Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.762
Filtrar
1.
Neurosci Lett ; 836: 137897, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39004114

RESUMO

The efficacy of vitamin C in age-related hearing loss, i.e., presbycusis, remains debatable. On a separate note, inflammation induced by the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is involved in the progression of presbycusis. In this study, we investigated the effect of vitamin C on male C57BL/6 mice's presbycusis and NLRP3 inflammasome. The results showed that vitamin C treatment improved hearing, reduced the production of inflammatory factors, inhibited NLRP3 inflammasome activation, and decreased cytosolic mitochondrial DNA (mtDNA) in the C57BL/6 mouse cochlea, inferior colliculus, and auditory cortex. According to this study, vitamin C protects auditory function in male C57BL/6 presbycusis mice through reducing mtDNA release, inhibiting the NLRP3 inflammasome activation in the auditory pathway. Our study provides a theoretical basis for applying vitamin C to treat presbycusis.


Assuntos
Ácido Ascórbico , DNA Mitocondrial , Inflamassomos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Presbiacusia , Animais , Masculino , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Ácido Ascórbico/administração & dosagem , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Presbiacusia/metabolismo , Presbiacusia/prevenção & controle , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , DNA Mitocondrial/metabolismo , DNA Mitocondrial/efeitos dos fármacos , Camundongos , Cóclea/efeitos dos fármacos , Cóclea/metabolismo , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/metabolismo
2.
N Engl J Med ; 391(1): 96, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38959492
3.
J Acoust Soc Am ; 156(1): 93-106, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958486

RESUMO

Older adults with hearing loss may experience difficulty recognizing speech in noise due to factors related to attenuation (e.g., reduced audibility and sensation levels, SLs) and distortion (e.g., reduced temporal fine structure, TFS, processing). Furthermore, speech recognition may improve when the amplitude modulation spectrum of the speech and masker are non-overlapping. The current study investigated this by filtering the amplitude modulation spectrum into different modulation rates for speech and speech-modulated noise. The modulation depth of the noise was manipulated to vary the SL of speech glimpses. Younger adults with normal hearing and older adults with normal or impaired hearing listened to natural speech or speech vocoded to degrade TFS cues. Control groups of younger adults were tested on all conditions with spectrally shaped speech and threshold matching noise, which reduced audibility to match that of the older hearing-impaired group. All groups benefitted from increased masker modulation depth and preservation of syllabic-rate speech modulations. Older adults with hearing loss had reduced speech recognition across all conditions. This was explained by factors related to attenuation, due to reduced SLs, and distortion, due to reduced TFS processing, which resulted in poorer auditory processing of speech cues during the dips of the masker.


Assuntos
Estimulação Acústica , Limiar Auditivo , Sinais (Psicologia) , Ruído , Mascaramento Perceptivo , Percepção da Fala , Humanos , Percepção da Fala/fisiologia , Idoso , Ruído/efeitos adversos , Adulto , Adulto Jovem , Masculino , Feminino , Pessoa de Meia-Idade , Fatores Etários , Reconhecimento Psicológico , Fatores de Tempo , Envelhecimento/fisiologia , Presbiacusia/fisiopatologia , Presbiacusia/diagnóstico , Presbiacusia/psicologia , Pessoas com Deficiência Auditiva/psicologia , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Inteligibilidade da Fala
4.
Clin Epigenetics ; 16(1): 86, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965562

RESUMO

BACKGROUND: Presbycusis, also referred to as age-related hearing loss (ARHL), is a condition that results from the cumulative effects of aging on an individual's auditory capabilities. Given the limited understanding of epigenetic mechanisms in ARHL, our research focuses on alterations in chromatin-accessible regions. METHODS: We employed assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) in conjunction with unique identifier (UID) mRNA-seq between young and aging cochleae, and conducted integrated analysis as well as motif/TF-gene prediction. Additionally, the essential role of super-enhancers (SEs) in the development of ARHL was identified by comparative analysis to previous research. Meanwhile, an ARHL mouse model and an aging mimic hair cell (HC) model were established with a comprehensive identification of senescence phenotypes to access the role of SEs in ARHL progression. RESULTS: The control cochlear tissue exhibited greater chromatin accessibility than cochlear tissue affected by ARHL. Furthermore, the levels of histone 3 lysine 27 acetylation were significantly depressed in both aging cochlea and aging mimic HEI-OC1 cells, highlighting the essential role of SEs in the development of ARHL. The potential senescence-associated super-enhancers (SASEs) of ARHL were identified, most of which exhibited decreased chromatin accessibility. The majority of genes related to the SASEs showed obvious decreases in mRNA expression level in aging HCs and was noticeably altered following treatment with JQ1 (a commonly used SE inhibitor). CONCLUSION: The chromatin accessibility in control cochlear tissue was higher than that in cochlear tissue affected by ARHL. Potential SEs involved in ARHL were identified, which might provide a basis for future therapeutics targeting SASEs related to ARHL.


