Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.002
Filtrar
1.
Arch Dermatol Res ; 316(6): 312, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822924

RESUMO

Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer with high rates of metastasis and mortality. In vitro studies suggest that selinexor (KPT-330), an inhibitor of exportin 1, may be a targeted therapeutic option for MCC. This selective inhibitor prevents the transport of oncogenic mRNA out of the nucleus. Of note, 80% of MCC tumors are integrated with Merkel cell polyomavirus (MCPyV), and virally encoded tumor-antigens, small T (sT) and large T (LT) mRNAs may require an exportin transporter to relocate to the cytoplasm and modulate host tumor-suppressing pathways. To explore selinexor as a targeted therapy for MCC, we examine its ability to inhibit LT and sT antigen expression in vitro and its impact on the prostaglandin synthesis pathway. Protein expression was determined through immunoblotting and quantified by densitometric analysis. Statistical significance was determined with t-test. Treatment of MCPyV-infected cell lines with selinexor resulted in a significant dose-dependent downregulation of key mediators of the prostaglandin synthesis pathway. Given the role of prostaglandin synthesis pathway in MCC, our findings suggest that selinexor, alone or in combination with immunotherapy, could be a promising treatment for MCPyV-infected MCC patients who are resistant to chemotherapy and immunotherapy.


Assuntos
Carcinoma de Célula de Merkel , Hidrazinas , Neoplasias Cutâneas , Triazóis , Hidrazinas/farmacologia , Hidrazinas/uso terapêutico , Humanos , Carcinoma de Célula de Merkel/virologia , Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Célula de Merkel/patologia , Triazóis/farmacologia , Triazóis/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/virologia , Neoplasias Cutâneas/patologia , Linhagem Celular Tumoral , Prostaglandinas/metabolismo , Poliomavírus das Células de Merkel , Proteína Exportina 1 , Carioferinas/metabolismo , Carioferinas/antagonistas & inibidores , Antígenos Virais de Tumores , Receptores Citoplasmáticos e Nucleares/metabolismo
2.
J Cell Biol ; 223(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38856684

RESUMO

Sonic Hedgehog (SHH) is a driver of embryonic patterning that, when corrupted, triggers developmental disorders and cancers. SHH effector responses are organized through primary cilia (PC) that grow and retract with the cell cycle and in response to extracellular cues. Disruption of PC homeostasis corrupts SHH regulation, placing significant pressure on the pathway to maintain ciliary fitness. Mechanisms by which ciliary robustness is ensured in SHH-stimulated cells are not yet known. Herein, we reveal a crosstalk circuit induced by SHH activation of Phospholipase A2α that drives ciliary E-type prostanoid receptor 4 (EP4) signaling to ensure PC function and stabilize ciliary length. We demonstrate that blockade of SHH-EP4 crosstalk destabilizes PC cyclic AMP (cAMP) equilibrium, slows ciliary transport, reduces ciliary length, and attenuates SHH pathway induction. Accordingly, Ep4-/- mice display shortened neuroepithelial PC and altered SHH-dependent neuronal cell fate specification. Thus, SHH initiates coordination between distinct ciliary receptors to maintain PC function and length homeostasis for robust downstream signaling.


Assuntos
Cílios , Proteínas Hedgehog , Prostaglandinas , Transdução de Sinais , Animais , Camundongos , Cílios/metabolismo , AMP Cíclico/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Camundongos Knockout , Prostaglandinas/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Receptores de Prostaglandina E Subtipo EP4/genética
3.
Zhonghua Yan Ke Za Zhi ; 60(6): 547-558, 2024 Jun 11.
Artigo em Chinês | MEDLINE | ID: mdl-38825955

RESUMO

With the increasing prevalence of myopia among adolescents, the pathogenesis of this condition has garnered significant attention. Studies have discovered the expression of various hormone receptors in ocular tissues of both animals and humans. Additionally, changes in hormone levels accompany the development of myopia, although the exact relationships remain inconclusive. This article reviews the potential influences and mechanisms of action of endogenous hormones such as melatonin, serotonin, insulin, glucagon, sex hormones, vitamin D, and prostaglandins in ocular tissues including the retina, choroid, and sclera. It elaborates on the relationship between fluctuations in these hormone levels and the progression of myopia, aiming to provide guidance for exploring targets for myopia prevention and control.


