 to 25, 3 to 15, 3 to 8, and 3 and 4 abolished TriMV transmission by wheat curl mites. Additionally, mutation of conserved His20, Cys49, or Cys52 to Ala in HC-Pro abolished TriMV transmissibility by wheat curl mites. These data suggest that the N-terminal region of HC-Pro is crucial for TriMV transmission by wheat curl mites. Collectively, these data demonstrate that the HC-Pro cistron of TriMV is a viral determinant for wheat curl mite transmission.


Assuntos
Ácaros , Doenças das Plantas , Potyviridae , Triticum , Proteínas Virais , Triticum/virologia , Animais , Doenças das Plantas/virologia , Ácaros/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Potyviridae/genética , Potyviridae/fisiologia , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo
10.
BMC Genomics ; 25(1): 221, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418960

RESUMO

BACKGROUND: Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are components of the wheat streak mosaic virus disease complex in the Great Plains region of the U.S.A. and elsewhere. Co-infection of wheat with WSMV and TriMV causes synergistic interaction with more severe disease symptoms compared to single infections. Plants are equipped with multiple antiviral mechanisms, of which regulation of microRNAs (miRNAs) is a potentially effective constituent. In this investigation, we have analyzed the total and relative expression of miRNA transcriptome in two wheat cultivars, Arapahoe (susceptible) and Mace (temperature-sensitive-resistant), that were mock-inoculated or inoculated with WSMV, TriMV, or both at 18 °C and 27 °C. RESULTS: Our results showed that the most abundant miRNA family among all the treatments was miRNA166, followed by 159a and 168a, although the order of the latter two changed depending on the infections. When comparing infected and control groups, twenty miRNAs showed significant upregulation, while eight miRNAs were significantly downregulated. Among them, miRNAs 9670-3p, 397-5p, and 5384-3p exhibited the most significant upregulation, whereas miRNAs 319, 9773, and 9774 were the most downregulated. The comparison of infection versus the control group for the cultivar Mace showed temperature-dependent regulation of these miRNAs. The principal component analysis confirmed that less abundant miRNAs among differentially expressed miRNAs were strongly correlated with the inoculated symptomatic wheat cultivars. Notably, miRNAs 397-5p, 398, and 9670-3p were upregulated in response to WSMV and TriMV infections, an observation not yet reported in this context. The significant upregulation of these three miRNAs was further confirmed with RT-qPCR analysis; in general, the RT-qPCR results were in agreement with our computational analysis. Target prediction analysis showed that the miRNAs standing out in our analysis targeted genes involved in defense response and regulation of transcription. CONCLUSION: Investigation into the roles of these miRNAs and their corresponding targets holds promise for advancing our understanding of the mechanisms of virus infection and possible manipulation of these factors for developing durable virus resistance in crop plants.


Assuntos
MicroRNAs , Potyviridae , MicroRNAs/genética , Doenças das Plantas/genética , Potyviridae/genética
11.
Virology ; 593: 110028, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38394980

RESUMO

Sugarcane streak mosaic virus (SCSMV) is one of the major pathogens of sugarcane in the world. Molecular studies and disease management of SCSMV are hindered by the lack of efficient infectious clones. In this study, we successfully constructed Agrobacterium infiltration based infectious clone of SCSMV with different variants. Infectious clones of wild type SCSMV could efficiently infect Nicotiana benthamiana and sugarcane plants resulting in streak and mosaic symptoms on systemic leaves which were further confirmed with RT-PCR and serological assays. SCSMV variants of less adenylation displayed attenuated pathogenicity on N.benthamiana. SCSMV-based recombinant heterologous EGFP protein vector was also developed. The EGFP-tagged recombinant SCSMV could highly expressed in vegetative organs including roots. These infectious clones of SCSMV could be further developed for platform tools for both biotechnological studies and management of SCSMV disease.


