RESUMO
Humans express 15 formins that play crucial roles in actin-based processes, including cytokinesis, cell motility and mechanotransduction1,2. However, the lack of structures bound to the actin filament (F-actin) has been a major impediment to understanding formin function. Whereas formins are known for their ability to nucleate and elongate F-actin3-7, some formins can additionally depolymerize, sever or bundle F-actin. Two mammalian formins, inverted formin 2 (INF2) and diaphanous 1 (DIA1, encoded by DIAPH1), exemplify this diversity. INF2 shows potent severing activity but elongates weakly8-11 whereas DIA1 has potent elongation activity but does not sever4,8. Using cryo-electron microscopy (cryo-EM) we show five structural states of INF2 and two of DIA1 bound to the middle and barbed end of F-actin. INF2 and DIA1 bind differently to these sites, consistent with their distinct activities. The formin-homology 2 and Wiskott-Aldrich syndrome protein-homology 2 (FH2 and WH2, respectively) domains of INF2 are positioned to sever F-actin, whereas DIA1 appears unsuited for severing. These structures also show how profilin-actin is delivered to the fast-growing barbed end, and how this is followed by a transition of the incoming monomer into the F-actin conformation and the release of profilin. Combined, the seven structures presented here provide step-by-step visualization of the mechanisms of F-actin severing and elongation by formins.
Assuntos
Citoesqueleto de Actina , Actinas , Forminas , Animais , Humanos , Camundongos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/ultraestrutura , Actinas/química , Actinas/metabolismo , Actinas/ultraestrutura , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Sítios de Ligação , Microscopia Crioeletrônica , Forminas/química , Forminas/metabolismo , Forminas/ultraestrutura , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/ultraestrutura , Modelos Moleculares , Profilinas/química , Profilinas/metabolismo , Profilinas/ultraestrutura , Ligação ProteicaRESUMO
Pollen from Salsola kali, i.e., saltwort, Russian thistle, is a major allergen source in the coastal regions of southern Europe, in Turkey, Central Asia, and Iran. S. kali-allergic patients mainly suffer from hay-fever (i.e., rhinitis and conjunctivitis), asthma, and allergic skin symptoms. The aim of this study was to investigate the importance of individual S. kali allergen molecules. Sal k 1, Sal k 2, Sal k 3, Sal k 4, Sal k 5, and Sal k 6 were expressed in Escherichia coli as recombinant proteins containing a C-terminal hexahistidine tag and purified by nickel affinity chromatography. The purity of the recombinant allergens was analyzed by SDS-PAGE. Their molecular weight was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and their fold and secondary structure were studied by circular dichroism (CD) spectroscopy. Sera from clinically well-characterized S. kali-allergic patients were used for IgE reactivity and basophil activation experiments. S. kali allergen-specific IgE levels and IgE levels specific for the highly IgE cross-reactive profilin and the calcium-binding allergen from timothy grass pollen, Phl p 12 and Phl p 7, respectively, were measured by ImmunoCAP. The allergenic activity of natural S. kali pollen allergens was studied in basophil activation experiments. Recombinant S. kali allergens were folded when studied by CD analysis. The sum of recombinant allergen-specific IgE levels and allergen-extract-specific IgE levels was highly correlated. Sal k 1 and profilin, reactive with IgE from 64% and 49% of patients, respectively, were the most important allergens, whereas the other S. kali allergens were less frequently recognized. Specific IgE levels were highest for profilin. Of note, 37% of patients who were negative for Sal k 1 showed IgE reactivity to Phl p 12, emphasizing the importance of the ubiquitous cytoskeletal actin-binding protein, profilin, for the diagnosis of IgE sensitization in S. kali-allergic patients. rPhl p 12 and rSal k 4 showed equivalent IgE reactivity, and the clinical importance of profilin was underlined by the fact that profilin-monosensitized patients suffered from symptoms of respiratory allergy to saltwort. Accordingly, profilin should be included in the panel of allergen molecules for diagnosis and in molecular allergy vaccines for the treatment and prevention of S. kali allergy.