Assuntos
Envelhecimento , Cromatina , Cóclea , Elementos Facilitadores Genéticos , Presbiacusia , Animais , Camundongos , Cóclea/metabolismo , Cóclea/efeitos dos fármacos , Cromatina/genética , Cromatina/metabolismo , Envelhecimento/genética , Presbiacusia/genética , Presbiacusia/metabolismo , Elementos Facilitadores Genéticos/genética , Transcriptoma/genética , Modelos Animais de Doenças , Epigênese Genética/genética , Histonas/metabolismo , Histonas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Masculino
5.
N Engl J Med ; 391(1): 95-96, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38959491
6.
Noise Health ; 26(121): 165-173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904818

RESUMO

CONTEXT: Presbycusis can be mediated by the effects of inflammatory processes on the auditory system, and these aging biological mechanisms remain poorly studied. AIMS: The aim of this study was to determine whether plasma biomarkers are associated with hearing disorders caused by aging in the elderly. SETTINGS AND DESIGN: Cross-sectional study with 106 participants in the Active Aging Project, 93 (88%) females and 13 (12%) males, with an average age of 70 years. METHODS AND MATERIAL: Audiological evaluation was performed with pure tone audiometry and collection of peripheral blood for the measurement of plasma levels of interleukins 2, 4, 6, and 10, tumor necrosis factor-α, and interferon-γ by means of flow cytometry. STATISTICAL ANALYSIS USED: The SPSS (v.0, SPSS Inc., Chicago, USA) was used for the analysis of the data obtained. For all data analyzed, the significance level adopted was P < 0.05 and 95% confidence interval. RESULTS: There were statistically significant correlations between male and IL-2 (P = 0.031; rs = 0.210), mean II of the right ear (P = 0.004; rs = 0.279), longer in years (P = 0.002; rs = 0.307) and in hours (P = 0.004; rs = 0.281) of noise exposure also in males. CONCLUSIONS: In the present study, there was an association between the male gender and higher plasma levels of IL-2, an increase in the average hearing in the right ear, and greater time in years and hours of exposure to noise. There was a predominance of mild sensorineural hearing loss and worsening of hearing related to age, characteristics of presbycusis.


Assuntos
Audiometria de Tons Puros , Biomarcadores , Interleucina-2 , Presbiacusia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Envelhecimento/sangue , Envelhecimento/fisiologia , Biomarcadores/sangue , Estudos Transversais , Interferon gama/sangue , Interleucina-2/sangue , Presbiacusia/sangue , Presbiacusia/etiologia , Fator de Necrose Tumoral alfa/sangue
7.
PLoS One ; 19(6): e0304770, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38829888

RESUMO

Age-related hearing loss is a complex disease caused by a combination of genetic and environmental factors, and a study have conducted animal experiments to explore the association between BCL11B heterozygosity and age-related hearing loss. The present study used established genetic models to examine the association between BCL11B gene polymorphisms and age-related hearing loss. A total of 410 older adults from two communities in Qingdao, China, participated in this study. The case group comprised individuals aged ≥ 60 years with age-related hearing loss, and the control group comprised individuals without age-related hearing loss from the same communities. The groups were matched 1:1 for age and sex. The individual characteristics of the participants were analyzed descriptively using the Mann-Whitney U test and the chi-square test. To explore the association between BCL11B gene polymorphisms and age-related hearing loss, conditional logistic regression was performed to construct genetic models for two single-nucleotide-polymorphisms (SNPs) of BCL11B, and haplotype analysis was conducted to construct their haplotype domains. Two SNP sites of the BCL11B gene, four genetic models of rs1152781 (additive, dominant, recessive, and codominant), and five genetic models of rs1152783 (additive, dominant, recessive, codominant, and over dominant) were significantly associated with age-related hearing loss in the models both unadjusted and adjusted for all covariates (P < 0.05). Additionally, a linkage disequilibrium between rs1152781 and rs1152783 was revealed through haplotype analysis. Our study revealed that BCL11B gene polymorphisms were significantly associated with age-related hearing loss.