Assuntos
Potyviridae , Saccharum , Doenças das Plantas , Filogenia , Potyviridae/genética
12.
Virol J ; 21(1): 6, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178191

RESUMO

BACKGROUND: In cellular organisms, inosine triphosphate pyrophosphatases (ITPases) prevent the incorporation of mutagenic deaminated purines into nucleic acids. These enzymes have also been detected in the genomes of several plant RNA viruses infecting two euphorbia species. In particular, two ipomoviruses produce replicase-associated ITPases to cope with high concentration of non-canonical nucleotides found in cassava tissues. METHOD: Using high-throughput RNA sequencing on the wild euphorbia species Mercurialis perennis, two new members of the families Potyviridae and Secoviridae were identified. Both viruses encode for a putative ITPase, and were found in mixed infection with a new partitivirid. Following biological and genomic characterization of these viruses, the origin and function of the phytoviral ITPases were investigated. RESULTS: While the potyvirid was shown to be pathogenic, the secovirid and partitivirid could not be transmitted. The secovirid was found belonging to a proposed new Comovirinae genus tentatively named "Mercomovirus", which also accommodates other viruses identified through transcriptome mining, and for which an asymptomatic pollen-associated lifestyle is suspected. Homology and phylogenetic analyses inferred that the ITPases encoded by the potyvirid and secovirid were likely acquired through independent horizontal gene transfer events, forming lineages distinct from the enzymes found in cassava ipomoviruses. Possible origins from cellular organisms are discussed for these proteins. In parallel, the endogenous ITPase of M. perennis was predicted to encode for a C-terminal nuclear localization signal, which appears to be conserved among the ITPases of euphorbias but absent in other plant families. This subcellular localization is in line with the idea that nucleic acids remain protected in the nucleus, while deaminated nucleotides accumulate in the cytoplasm where they act as antiviral molecules. CONCLUSION: Three new RNA viruses infecting M. perennis are described, two of which encoding for ITPases. These enzymes have distinct origins, and are likely required by viruses to circumvent high level of cytoplasmic non-canonical nucleotides. This putative plant defense mechanism has emerged early in the evolution of euphorbias, and seems to specifically target certain groups of RNA viruses infecting perennial hosts.


Assuntos
Coinfecção , Euphorbia , Ácidos Nucleicos , Vírus de Plantas , Potyviridae , Vírus de RNA , Inosina Trifosfatase , Filogenia , Vírus de RNA/genética , Nucleotídeos/genética , Potyviridae/genética , Vírus de Plantas/genética , Plantas/genética , RNA Viral/genética , Genoma Viral
13.
Plant Dis ; 108(6): 1719-1728, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38173257

RESUMO

The infection of young winter barley (Hordeum vulgare L.) root system in winter by barley yellow mosaic virus (BaYMV) can lead to high yield losses. Resistance breeding is critical for managing this virus, but there are only a few reports on resistance genes that describe how the genes control BaYMV propagation and the systemic movement from the roots to the leaves. Here we report a real-time quantitative PCR analysis of the virus in barley roots and leaves carrying BaYMV resistance genes (rym1 to rym15 and an unknown gene) to elucidate the molecular mechanisms underlying the barley response to BaYMV. The resistance mechanism directly targets the virus. Moreover, the resistance genes/cultivars were classified into the following three groups according to their BaYMV titer: (i) immune (BaYMV was undetectable in the roots or leaves), (ii) partially immune (BaYMV was detected in the roots but not in the leaves), and (iii) susceptible (BaYMV was detected in the roots and leaves). Our results clarified the functions of the resistance genes in barley roots and leaves following a BaYMV infection. We anticipate our analysis to be a starting point for more understanding of the correspondence between resistance genes of Triticeae and the soil-borne viruses.