Assuntos
Alérgenos , Reações Cruzadas , Imunoglobulina E , Pólen , Profilinas , Salsola , Humanos , Profilinas/imunologia , Profilinas/química , Imunoglobulina E/imunologia , Alérgenos/imunologia , Alérgenos/genética , Salsola/imunologia , Feminino , Pólen/imunologia , Masculino , Reações Cruzadas/imunologia , Adulto , Proteínas Recombinantes/imunologia , Rinite Alérgica Sazonal/imunologia , Pessoa de Meia-Idade , Basófilos/imunologia , Basófilos/metabolismo , Antígenos de Plantas/imunologia , Antígenos de Plantas/genética , Adulto Jovem , Adolescente , Proteínas de Plantas/imunologia , Proteínas de Plantas/genéticaRESUMO
Formins control the assembly of actin filaments (F-actin) that drive cell morphogenesis and motility in eukaryotes. However, their molecular interaction with F-actin and their mechanism of action remain unclear. In this work, we present high-resolution cryo-electron microscopy structures of F-actin barbed ends bound by three distinct formins, revealing a common asymmetric formin conformation imposed by the filament. Formation of new intersubunit contacts during actin polymerization sterically displaces formin and triggers its translocation. This "undock-and-lock" mechanism explains how actin-filament growth is coordinated with formin movement. Filament elongation speeds are controlled by the positioning and stability of actin-formin interfaces, which distinguish fast and slow formins. Furthermore, we provide a structure of the actin-formin-profilin ring complex, which resolves how profilin is rapidly released from the barbed end during filament elongation.
Assuntos
Citoesqueleto de Actina , Actinas , Forminas , Citoesqueleto de Actina/química , Actinas/química , Microscopia Crioeletrônica , Forminas/química , Forminas/genética , Profilinas/química , Mutação , SchizosaccharomycesRESUMO
Structural and allergenic characterization of mite profilins has not been previously pursued to a similar extent as plant profilins. Here, we describe structures of profilins originating from Tyrophagus putrescentiae (registered allergen Tyr p 36.0101) and Dermatophagoides pteronyssinus (here termed Der p profilin), which are the first structures of profilins from Arachnida. Additionally, the thermal stabilities of mite and plant profilins are compared, suggesting that the high number of cysteine residues in mite profilins may play a role in their increased stability. We also examine the cross-reactivity of plant and mite profilins as well as investigate the relevance of these profilins in mite inhalant allergy. Despite their high structural similarity to other profilins, mite profilins have low sequence identity with plant and human profilins. Subsequently, these mite profilins most likely do not display cross-reactivity with plant profilins. At the same time the profilins have highly conserved poly(l-proline) and actin binding sites.
Assuntos
Reações Cruzadas , Profilinas , Animais , Reações Cruzadas/imunologia , Profilinas/imunologia , Profilinas/química , Profilinas/metabolismo , Humanos , Ácaros/imunologia , Ácaros/química , Sequência de Aminoácidos , Hipersensibilidade/imunologia , Plantas/imunologia , Plantas/química , Plantas/metabolismo , Modelos Moleculares , Alérgenos/imunologia , Alérgenos/químicaRESUMO
OBJECTIVE: Analyze phylogenetic relationships and molecular mimicry of Cit s 2 and other plant profilins. METHODS: Online bioinformatics tools including Basic Local Alignment Search Tool (BLASTP), PRALINE and MEGA were used for multiple alignments and phylogenetic analysis. A 3D-homology model of Cit s 2 was predicted. Models were calculated with MODELLER. The best model was selected with the model scoring option of MAESTRO. Conserved regions between Cit s 2 and other profilins were located on the 3D model and antigenic regions were predicted by ElliPro server (3-5). RESULTS: Cit s 2 amino acid sequence (Uniprot code:P84177) was compared with other 30 profilins from different allergenic sources. The identity between Cit s 2 and other profilins ranged between 82 and 99%. The highest identity was observed with Cucumis melo (99%) followed by Prunus persica (98%) and Malus domestica (92%). High conserved antigenic regions were observed on the 3D predicted model. Seven lineal and six discontinuous epitopes were found in Cit s 2. CONCLUSION: High conserved antigenic regions were observed on the 3D predicted model of Cit s 2, which might involve potential cross-reactivity between Cit s 2 and other profilins. Future studies are needed to further analyze these results.