Assuntos
Haplótipos , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras , Proteínas Supressoras de Tumor , Humanos , Masculino , Feminino , Idoso , China/epidemiologia , Estudos de Casos e Controles , Pessoa de Meia-Idade , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Perda Auditiva/genética , Perda Auditiva/epidemiologia , Predisposição Genética para Doença , Idoso de 80 Anos ou mais , Presbiacusia/genética , Presbiacusia/epidemiologia , Desequilíbrio de Ligação
8.
Neuroscience ; 551: 185-195, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38838977

RESUMO

In recent years, the relationship between age-related hearing loss, cognitive decline, and the risk of dementia has garnered significant attention. The significant variability in brain health and aging among individuals of the same chronological age suggests that a measure assessing how one's brain ages may better explain hearing-cognition links. The main aim of this study was to investigate the mediating role of Brain Age Gap (BAG) in the association between hearing impairment and cognitive function. This research included 185 participants aged 20-79 years. BAG was estimated based on the difference between participant's brain age (estimated based on their structural T1-weighted MRI scans) and chronological age. Cognitive performance was assessed using the Montreal Cognitive Assessment (MoCA) test while hearing ability was measured using pure-tone thresholds (PTT) and words-in-noise (WIN) perception. Mediation analyses were used to examine the mediating role of BAG in the relationship between age-related hearing loss as well as difficulties in WIN perception and cognition. Participants with poorer hearing sensitivity and WIN perception showed lower MoCA scores, but this was an indirect effect. Participants with poorer performance on PTT and WIN tests had larger BAG (accelerated brain aging), and this was associated with poorer performance on the MoCA test. Mediation analyses showed that BAG partially mediated the relationship between age-related hearing loss and cognitive decline. This study enhances our understanding of the interplay among hearing loss, cognition, and BAG, emphasizing the potential value of incorporating brain age assessments in clinical evaluations to gain insights beyond chronological age, thus advancing strategies for preserving cognitive health in aging populations.


Assuntos
Envelhecimento , Encéfalo , Disfunção Cognitiva , Humanos , Pessoa de Meia-Idade , Masculino , Feminino , Idoso , Adulto , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Envelhecimento/fisiologia , Adulto Jovem , Presbiacusia/fisiopatologia , Imageamento por Ressonância Magnética , Perda Auditiva/fisiopatologia , Cognição/fisiologia
9.
Hear Res ; 449: 109033, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38797036

RESUMO

Hearing loss is well known to cause plastic changes in the central auditory system and pathological changes such as tinnitus and hyperacusis. Impairment of inner ear functions is the main cause of hearing loss. In aged individuals, not only inner ear dysfunction but also senescence of the central nervous system is the cause of malfunction of the auditory system. In most cases of hearing loss, the activity of the auditory nerve is reduced, but that of the successive auditory centers is increased in a compensatory way. It has been reported that activity changes occur in the inferior colliculus (IC), a critical nexus of the auditory pathway. The IC integrates the inputs from the brainstem and drives the higher auditory centers. Since abnormal activity in the IC is likely to affect auditory perception, it is crucial to elucidate the neuronal mechanism to induce the activity changes of IC neurons with hearing loss. This review outlines recent findings on hearing-loss-induced plastic changes in the IC and brainstem auditory neuronal circuits and discusses what neuronal mechanisms underlie hearing-loss-induced changes in the activity of IC neurons. Considering the different causes of hearing loss, we discuss age-related hearing loss separately from other forms of hearing loss (non-age-related hearing loss). In general, the main plastic change of IC neurons caused by both age-related and non-age-related hearing loss is increased central gain. However, plastic changes in the IC caused by age-related hearing loss seem to be more complex than those caused by non-age-related hearing loss.


Assuntos
Vias Auditivas , Colículos Inferiores , Plasticidade Neuronal , Neurônios , Colículos Inferiores/fisiopatologia , Animais , Humanos , Neurônios/patologia , Vias Auditivas/fisiopatologia , Audição , Presbiacusia/fisiopatologia , Presbiacusia/patologia , Percepção Auditiva , Fatores Etários , Perda Auditiva/fisiopatologia , Perda Auditiva/patologia , Envelhecimento/patologia , Potenciais Evocados Auditivos do Tronco Encefálico , Estimulação Acústica
10.
Hear Res ; 449: 109029, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38820739