Assuntos
Resistência à Doença , Hordeum , Doenças das Plantas , Folhas de Planta , Raízes de Plantas , Hordeum/virologia , Hordeum/genética , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Raízes de Plantas/virologia , Raízes de Plantas/genética , Folhas de Planta/virologia , Resistência à Doença/genética , Replicação Viral/genética , Genes de Plantas/genética , Potyviridae/fisiologia , Potyviridae/genética
14.
Plant Dis ; 108(2): 434-441, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37709726

RESUMO

Country bean (Lablab purpureus, family Fabaceae) is grown in subsistence agriculture in Bangladesh as a multipurpose crop for food, animal feed, and green manure. This study was undertaken to investigate the genetic diversity of bean common mosaic necrosis virus (BCMNV, genus Potyvirus, family Potyviridae) in country beans. Leaf samples from country beans showing yellowing, vein banding, and mosaic symptoms were collected during field surveys between 2015 and 2019 cropping seasons from farmers' fields in different geographic regions. These samples were tested by serological and molecular diagnostic assays for the presence of BCMNV. Virus-positive samples were subjected to high-throughput Illumina sequencing to generate near-complete genomes of BCMNV isolates. In pairwise comparisons, the polyprotein sequences of BCMNV isolates from Bangladesh showed greater than 98% identities among themselves and shared less than 84% sequence identity at the nucleotide level with virus isolates reported from other countries. In the phylogenetic analysis, BCMNV isolates from Bangladeshi country beans formed a separate clade from virus isolates reported from common beans in other countries in the Americas, Africa, Europe, and from East Timor. Grow-out studies showed seed-to-seedling transmission of BCMNV, implying a possible seedborne nature of the virus in country beans.


Assuntos
Fabaceae , Potyviridae , Potyvirus , Filogenia , Potyviridae/genética
15.
Virus Res ; 339: 199277, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38008221

RESUMO

Triticum mosaic virus (TriMV), the type species of the genus Poacevirus in the family Potyviridae, is an economically important wheat curl mite-transmitted wheat-infecting virus in the Great Plains region of the USA. In this study, the functional genomics of helper component-proteinase (HC-Pro) encoded by TriMV was examined using a reverse genetics approach. TriMV with complete deletion of HC-Pro cistron elicited systemic infection in wheat, indicating that HC-Pro cistron is dispensable for TriMV systemic infection. However, TriMV lacking HC-Pro caused delayed systemic infection with mild symptoms that resulted in little or no stunting of plants with a significant reduction in the accumulation of genomic RNA copies and coat protein (CP). Sequential deletion mutagenesis from the 5' end of HC-Pro cistron in the TriMV genome revealed that deletions within amino acids 3 to 25, except for amino acids 3 and 4, elicited mild symptoms with reduced accumulation of genomic RNA and CP. Surprisingly, TriMV with deletion of amino acids 3 to 50 or 3 to 125 in HC-Pro elicited severe symptoms with a substantial increase in genomic RNA copies but a drastic reduction in CP accumulation. Additionally, TriMV with heterologous HC-Pro from other potyvirids produced symptom phenotype and genomic RNA accumulation similar to that of TriMV without HC-Pro, suggesting that HC-Pros of other potyvirids were not effective in complementing TriMV in wheat. Our data indicate that HC-Pro is expendable for replication of TriMV but is required for efficient viral genomic RNA amplification and symptom development. The availability of TriMV with various deletions in the HC-Pro cistron will facilitate the examination of the requirement of HC-Pro for wheat curl mite transmission.