OBJETIVO: Analizar las relaciones filogenéticas y el mimetismo molecular de Cit s 2 y otras profilinas vegetales. MÉTODOS: Se utilizaron herramientas bioinformáticas en línea, incluida la de búsqueda de alineación local básica (BLASTP), PRALINE y MEGA, para alineamientos múltiples y análisis filogenético. Se predijo un modelo de homología 3D de Cit s 2. Los modelos se calcularon con MODELLER. El mejor modelo fue seleccionado con la opción de puntuación de modelo de Maestro. Las regiones conservadas entre Cit s 2 y otras profilinas se ubicaron en el modelo 3D y las regiones antigénicas fueron predichas por el servidor ElliPro (3-5). RESULTADOS: La secuencia de aminoácidos de Cit s 2 (código Uniprot: P84177), se comparó con otras 30 profilinas de diferentes fuentes alergénicas. La mayor identidad se observó con Cucumis melo (99%) seguida de Prunus persica (98%) y Malus domestica (92%). Se observaron regiones antigénicas altamente conservadas en el modelo predicho en 3D. Se encontraron siete epítopes lineales, y seis epítopes discontinuos en Cit s 2. CONCLUSIÓN: Se observaron regiones antigénicas altamente conservadas en el modelo 3D predicho de Cit s 2, lo que podría implicar una posible reactividad cruzada entre Cit s 2 y otras profilinas. Se necesitan estudios futuros para analizar más a fondo estos resultados.
Assuntos
Antígenos de Plantas , Profilinas , Alérgenos/imunologia , Sequência de Aminoácidos , Simulação por Computador , Sequência Conservada , Modelos Moleculares , Filogenia , Proteínas de Plantas/imunologia , Profilinas/imunologia , Profilinas/genética , Profilinas/química , Cucumis/química , Cucumis/metabolismo , Prunus persica/química , Prunus persica/metabolismo , Malus/química , Malus/metabolismo , Antígenos de Plantas/químicaRESUMO
Diseases caused by Leishmania and Trypanosoma parasites are a major health problem in tropical countries. Because of their complex life cycle involving both vertebrate and insect hosts, and >1 billion years of evolutionarily distance, the cell biology of trypanosomatid parasites exhibits pronounced differences to animal cells. For example, the actin cytoskeleton of trypanosomatids is divergent when compared with other eukaryotes. To understand how actin dynamics are regulated in trypanosomatid parasites, we focused on a central actin-binding protein profilin. Co-crystal structure of Leishmania major actin in complex with L. major profilin revealed that, although the overall folds of actin and profilin are conserved in eukaryotes, Leishmania profilin contains a unique α-helical insertion, which interacts with the target binding cleft of actin monomer. This insertion is conserved across the Trypanosomatidae family and is similar to the structure of WASP homology-2 (WH2) domain, a small actin-binding motif found in many other cytoskeletal regulators. The WH2-like motif contributes to actin monomer binding and enhances the actin nucleotide exchange activity of Leishmania profilin. Moreover, Leishmania profilin inhibited formin-catalyzed actin filament assembly in a mechanism that is dependent on the presence of the WH2-like motif. By generating profilin knockout and knockin Leishmania mexicana strains, we show that profilin is important for efficient endocytic sorting in parasites, and that the ability to bind actin monomers and proline-rich proteins, and the presence of a functional WH2-like motif, are important for the in vivo function of Leishmania profilin. Collectively, this study uncovers molecular principles by which profilin regulates actin dynamics in trypanosomatids.