RESUMO

The study focuses on the underlying regulatory mechanism of age-related hearing loss (ARHL), which results from autophagy dysregulation mediated by miR-130b-3p targeting PPARγ. We constructed miR-130b-3p knockout (antagomir) and PPARγ over-expression (OE-PPARγ) mice model by injecting mmu-miR-130b-3p antagomir and HBAAV2/Anc80-m-Pparg-T2A-mCHerry into the right ear' round window of each mouse, respectively. In vitro, we introduced oxidative stress within HEI-OC1 cells by H2O2 and exogenously changed the miR-130b-3p and PPARγ levels. MiRNA level was detected by RT-qPCR, proteins by western blotting and immunohistochemistry. Morphology of autophagosomes was observed by electron microscopy. In vivo, the cochlea of aged mice showed higher miR-130b-3p expression and lower PPARγ expression, while exogenous inhibition of miR-130b-3p up-regulated PPARγ expression. Autophagy-related biomarkers expression (ATG5, Beclin-1 and LC3B II/I) decreased in aged mice, which reversely increased after the inhibition of miR-130b-3p. The elevation of PPARγ demonstrated similar effects. Contrarily, exogenous overexpression of miR-130b-3p resulted in the decrease of ATG5, Beclin-1 and LC3B II/I. We created oxidative stress within HEI-OC1 by H2O2, subsequently observed the formation of autophagosomes under electron microscope, so as the elevated cell apoptosis rate and weakened cell viability. MiR-130b-3p/PPARγ contributed to the premature senescence of these H2O2-induced HEI-OC1 cells. MiR-130b-3p regulated HEI-OC1 cell growth by targeting PPARγ, thus leading to ARHL.


Assuntos
Autofagia , Modelos Animais de Doenças , Camundongos Knockout , MicroRNAs , Estresse Oxidativo , PPAR gama , Presbiacusia , Animais , PPAR gama/metabolismo , PPAR gama/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Camundongos , Presbiacusia/genética , Presbiacusia/metabolismo , Presbiacusia/patologia , Presbiacusia/fisiopatologia , Linhagem Celular , Envelhecimento/metabolismo , Envelhecimento/patologia , Camundongos Endogâmicos C57BL , Fatores Etários , Transdução de Sinais , Audição/genética , Cóclea/metabolismo , Cóclea/patologia , Apoptose , Regulação da Expressão Gênica
11.
Otol Neurotol ; 45(5): 594-601, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38728564

RESUMO

OBJECTIVE: Hearing loss has been identified as a major modifiable risk factor for cognitive decline. The Early Age-Related Hearing Loss Investigation (EARHLI) study will assess the mechanisms linking early age-related hearing loss (ARHL) and cognitive impairment. STUDY DESIGN: Randomized, controlled, single-site, early phase II, superiority trial. SETTING: Tertiary academic medical center. PARTICIPANTS: One hundred fifty participants aged 55 to 75 years with early ARHL (severity defined as borderline to moderate) and amnestic mild cognitive impairment will be included. INTERVENTIONS: Participants will be randomized 1:1 to a best practice hearing intervention or a health education control. MAIN OUTCOME MEASURES: The primary study outcome is cognition measured by the Alzheimer Disease Cooperative Study-Preclinical Alzheimer Cognitive Composite. Secondary outcomes include additional measures of cognition, social engagement, and brain organization/connectivity. RESULTS: Trial enrollment will begin in early 2024. CONCLUSIONS: After its completion in 2028, the EARHLI trial should offer evidence on the effect of hearing treatment versus a health education control on cognitive performance, social engagement, and brain organization/connectivity in 55- to 75-year-old community-dwelling adults with early ARHL and amnestic mild cognitive impairment.


Assuntos
Disfunção Cognitiva , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Perda Auditiva , Presbiacusia
12.
Int J Mol Sci ; 25(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791427

RESUMO

Age-related hearing loss (HL), or presbycusis, is a complex and heterogeneous condition, affecting a significant portion of older adults and involving various interacting mechanisms. Metabolic presbycusis, a type of age-related HL, is characterized by the dysfunction of the stria vascularis, which is crucial for maintaining the endocochlear potential necessary for hearing. Although attention on metabolic presbycusis has waned in recent years, research continues to identify strial pathology as a key factor in age-related HL. This narrative review integrates past and recent research, bridging findings from animal models and human studies, to examine the contributions of the stria vascularis to age-related HL. It provides a brief overview of the structure and function of the stria vascularis and then examines mechanisms contributing to age-related strial dysfunction, including altered ion transport, changes in pigmentation, inflammatory responses, and vascular atrophy. Importantly, this review outlines the contribution of metabolic mechanisms to age-related HL, highlighting areas for future research. It emphasizes the complex interdependence of metabolic and sensorineural mechanisms in the pathology of age-related HL and highlights the importance of animal models in understanding the underlying mechanisms. The comprehensive and mechanistic investigation of all factors contributing to age-related HL, including cochlear metabolic dysfunction, remains crucial to identifying the underlying mechanisms and developing personalized, protective, and restorative treatments.