Assuntos
Potyviridae , Triticum , Potyviridae/genética , Fenótipo , RNA , Aminoácidos/genética , Doenças das Plantas
16.
Virol J ; 20(1): 284, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037050

RESUMO

BACKGROUND: We have recently identified a novel virus detected in alfalfa seed material. The virus was tentatively named alfalfa-associated potyvirus 1, as its genomic fragments bore similarities with potyvirids. In this study, we continued investigating this novel species, expanding information on its genomic features and biological characteristics. METHODS: This research used a wide range of methodology to achieve end results: high throughput sequencing, bioinformatics tools, reverse transcription-polymerase chain reactions, differential diagnostics using indicator plants, virus purification, transmission electron microscopy, and others. RESULTS: In this study, we obtained a complete genome sequence of the virus and classified it as a tentative species in the new genus, most closely related to the members of the genus Ipomovirus in the family Potyviridae. This assumption is based on the genome sequence and structure, phylogenetic relationships, and transmission electron microscopy investigations. We also demonstrated its mechanical transmission to the indicator plant Nicotiana benthamiana and to the natural host Medicago sativa, both of which developed characteristic symptoms therefore suggesting a pathogenic nature of the disease. CONCLUSIONS: Consistent with symptomatology, the virus was renamed to alfalfa vein mottling virus. A name Alvemovirus was proposed for the new genus in the family Potyviridae, of which alfalfa vein mottling virus is a tentative member.


Assuntos
Potyviridae , Potyvirus , Medicago sativa , Genoma Viral , Filogenia , Potyviridae/genética , Potyvirus/genética
17.
Nat Commun ; 14(1): 7773, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012219

RESUMO

Wheat yellow mosaic virus (WYMV), a soil-borne pathogen, poses a serious threat to global wheat production. Here, we identify a WYMV resistance gene, TaRD21A, that belongs to the papain-like cysteine protease family. Through genetic manipulation of TaRD21A expression, we establish its positive role in the regulation of wheat to WYMV resistance. Furthermore, our investigation shows that the TaRD21A-mediated plant antiviral response relies on the release of a small peptide catalyzed by TaRD21A protease activity. To counteract wheat resistance, WYMV-encoded nuclear inclusion protease-a (NIa) suppress TaRD21A activity to promote virus infection. In resistant cultivars, a natural variant of TaRD21A features a glycine-to-threonine substitution and this substitution enables the phosphorylation of threonine, thereby weakening the interaction between NIa and TaRD21A, reinforcing wheat resistance against WYMV. Our study not only unveils a WYMV resistance gene but also offers insights into the intricate mechanisms underpinning resistance against WYMV.


Assuntos
Vírus do Mosaico , Potyviridae , Triticum/genética , Papaína , Sinais Direcionadores de Proteínas , Potyviridae/genética , Vírus do Mosaico/genética , Treonina , Doenças das Plantas/genética
18.
Arch Virol ; 168(10): 242, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668734

RESUMO

Cardamom mosaic virus (CdMV; genus Macluravirus), which causes mosaic (katte) disease in cardamom, is a highly variable member of the family Potyviridae. So far, the complete genome sequence of one isolate from Karnataka (KS) has been reported. In the present study, we determined the complete genome sequence of a CdMV isolate from Kerala (KI) and the complete CP gene sequences of nine isolates of CdMV from Kerala, Karnataka, and Tamil Nadu, India. The complete genome of CdMV (KI) consists of 8255 nucleotides (nt) with two open reading frames (ORFs). The large ORF, potentially coding for a polyprotein of 2638 amino acids (aa), is further processed into nine mature proteins at eight cleavage sites. The second ORF, PIPO (pretty interesting Potyviridae ORF) starting with a C(A)6 motif, encodes a small protein of 56 aa. The viral genome contains an additional 13 nt in the 5' untranslated region (UTR) and 6 nt in the CP gene, as well as a deletion of 13 nt at the 3' UTR in comparison to the KS isolate of CdMV. The complete viral genome and polyprotein share 76% and 85% sequence identity with the KS isolate of CdMV, indicating that the present isolate is highly divergent from the KS isolate. Sequencing and analysis of the CP sequences of 16 CdMV isolates from different regions revealed high heterogeneity among them, suggesting that they should be considered members of more than one species.