Assuntos
Citoesqueleto de Actina , Actinas , Leishmania major , Parasitos , Profilinas , Animais , Humanos , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Sequência Conservada , Cristalização , Cristalografia por Raios X , Leishmania major/citologia , Leishmania major/metabolismo , Parasitos/citologia , Parasitos/metabolismo , Profilinas/química , Profilinas/metabolismo , Ligação Proteica , Domínios ProteicosRESUMO
Profilins are ubiquitous allergens with conserved structural elements. Exposure to profilins from different sources leads to IgE-cross-reactivity and the pollen-latex-food syndrome. Monoclonal antibodies (mAbs) that cross-react with plant profilins and block IgE-profilin interactions are relevant for diagnosis, epitope mapping, and specific immunotherapy. We generated IgGs mAbs, 1B4, and 2D10, against latex profilin (anti-rHev b 8) that inhibit the interaction of IgE and IgG4 antibodies from sera of latex- and maize-allergic patients by 90% and 40%, respectively. In this study, we evaluated 1B4 and 2D10 recognition towards different plant profilins, and mAbs recognition of rZea m 12 mutants by ELISAs. Interestingly, 2D10 highly recognized rArt v 4.0101 and rAmb a 8.0101, and to a lesser extent rBet v 2.0101, and rFra e 2.2, while 1B4 showed recognition for rPhl p 12.0101 and rAmb a 8.0101. We demonstrated that residue D130 at the α-helix 3 in profilins, which is part of the Hev b 8 IgE epitope, is essential for the 2D10 recognition. The structural analysis suggests that the profilins containing E130 (rPhl p 12.0101, rFra e 2.2, and rZea m 12.0105) show less binding with 2D10. The distribution of negative charges on the profilins' surfaces at the α-helices 1 and 3 is relevant for the 2D10 recognition, and that may be relevant to explain profilins' IgE cross-reactivity.
Assuntos
Hipersensibilidade , Profilinas , Humanos , Profilinas/química , Profilinas/metabolismo , Látex , Sequência de Aminoácidos , Alérgenos , Imunoglobulina E , Proteínas de Plantas/metabolismoRESUMO
Mutations and histidine (His) tautomerism in profilin-1 (PFN1) are associated with amyotrophic lateral sclerosis (ALS). The conformational changes in PFN1 caused by the collective effects of G117V mutation and His tautomeric isomers εε, εδ, δε, and δδ were clarified using molecular dynamics (MD) simulations. The predominant structural variations were seen in α-helices, ß-sheets, turns, and coils and the His tautomer's unique degree of disruption was seen in these conformations. The content of α-helices was 23.2 % in the εε and δδ isomers, but the observed α-helices in the isomers εδ and δε were 20.3 % and 21.7 % respectively. The percentage of ß-sheet was found to be higher (34.1) in the εε isomer than in the εδ, δε, and δδ isomers, and the values were 30.4, 29.7, and 31.9, respectively. Intermolecular water dynamics analysis discloses that His 133 can form an intramolecular H-bond interaction (Nα-H---Nδ), confirming the experimental observations in the simulations of εε, δε, and δδ isomers of G117V PFN1 mutant. It was concluded that these solvent molecules are crucial for aggregation and must be considered in future research on the PFN1 associated with ALS. Overall, the study offers a thorough microscopic understanding of the pathogenic mechanisms behind conformational changes that cause aggregation illnesses like ALS.
Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/genética , Histidina/genética , Profilinas/genética , Profilinas/química , Profilinas/metabolismo , Mutação , Conformação MolecularRESUMO
The infectious disease human monkeypox is spreading rapidly in 2022, causing a global health crisis. The genomics of Monkeypox virus (MPXV) have been extensively analyzed and reported, although little is known about the virus-encoded proteome. In particular, there are no reported experimental MPXV protein structures other than computational models. Here, a 1.52â Å resolution X-ray structure of the MPXV protein A42R, the first MPXV-encoded protein with a known structure, is reported. A42R shows structural similarity to profilins, which are cellular proteins that are known to function in the regulation of actin cytoskeletal assembly. However, structural comparison of A42R with known members of the profilin family reveals critical differences that support prior biochemical findings that A42R only weakly binds actin and does not bind poly(L-proline). In addition, the analysis suggests that A42R may make distinct interactions with phosphatidylinositol lipids. Overall, the data suggest that the role of A42R in the replication of orthopoxviruses may not be readily determined by comparison to cellular profilins. Furthermore, these findings support the need for increased efforts to determine high-resolution structures of other MPXV proteins to inform physiological studies of the poxvirus infection cycle and to reveal potential new strategies to combat human monkeypox should this emerging infectious disease with pandemic potential become more common in the future.