Assuntos
Envelhecimento , Presbiacusia , Estria Vascular , Humanos , Estria Vascular/metabolismo , Estria Vascular/patologia , Animais , Presbiacusia/metabolismo , Presbiacusia/patologia , Presbiacusia/fisiopatologia , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Cóclea/metabolismo , Cóclea/patologia , Perda Auditiva/metabolismo , Perda Auditiva/patologia
13.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38715406

RESUMO

Presbycusis has been reported as related to cognitive decline, but its underlying neurophysiological mechanism is still unclear. This study aimed to investigate the relationship between metabolite levels, cognitive function, and node characteristics in presbycusis based on graph theory methods. Eighty-four elderly individuals with presbycusis and 63 age-matched normal hearing controls underwent magnetic resonance spectroscopy, functional magnetic resonance imaging scans, audiological assessment, and cognitive assessment. Compared with the normal hearing group, presbycusis patients exhibited reduced gamma-aminobutyric acid and glutamate levels in the auditory region, increased nodal characteristics in the temporal lobe and precuneus, as well as decreased nodal characteristics in the superior occipital gyrus and medial orbital. The right gamma-aminobutyric acid levels were negatively correlated with the degree centrality in the right precuneus and the executive function. Degree centrality in the right precuneus exhibited significant correlations with information processing speed and executive function, while degree centrality in the left medial orbital demonstrated a negative association with speech recognition ability. The degree centrality and node efficiency in the superior occipital gyrus exhibited a negative association with hearing loss and speech recognition ability, respectively. These observed changes indicate alterations in metabolite levels and reorganization patterns at the brain network level after auditory deprivation.


Assuntos
Disfunção Cognitiva , Imageamento por Ressonância Magnética , Presbiacusia , Humanos , Masculino , Feminino , Presbiacusia/diagnóstico por imagem , Presbiacusia/metabolismo , Presbiacusia/fisiopatologia , Idoso , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Espectroscopia de Ressonância Magnética , Ácido Glutâmico/metabolismo , Ácido gama-Aminobutírico/metabolismo , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo
14.
Free Radic Biol Med ; 220: 222-235, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38735540

RESUMO

Studies have highlighted oxidative damage in the inner ear as a critical pathological basis for sensorineural hearing loss, especially the presbycusis. Poly(ADP-ribose) polymerase-1 (PARP1) activation responds to oxidative stress-induced DNA damage with pro-repair and pro-death effects resembling two sides of the same coin. PARP1-related cell death, known as parthanatos, whose underlying mechanisms are attractive research hotspots but remain to be clarified. In this study, we observed that aged rats showed stria vascularis degeneration and oxidative damage, and PARP1-dependent cell death was prominent in age-related cochlear disorganization and dysfunction. Based on oxidative stress model of primary cultured stria marginal cells (MCs), we revealed that upregulated PARP1 and PAR (Poly(ADP-ribose)) polymers are responsible for MCs oxidative death with high mitochondrial permeability transition pore (mPTP) opening and mitochondrial membrane potential (MMP) collapse, while inhibition of PARP1 ameliorated the adverse outcomes. Importantly, the PARylation of apoptosis-inducing factor (AIF) is essential for its conformational change and translocation, which subsequently causes DNA break and cell death. Concretely, the interaction of PAR and truncated AIF (tAIF) is the mainstream in the parthanatos pathway. We also found that the effects of AIF cleavage and release were achieved through calpain activity and mPTP opening, both of which could be regulated by PARP1 via mediation of mitochondria Ca2+ concentration. In conclusion, the PAR-Ca2+-tAIF signaling pathway in parthanatos contributes to the oxidative stress damage observed in MCs. Targeting PAR-Ca2+-tAIF might be a potential therapeutic strategy for the early intervention of presbycusis and other oxidative stress-associated sensorineural deafness.