Assuntos
Potyviridae , Índia , Potyviridae/genética , Genoma Viral , Aminoácidos , Nucleotídeos , Poliproteínas/genética
19.
Viruses ; 15(8)2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37632116

RESUMO

Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are important viral pathogens of wheat in the Great Plains. These viruses individually or in mixed infections with High Plains wheat mosaic virus cause a devastating wheat streak mosaic (WSM) disease. Although seed transmission of WSMV has been studied, no information is currently available on that of TriMV. Furthermore, no study has explored the implications of mixed infections of WSMV and TriMV on seed transmission of one or both viruses. To study both aspects, seeds from differentially resistant field-grown wheat plants (cv. TAM 304 (susceptible), Joe (WSMV resistant, Wsm2 gene), and Breakthrough (BT) (WSMV and TriMV resistant, Wsm1 gene)) showing characteristic WSM symptoms were collected and analyzed to quantify both viruses using qRT-PCR. The percentage of seeds tested positive for WSMV or TriMV individually and in mixed infection varied with cultivar and virus combinations; 13% of TAM 304 seeds tested positive for WSMV, followed by 8% of BT and 4% of Joe seeds. Similarly, TriMV was detected in 12% of BT seeds, followed by 11% of TAM 304 and 8% of Joe seeds. Lastly, mixed infection was detected in 7% of TAM 304 seeds, followed by 4% in BT, and 2% in Joe. Dissection of field-collected seeds into three parts, embryo, endosperm, and seed coat, revealed both WSMV and TriMV accumulated only in the seed coat. Consistent with seeds, percent infection of WSMV or TriMV in the plants that emerged from infected seeds in each treatment varied with cultivar and virus combinations (WSMV: BT 3%; Joe 2%; TAM 304 9%; TriMV: BT 7%; Joe 8%; and TAM 304 10%). Plants infected with mixed viruses showed more pronounced WSM symptoms compared to individual infections. However, both viruses were present only in a few plants (BT: 2%, Joe: 1%, and TAM 304: 4%). Taken together, this study showed that TriMV was transmitted vertically at a higher frequency than WSMV in resistant cultivars, and the seed transmission of TriMV with WSMV increased the virulence of both pathogens (measured via WSM symptom severity) in the emerged plants. Furthermore, Wsm1 and Wsm2 genes considerably reduced WSMV transmission via infected seeds. However, no such effects were observed on TriMV, especially in progeny plants. These results reiterated the importance of planting clean seeds and highlighted the immediate need to identify/develop new sources of TriMV resistance to effectively manage the recurring WSM epidemic.


Assuntos
Coinfecção , Potyviridae , Sementes , Potyviridae/genética
20.
Arch Virol ; 168(9): 236, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644141

RESUMO

Investigations conducted during the spring 2020 season to diagnose the associated viral agent of a severe mosaic disease of wheat in a Texas Panhandle field revealed the presence of wheat Eqlid mosaic virus (WEqMV; genus Tritimovirus, family Potyviridae) in the analyzed samples. The complete genome sequences of two WEqMV isolates were determined, and each was found to be 9,634 nucleotides (nt) in length (excluding the polyA tail) and to contain 5' and 3' untranslated regions of 135 nt and 169 nt, respectively, based on rapid amplification of cDNA ends (RACE) assays. Both sequences contained an open reading frame (ORF) of 9,330 nt encoding a polyprotein of 3,109 amino acids (aa). The ORF sequences of the two isolates were 100% identical to each other, but only 74.7% identical to that of the exemplar WEqMV-Iran isolate, with 85.7% aa sequence identity in the encoded polyprotein. The Texas WEqMV isolates also diverged significantly from WEqMV-Iran in the individual proteins at the nt and aa levels. This is the first report of WEqMV in the United States and the first report of this virus outside of Iran, indicating an expansion of its geographical range.


Assuntos
Vírus do Mosaico , Potyviridae , Texas , Triticum , Potyviridae/genética , Regiões 3' não Traduzidas/genética , Aminoácidos , Nucleotídeos , Poliproteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...