Assuntos
Mpox , Profilinas , Actinas/química , Actinas/metabolismo , Cristalografia por Raios X , Humanos , Monkeypox virus/metabolismo , Fosfatidilinositóis , Profilinas/química , Profilinas/genética , Profilinas/metabolismo , Proteoma , Proteínas ViraisRESUMO
Bee pollen as a plant-derived food is consumed as nutritional/functional supplements by humans. But it might confer foodborne allergenicity in susceptible populations, limiting its extensive application. In this study, five potential allergens including profilin, cystatin, prolamin, expansin, and alcohol dehydrogenase in bee pollen derived from Brassica campestris (BP-Bc), were identified through mass spectrometry-based proteomic analysis. Moreover, different types of enzymes (cellulases, pectases, and papains) serve biological roles in pollen wall breaking and expansion, but also promote allergen release and degradation. Proteomic analysis showed that profilin, cystatin, and alcohol dehydrogenase were significantly reduced in BP-Bc following joint treatment with three enzymes. Metabolomic characterization of potential enzymatic hydrolysates of these significantly-decreased allergens was performed, which showed nine major oligopeptides and six amino acids at significantly higher levels in the enzyme-treated BP-Bc. These findings clarified the culprit responsible for bee pollen allergy and the mechanism of enzymatic desensitization for its further development.
Assuntos
Alérgenos , Hipersensibilidade Alimentar , Álcool Desidrogenase , Alérgenos/química , Animais , Abelhas , Hipersensibilidade Alimentar/metabolismo , Metabolômica/métodos , Pólen/química , Profilinas/química , Proteômica/métodosRESUMO
Aggregation of profilin-1 (PFN1) causes a fatal neurodegenerative disease, familial amyotrophic lateral sclerosis (fALS). Histidine (His) tautomerism has been linked to the formation of fibril aggregation causing neurodegenerative disease. Characterization of intermediate species that form during aggregation is crucial, however, this has proven very challenging for experimentalists due to their transient nature. Hence, molecular dynamics (MD) simulations have been performed on the His tautomeric isomers εε, εδ, δε, and δδ of PFN1 to explain the structural changes and to correlate them with its aggregation propensity. MD simulations show that His133 presumably plays a major role in the aggregation of PFN1 upon His tautomerism compared to His119. Further, the formation of a new 310-helix is observed in εε and δε but 310-helix is not observed in δδ and εδ isomers. In addition, our findings unveil that ß-sheet dominating conformations are observed in His119(δ)-His133(δ) δδ isomer of PFN1 with significant antiparallel ß-sheets between residues T15-G23, S29-A33, L63-L65, Q68-S76, F83-T89, T97-T105, and K107-K115, suggesting a novel aggregation mechanism possibly occur for the formation of PFN1 aggregates. Overall, these results propose that MD simulations of PFN1 His tautomers can provide a detailed microscopic understanding of the aggregation mechanisms which are hard to probe through experiments.
Assuntos
Esclerose Lateral Amiotrófica , Histidina , Doenças Neurodegenerativas , Profilinas , Esclerose Lateral Amiotrófica/metabolismo , Histidina/metabolismo , Humanos , Mutação , Profilinas/química , Profilinas/genética , Profilinas/metabolismo , Agregados Proteicos , Conformação ProteicaRESUMO
The emergence of the first eukaryotic cell is preceded by evolutionary events, which are still highly debatable. Clues of the exact sequence of events are beginning to emerge. Recent metagenomics analyses has uncovered the Asgard super-phylum as the closest yet known archaea host of eukaryotes. Some of these have been tested and confirmed experimentally. However, the bulk of eukaryotic signature proteins predicted to be encoded by the Asgard super-phylum have not been studied, and their true functions, at least in the context of a eukaryotic cell, are still elusive. For example, there are several different variants of the profilin within each Asgardian Achaea, and there are some conflicting results of their actual roles. Here, the 3D structure of profilin from Thorarchaeota is determined by nuclear magnetic resonance spectroscopy and shows that this profilin has a eukaryotic-like profilin with a rigid core and an extended N-terminus previously implicated in polyproline binding. In addition, it is also shown that Thorarchaeota Profilin co-localizes with eukaryotic actin in cultured HeLa cells. This finding reaffirms the notion that Asgardian encoded proteins possess eukaryotic-like characteristics and strengthen the likely existence of a complex cytoskeleton already in a last eukaryotic common ancestor.