Assuntos
Fator de Indução de Apoptose , Cálcio , Estresse Oxidativo , Poli(ADP-Ribose) Polimerase-1 , Presbiacusia , Animais , Fator de Indução de Apoptose/metabolismo , Fator de Indução de Apoptose/genética , Ratos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Cálcio/metabolismo , Presbiacusia/metabolismo , Presbiacusia/patologia , Presbiacusia/genética , Parthanatos/genética , Potencial da Membrana Mitocondrial , Estria Vascular/metabolismo , Estria Vascular/patologia , Apoptose , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Ratos Sprague-Dawley , Dano ao DNA , Envelhecimento/metabolismo , Envelhecimento/patologia , Cóclea/metabolismo , Cóclea/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Masculino , Humanos , Células Cultivadas
15.
Clin EEG Neurosci ; 55(4): 508-517, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38566606

RESUMO

Objective. This study aimed to investigate age-related changes in cortical auditory evoked potentials (CAEPs) while considering three crucial factors: aging, high-frequency hearing loss and sensation level of the CAEP stimulus. Method. The electrophysiological and audiometric data of 71 elderly participants were analyzed using multiple regression analysis to investigate the association of CAEPs with the factors of aging, high-frequency hearing loss and sensation level of the CAEP test stimulus. Results. Aging was significantly associated with prolonged N1 and P2 latencies and reduced P2 amplitude. Elevated thresholds related to the sensation level of the CAEP stimulus were significantly associated with increased N1 and P2 amplitudes and decreased N1 latency. A significant relationship was detected between high-frequency hearing thresholds and the shortening of P2 latencies and the reduction of P2 amplitudes. Conclusion. The results of this study highlight the complex interplay of aging, high-frequency hearing loss and the sensation level of the CAEP stimulus on CAEP components in elderly people. These factors should be considered in future research using CAEPs to enhance overall understanding of auditory processing in the aging population.


Assuntos
Envelhecimento , Eletroencefalografia , Potenciais Evocados Auditivos , Humanos , Idoso , Feminino , Masculino , Potenciais Evocados Auditivos/fisiologia , Envelhecimento/fisiologia , Pessoa de Meia-Idade , Eletroencefalografia/métodos , Limiar Auditivo/fisiologia , Idoso de 80 Anos ou mais , Estimulação Acústica/métodos , Córtex Auditivo/fisiopatologia , Presbiacusia/fisiopatologia , Perda Auditiva/fisiopatologia , Perda Auditiva de Alta Frequência/fisiopatologia , Percepção Auditiva/fisiologia
16.
Hear Res ; 447: 109008, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636186

RESUMO

The auditory cortex is the source of descending connections providing contextual feedback for auditory signal processing at almost all levels of the lemniscal auditory pathway. Such feedback is essential for cognitive processing. It is likely that corticofugal pathways are degraded with aging, becoming important players in age-related hearing loss and, by extension, in cognitive decline. We are testing the hypothesis that surface, epidural stimulation of the auditory cortex during aging may regulate the activity of corticofugal pathways, resulting in modulation of central and peripheral traits of auditory aging. Increased auditory thresholds during ongoing age-related hearing loss in the rat are attenuated after two weeks of epidural stimulation with direct current applied to the surface of the auditory cortex for two weeks in alternate days (Fernández del Campo et al., 2024). Here we report that the same cortical electrical stimulation protocol induces structural and cytochemical changes in the aging cochlea and auditory brainstem, which may underlie recovery of age-degraded auditory sensitivity. Specifically, we found that in 18 month-old rats after two weeks of cortical electrical stimulation there is, relative to age-matched non-stimulated rats: a) a larger number of choline acetyltransferase immunoreactive neuronal cell body profiles in the ventral nucleus of the trapezoid body, originating the medial olivocochlear system.; b) a reduction of age-related dystrophic changes in the stria vascularis; c) diminished immunoreactivity for the pro-inflammatory cytokine TNFα in the stria vascularis and spiral ligament. d) diminished immunoreactivity for Iba1 and changes in the morphology of Iba1 immunoreactive cells in the lateral wall, suggesting reduced activation of macrophage/microglia; d) Increased immunoreactivity levels for calretinin in spiral ganglion neurons, suggesting excitability modulation by corticofugal stimulation. Altogether, these findings support that non-invasive neuromodulation of the auditory cortex during aging preserves the cochlear efferent system and ameliorates cochlear aging traits, including stria vascularis dystrophy, dysregulated inflammation and altered excitability in primary auditory neurons.