Assuntos
Archaea , Proteínas Arqueais , Profilinas , Archaea/química , Proteínas Arqueais/química , Eucariotos , Genoma Arqueal , Células HeLa , Humanos , Profilinas/químicaRESUMO
Eight separate mutations in the actin-binding protein profilin-1 have been identified as a rare cause of amyotrophic lateral sclerosis (ALS). Profilin is essential for many neuronal cell processes through its regulation of lipids, nuclear signals, and cytoskeletal dynamics, including actin filament assembly. Direct interactions between profilin and actin monomers inhibit actin filament polymerization. In contrast, profilin can also stimulate polymerization by simultaneously binding actin monomers and proline-rich tracts found in other proteins. Whether the ALS-associated mutations in profilin compromise these actin assembly functions is unclear. We performed a quantitative biochemical comparison of the direct and formin mediated impact for the eight ALS-associated profilin variants on actin assembly using classic protein-binding and single-filament microscopy assays. We determined that the binding constant of each profilin for actin monomers generally correlates with the actin nucleation strength associated with each ALS-related profilin. In the presence of formin, the A20T, R136W, Q139L, and C71G variants failed to activate the elongation phase of actin assembly. This diverse range of formin-activities is not fully explained through profilin-poly-L-proline (PLP) interactions, as all ALS-associated variants bind a formin-derived PLP peptide with similar affinities. However, chemical denaturation experiments suggest that the folding stability of these profilins impact some of these effects on actin assembly. Thus, changes in profilin protein stability and alterations in actin filament polymerization may both contribute to the profilin-mediated actin disruptions in ALS.
Assuntos
Esclerose Lateral Amiotrófica , Profilinas , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Forminas , Humanos , Proteínas dos Microfilamentos/metabolismo , Profilinas/química , Profilinas/genética , Profilinas/metabolismoRESUMO
The hydrogen/deuterium exchange (HDX) is a reliable method to survey the dynamic behavior of proteins and epitope mapping. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) is a quantifying tool to assay for HDX in the protein of interest. We combined HDX-MALDI-TOF MS and molecular docking/MD simulation to identify accessible amino acids and analyze their contribution into the structural changes of profilin-1 (PFN-1). The molecular docking/MD simulations are computational tools for enabling the analysis of the type of amino acids that may be involved via HDX identified under the lowest binding energy condition. Glycine to valine amino acid (G117V) substitution mutation is linked to amyotrophic lateral sclerosis (ALS). This mutation is found to be in the actin-binding site of PFN-1 and prevents the dimerization/polymerization of actin and invokes a pathologic toxicity that leads to ALS. In this study, we sought to understand the PFN-1 protein dynamic behavior using purified wild type and mutant PFN-1 proteins. The data obtained from HDX-MALDI-TOF MS for PFN-1WT and PFN-1G117V at various time intervals, from seconds to hours, revealed multiple peaks corresponding to molecular weights from monomers to multimers. PFN-1/Benzaldehyde complexes identified 20 accessible amino acids to HDX that participate in the docking simulation in the surface of WT and mutant PFN-1. Consistent results from HDX-MALDI-TOF MS and docking simulation predict candidate amino acid(s) involved in the dimerization/polymerization of PFNG117V. This information may shed critical light on the structural and conformational changes with details of amino acid epitopes for mutant PFN-1s' dimerization, oligomerization, and aggregation.
Assuntos
Esclerose Lateral Amiotrófica , Medição da Troca de Deutério , Profilinas , Esclerose Lateral Amiotrófica/genética , Biologia Computacional , Deutério , Humanos , Simulação de Acoplamento Molecular , Profilinas/química , Profilinas/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Heterodimeric capping protein (CP/CapZ) is an essential factor for the assembly of branched actin networks, which push against cellular membranes to drive a large variety of cellular processes. Aside from terminating filament growth, CP potentiates the nucleation of actin filaments by the Arp2/3 complex in branched actin networks through an unclear mechanism. Here, we combine structural biology with in vitro reconstitution to demonstrate that CP not only terminates filament elongation, but indirectly stimulates the activity of Arp2/3 activating nucleation promoting factors (NPFs) by preventing their association to filament barbed ends. Key to this function is one of CP's C-terminal "tentacle" extensions, which sterically masks the main interaction site of the terminal actin protomer. Deletion of the ß tentacle only modestly impairs capping. However, in the context of a growing branched actin network, its removal potently inhibits nucleation promoting factors by tethering them to capped filament ends. End tethering of NPFs prevents their loading with actin monomers required for activation of the Arp2/3 complex and thus strongly inhibits branched network assembly both in cells and reconstituted motility assays. Our results mechanistically explain how CP couples two opposed processes-capping and nucleation-in branched actin network assembly.