Assuntos
Envelhecimento , Córtex Auditivo , Vias Auditivas , Cóclea , Estimulação Elétrica , Presbiacusia , Animais , Masculino , Fatores Etários , Envelhecimento/patologia , Envelhecimento/metabolismo , Córtex Auditivo/metabolismo , Córtex Auditivo/fisiopatologia , Vias Auditivas/fisiopatologia , Vias Auditivas/metabolismo , Limiar Auditivo , Proteínas de Ligação ao Cálcio , Colina O-Acetiltransferase/metabolismo , Cóclea/inervação , Cóclea/metabolismo , Cóclea/fisiopatologia , Cóclea/patologia , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Audição , Proteínas dos Microfilamentos , Microglia/metabolismo , Microglia/patologia , Neurônios Eferentes/metabolismo , Núcleo Olivar/metabolismo , Presbiacusia/fisiopatologia , Presbiacusia/metabolismo , Presbiacusia/patologia , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
17.
N Engl J Med ; 390(16): 1505-1512, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38657246
18.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 255-259, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678595

RESUMO

Age-related hearing loss (ARHL), is a pervasive health problem worldwide. ARHL seriously affects the quality of life and reportedly leads to social isolation and dementia in the elderly. ARHL is caused by the degeneration or disorders of cochlear hair cells and auditory neurons. Numerous studies have verified that genetic factors contributed to this impairment, however, the mechanism behind remains unclear. In this study, we analyzed an mRNA expression dataset (GSE49543) from the GEO database. Differentially expressed genes (DEGs) between young control mice and presbycusis mice were analyzed using limma in R and weighted gene co-expression network analysis (WGCNA) methods. Functional enrichment analyses of the DEGs were conducted with the clusterProfiler R package and the results were visualized using ggplot2 R package. The STRING database was used for the construction of the protein-protein interaction (PPI) network of the screened DEGs. Two machine learning algorithms LASSO and SVM-RFE were used to screen the hub genes. We identified 54 DEGs in presbycusis using limma and WGCNA. DEGs were associated with the synaptic vesicle cycle, distal axon, neurotransmitter transmembrane transporter activity in GO analysis, and alcoholic liver disease, pertussis, lysosome pathway according to KEGG analyses. PPI network analysis identified three significant modules. Five hub genes (CLEC4D, MS4A7, CTSS, LAPTM5, ALOX5AP) were screened by LASSO and SVM-RFE. These hub genes were highly expressed in presbycusis mice compared with young control mice. We screened DEGs and identified hub genes involved in ARHL development, which might provide novel clues to understanding the molecular basis of ARHL.


Assuntos
Perfilação da Expressão Gênica , Presbiacusia , RNA Mensageiro , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Camundongos , Perfilação da Expressão Gênica/métodos , Presbiacusia/genética , Presbiacusia/metabolismo , Presbiacusia/patologia , Redes Reguladoras de Genes , Mapas de Interação de Proteínas/genética , Transcriptoma/genética , Envelhecimento/genética , Bases de Dados Genéticas , Biologia Computacional/métodos
19.
Hear Res ; 446: 109004, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608332

RESUMO

The naturally occurring amino acid, l-ergothioneine (EGT), has immense potential as a therapeutic, having shown promise in the treatment of other disease models, including neurological disorders. EGT is naturally uptaken into cells via its specific receptor, OCTN1, to be utilized by cells as an antioxidant and anti-inflammatory. In our current study, EGT was administered over a period of 6 months to 25-26-month-old CBA/CaJ mice as a possible treatment for age-related hearing loss (ARHL), since presbycusis has been linked to higher levels of cochlear oxidative stress, apoptosis, and chronic inflammation. Results from the current study indicate that EGT can prevent aging declines of some key features of ARHL. However, we found a distinct sex difference for the response to the treatments, for hearing - Auditory Brainstem Responses (ABRs) and Distortion Product Otoacoustic Emissions (DPOAEs). Males exhibited lower threshold declines in both low dose (LD) and high dose (HD) test groups throughout the testing period and did not display some of the characteristic aging declines in hearing seen in Control animals. In contrast, female mice did not show any therapeutic effects with either treatment dose. Further confirming this sex difference, EGT levels in whole blood sampling throughout the testing period showed greater uptake of EGT in males compared to females. Additionally, RT-PCR results from three tissue types of the inner ear confirmed EGT activity in the cochlea in both males and females. Males and females exhibited significant differences in biomarkers related to apoptosis (Cas-3), inflammation (TNF-a), oxidative stress (SOD2), and mitochondrial health (PGC1a).These changes were more prominent in males as compared to females, especially in stria vascularis tissue. Taken together, these findings suggest that EGT has the potential to be a naturally derived therapeutic for slowing down the progression of ARHL, and possibly other neurodegenerative diseases. EGT, while effective in the treatment of some features of presbycusis in aging males, could also be modified into a general prophylaxis for other age-related disorders where treatment protocols would include eating a larger proportion of EGT-rich foods or supplements. Lastly, the sex difference discovered here, needs further investigation to see if therapeutic conditions can be developed where aging females show better responsiveness to EGT.


Assuntos
Envelhecimento , Antioxidantes , Cóclea , Modelos Animais de Doenças , Progressão da Doença , Ergotioneína , Potenciais Evocados Auditivos do Tronco Encefálico , Camundongos Endogâmicos CBA , Estresse Oxidativo , Presbiacusia , Animais , Ergotioneína/farmacologia , Feminino , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Masculino , Presbiacusia/fisiopatologia , Presbiacusia/patologia , Presbiacusia/tratamento farmacológico , Presbiacusia/metabolismo , Presbiacusia/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Antioxidantes/farmacologia , Fatores Sexuais , Cóclea/efeitos dos fármacos , Cóclea/metabolismo , Cóclea/fisiopatologia , Cóclea/patologia , Fatores Etários , Apoptose/efeitos dos fármacos , Emissões Otoacústicas Espontâneas/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Limiar Auditivo/efeitos dos fármacos , Audição/efeitos dos fármacos , Camundongos , Anti-Inflamatórios/farmacologia
20.
Otolaryngol Head Neck Surg ; 170 Suppl 2: S1-S54, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38687845

RESUMO

OBJECTIVE: Age-related hearing loss (ARHL) is a prevalent but often underdiagnosed and undertreated condition among individuals aged 50 and above. It is associated with various sociodemographic factors and health risks including dementia, depression, cardiovascular disease, and falls. While the causes of ARHL and its downstream effects are well defined, there is a lack of priority placed by clinicians as well as guidance regarding the identification, education, and management of this condition. PURPOSE: The purpose of this clinical practice guideline is to identify quality improvement opportunities and provide clinicians trustworthy, evidence-based recommendations regarding the identification and management of ARHL. These opportunities are communicated through clear actionable statements with explanation of the support in the literature, evaluation of the quality of the evidence, and recommendations on implementation. The target patients for the guideline are any individuals aged 50 years and older. The target audience is all clinicians in all care settings. This guideline is intended to focus on evidence-based quality improvement opportunities judged most important by the guideline development group (GDG). It is not intended to be a comprehensive, general guide regarding the management of ARHL. The statements in this guideline are not intended to limit or restrict care provided by clinicians based on their experience and assessment of individual patients. ACTION STATEMENTS: The GDG made strong recommendations for the following key action statements (KASs): (KAS 4) If screening suggests hearing loss, clinicians should obtain or refer to a clinician who can obtain an audiogram. (KAS 8) Clinicians should offer, or refer to a clinician who can offer, appropriately fit amplification to patients with ARHL. (KAS 9) Clinicians should refer patients for an evaluation of cochlear implantation candidacy when patients have appropriately fit amplification and persistent hearing difficulty with poor speech understanding. The GDG made recommendations for the following KASs: (KAS 1) Clinicians should screen patients aged 50 years and older for hearing loss at the time of a health care encounter. (KAS 2) If screening suggests hearing loss, clinicians should examine the ear canal and tympanic membrane with otoscopy or refer to a clinician who can examine the ears for cerumen impaction, infection, or other abnormalities. (KAS 3) If screening suggests hearing loss, clinicians should identify sociodemographic factors and patient preferences that influence access to and utilization of hearing health care. (KAS 5) Clinicians should evaluate and treat or refer to a clinician who can evaluate and treat patients with significant asymmetric hearing loss, conductive or mixed hearing loss, or poor word recognition on diagnostic testing. (KAS 6) Clinicians should educate and counsel patients with hearing loss and their family/care partner(s) about the impact of hearing loss on their communication, safety, function, cognition, and quality of life (QOL). (KAS 7) Clinicians should counsel patients with hearing loss on communication strategies and assistive listening devices. (KAS 10) For patients with hearing loss, clinicians should assess if communication goals have been met and if there has been improvement in hearing-related QOL at a subsequent health care encounter or within 1 year. The GDG offered the following KAS as an option: (KAS 11) Clinicians should assess hearing at least every 3 years in patients with known hearing loss or with reported concern for changes in hearing.


Assuntos
Presbiacusia , Humanos , Idoso , Pessoa de Meia-Idade , Presbiacusia/terapia , Presbiacusia/diagnóstico , Perda Auditiva/terapia , Perda Auditiva/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...