Assuntos
Proteínas de Capeamento de Actina/metabolismo , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Melanócitos/metabolismo , Proteínas de Capeamento de Actina/química , Proteínas de Capeamento de Actina/genética , Citoesqueleto de Actina/ultraestrutura , Complexo 2-3 de Proteínas Relacionadas à Actina/química , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Actinas/química , Actinas/genética , Animais , Sítios de Ligação , Bovinos , Citoesqueleto/ultraestrutura , Gelsolina/química , Gelsolina/genética , Gelsolina/metabolismo , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Cinética , Melanócitos/citologia , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Modelos Moleculares , Profilinas/química , Profilinas/genética , Profilinas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Timo/citologia , Timo/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/química , Proteína Neuronal da Síndrome de Wiskott-Aldrich/genética , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismoRESUMO
Metastatic recurrence is still a major challenge in breast cancer treatment, but the underlying mechanisms remain unclear. Here, we report that a small adaptor protein, SH3BGRL, is upregulated in the majority of breast cancer patients, especially elevated in those with metastatic relapse, indicating it as a marker for the poor prognosis of breast cancer. Physiologically, SH3BGRL can multifunctionally promote breast cancer cell tumorigenicity, migration, invasiveness, and efficient lung colonization in nude mice. Mechanistically, SH3BGRL downregulates the acting-binding protein profilin 1 (PFN1) by accelerating the translation of the PFN1 E3 ligase, STUB1 via SH3BGRL interaction with ribosomal proteins, or/and enhancing the interaction of PFN1 with STUB1 to accelerate PFN1 degradation. Loss of PFN1 consequently contributes to downstream multiple activations of AKT, NF-kB, and WNT signaling pathways. In contrast, the forced expression of compensatory PFN1 in SH3BGRL-high cells efficiently neutralizes SH3BGRL-induced metastasis and tumorigenesis with PTEN upregulation and PI3K-AKT signaling inactivation. Clinical analysis validates that SH3BGRL expression is negatively correlated with PFN1 and PTEN levels, but positively to the activations of AKT, NF-kB, and WNT signaling pathways in breast patient tissues. Our results thus suggest that SH3BGRL is a valuable prognostic factor and a potential therapeutic target for preventing breast cancer progression and metastasis.
Assuntos
Neoplasias da Mama/patologia , Profilinas/química , Proteínas/genética , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Prognóstico , Proteólise , Análise de SobrevidaRESUMO
Profilin-1 (PFN1) plays important roles in modulating actin dynamics through binding both monomeric actin and proteins enriched with polyproline motifs. Mutations in PFN1 have been linked to the neurodegenerative disease amyotrophic lateral sclerosis (ALS). However, whether ALS-linked mutations affect PFN1 function has remained unclear. To address this question, we employed an unbiased proteomics analysis in mammalian cells to identify proteins that differentially interact with mutant and wild-type (WT) PFN1. These studies uncovered differential binding between two ALS-linked PFN1 variants, G118V and M114T, and select formin proteins. Furthermore, both variants augmented formin-mediated actin assembly relative to PFN1 WT. Molecular dynamics simulations revealed mutation-induced changes in the internal dynamic couplings within an alpha helix of PFN1 that directly contacts both actin and polyproline, as well as structural fluctuations within the actin- and polyproline-binding regions of PFN1. These data indicate that ALS-PFN1 variants have the potential for heightened flexibility in the context of the ternary actin-PFN1-polyproline complex during actin assembly. Conversely, PFN1 C71G was more severely destabilized than the other PFN1 variants, resulting in reduced protein expression in both transfected and ALS patient lymphoblast cell lines. Moreover, this variant exhibited loss-of-function phenotypes in the context of actin assembly. Perturbations in actin dynamics and assembly can therefore result from ALS-linked mutations in PFN1. However, ALS-PFN1 variants may dysregulate actin polymerization through different mechanisms that depend upon the solubility and stability of the mutant protein.
Assuntos
Actinas/metabolismo , Esclerose Lateral Amiotrófica/genética , Forminas/efeitos adversos , Polimerização , Profilinas/genética , Profilinas/metabolismo , Animais , Células HeLa , Humanos , Proteínas Mutantes/química , Mutação , Doenças Neurodegenerativas , Fenótipo , Profilinas/química , Conformação Proteica em alfa-Hélice , Deficiências na ProteostaseRESUMO
This study aimed to investigate four of the eight PFN-1 mutations that are located near the actin-binding domain and determine the structural changes due to each mutant and unravel how these mutations alter protein structural behavior. Swapaa's command in UCSF chimera for generating mutations, FTMAP were employed and the data was analyzed by RMSD, RMSF graphs, Rg, hydrogen bonding analysis, and RRdisMaps utilizing Autodock4 and GROMACS. The functional changes and virtual screening, structural dynamics, and chemical bonding behavior changes, molecular docking simulation with two current FDA-approved drugs for ALS were investigated. The highest reduction and increase in Rg were found to exist in the G117V and M113T mutants, respectively. The RMSF data consistently shows changes nearby to this site. The in silico data described indicate that each of the mutations is capable of altering the structure of PFN-1 in vivo. The potential effect of riluzole and edaravone two FDA approved drugs for ALS, impacting the structural deviations and stabilization of the mutant PFN-1 is evaluated using in silico tools. Overall, the analysis of data collected reveals structural changes of mutant PFN-1 protein that may explain the neurotoxicity and the reason(s) for possible loss and gain of function of PFN-1 in the neurotoxic model of ALS.
Assuntos
Esclerose Lateral Amiotrófica/patologia , Simulação por Computador , Edaravone/metabolismo , Proteínas Mutantes/metabolismo , Mutação , Profilinas/metabolismo , Riluzol/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Edaravone/química , Humanos , Simulação de Acoplamento Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/metabolismo , Profilinas/química , Profilinas/genética , Conformação Proteica , Riluzol/químicaRESUMO
Timothy grass pollen is a source of potent allergens. Among them, Phl p 1 and Phl p 5 are thought to be the most important, as a majority of timothy grass-allergic individuals have IgE antibodies directed against these two allergens. The profilin from timothy grass (Phl p 12) has been registered as a minor allergen, with up to 35% of individuals in populations of grass pollen allergic patients showing IgE binding to Phl p 12. Profilins are primarily minor allergens and are known for a high likelihood of co-sensitization as well as cross-reactivity situations caused by their sequence and structure similarity. The crystal structure of Phl p 12.0101 was determined and it revealed that this allergen may form an unusual dimer not previously observed among any profilins. For example, the Phl p 12 dimer has a completely different geometry and interface when compared with the latex profilin (Hev b 8) dimer that has its crystal structure determined. The structure of Phl p 12.0101 is described in the context of allergenic sensitization and allergy diagnostics. Moreover, the structure of the Phl p 12.0101 dimer is discussed, taking into account the production of recombinant allergens and their storage.
Assuntos
Antígenos de Plantas/química , Phleum/química , Proteínas de Plantas/química , Pólen/química , Profilinas/química , Multimerização Proteica , Antígenos de Plantas/imunologia , Antígenos de Plantas/isolamento & purificação , Reações Cruzadas , Cristalização , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Phleum/imunologia , Proteínas de Plantas/imunologia , Pólen/imunologia , Profilinas/imunologia , Profilinas/isolamento & purificação , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Rinite Alérgica Sazonal/imunologia , Solventes/químicaRESUMO
Nucleation-promoting proteins tightly regulate actin polymerization in cells. Whereas many of these proteins bind actin monomers directly, formins use the actin-binding protein profilin to dynamically load actin monomers onto their flexible Formin Homology 1 (FH1) domains. Following binding, FH1 domains deliver profilin-actin complexes to filament ends. To investigate profilin's role as an adaptor protein in formin-mediated elongation, we engineered a chimeric formin that binds actin monomers directly via covalent attachment of profilin to its binding site in the formin. This formin mediates slow filament elongation owing to a high probability of profilin binding at filament ends. Varying the position at which profilin is tethered to the formin alters the elongation rate by modulating profilin occupancy at the filament end. By regulating the availability of the barbed end, we propose that profilin binding establishes a secondary point of control over the rate of filament elongation mediated by formins. Profilin's differential affinities for actin monomers, barbed ends and polyproline are thus tuned to adaptively bridge actin and formins and optimize the rate of actin polymerization.