Assuntos
Melatonina , Miopia , Humanos , Miopia/metabolismo , Melatonina/metabolismo , Vitamina D/metabolismo , Serotonina/metabolismo , Insulina/metabolismo , Glucagon/metabolismo , Animais , Hormônios Esteroides Gonadais/metabolismo , Prostaglandinas/metabolismo , Hormônios/metabolismo , Retina/metabolismo
4.
Reprod Domest Anim ; 59(6): e14651, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923132

RESUMO

The efficiency of combining oestrous induction via a light program (16 h of light and 8 h of darkness for 60 days, ending on Day 0 - D0) with cloprostenol administration, followed by the male effect or not, was tested in acyclic Saanen goats during the non-breeding season (June/2019 to January/2020). Initially, all animals (males and females) were submitted to the described light program; 60 days after its ending (D60), the females were divided into two groups, with (G1; n = 67) or without (G2; n = 61) a male effect from D60 to D75 after the light program. At D75, both groups received two cloprostenol doses (120 µg; intramuscular) 7.5 days apart (D75 and D82.5). Artificial insemination was performed at a specific time according to the oestrous onset (approximately 68.4 ± 1.2 h between the second cloprostenol dose and IA). Ultrasound scans were performed at different intervals to evaluate follicular dynamics and confirm pregnancy. At the first cloprostenol dose (D75), the proportion of does with at least a corpus luteum (CL), which indicates resumed cyclicity, was greater in G1 than in G2 (85.2% vs. 48.8%; p < .05), although no difference was found at the second dose (p > .05). The adjusted pregnancy rates (number of pregnant goats/oestrous goats) differed between G1 and G2 (21.7% vs. 42.0%; p < .05). G1 also showed a higher frequency of functional CL (based on blood flow and morphology) compared to G2 (96.9% vs. 66.7%; p < .05) at D116. A male effect using photo-stimulated bucks after the first cloprostenol dose increased the number of does presenting CL after buck removal, and no impairment in the pregnancy rates of multiparous does was found.


Assuntos
Cloprostenol , Sincronização do Estro , Cabras , Inseminação Artificial , Estações do Ano , Animais , Cabras/fisiologia , Feminino , Masculino , Cloprostenol/farmacologia , Cloprostenol/administração & dosagem , Gravidez , Inseminação Artificial/veterinária , Prostaglandinas , Fotoperíodo , Reprodução/fisiologia , Reprodução/efeitos dos fármacos
5.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R97-R108, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38780425

RESUMO

The transitional epithelial cells (urothelium) that line the lumen of the urinary bladder form a barrier between potentially harmful pathogens, toxins, and other bladder contents and the inner layers of the bladder wall. The urothelium, however, is not simply a passive barrier, as it can produce signaling factors, such as ATP, nitric oxide, prostaglandins, and other prostanoids, that can modulate bladder function. We investigated whether substances produced by the urothelium could directly modulate the contractility of the underlying urinary bladder smooth muscle. Force was measured in isolated strips of mouse urinary bladder with the urothelium intact or denuded. Bladder strips developed spontaneous tone and phasic contractions. In urothelium-intact strips, basal tone, as well as the frequency and amplitude of phasic contractions, were 25%, 32%, and 338% higher than in urothelium-denuded strips, respectively. Basal tone and phasic contractility in urothelium-intact bladder strips were abolished by the cyclooxygenase (COX) inhibitor indomethacin (10 µM) or the voltage-dependent Ca2+ channel blocker diltiazem (50 µM), whereas blocking neuronal sodium channels with tetrodotoxin (1 µM) had no effect. These results suggest that prostanoids produced in the urothelium enhance smooth muscle tone and phasic contractions by activating voltage-dependent Ca2+ channels in the underlying bladder smooth muscle. We went on to demonstrate that blocking COX inhibits the generation of transient pressure events in isolated pressurized bladders and greatly attenuates the afferent nerve activity during bladder filling, suggesting that urothelial prostanoids may also play a role in sensory nerve signaling.NEW & NOTEWORTHY This paper provides evidence for the role of urothelial-derived prostanoids in maintaining tone in the urinary bladder during bladder filling, not only underscoring the role of the urothelium as more than a barrier but also contributing to active regulation of the urinary bladder. Furthermore, cyclooxygenase products greatly augment sensory nerve activity generated by bladder afferents during bladder filling and thus may play a role in perception of bladder fullness.


Assuntos
Camundongos Endogâmicos C57BL , Contração Muscular , Músculo Liso , Prostaglandinas , Bexiga Urinária , Urotélio , Animais , Bexiga Urinária/inervação , Bexiga Urinária/fisiologia , Bexiga Urinária/efeitos dos fármacos , Urotélio/inervação , Urotélio/efeitos dos fármacos , Urotélio/metabolismo , Urotélio/fisiologia , Contração Muscular/efeitos dos fármacos , Prostaglandinas/metabolismo , Músculo Liso/efeitos dos fármacos , Músculo Liso/inervação , Músculo Liso/fisiologia , Músculo Liso/metabolismo , Camundongos , Masculino , Neurônios Aferentes/fisiologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Feminino
6.
Sci Signal ; 17(835): eadq1964, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713766

RESUMO

Prostaglandins in the tumor microenvironment block IL-2-induced expansion of killer T cells.


Assuntos
Interleucina-2 , Microambiente Tumoral , Interleucina-2/imunologia , Interleucina-2/metabolismo , Humanos , Microambiente Tumoral/imunologia , Animais , Neoplasias/imunologia , Neoplasias/metabolismo , Prostaglandinas/metabolismo
7.
Mar Drugs ; 22(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38786610

RESUMO

Octocoral of the genus Clavularia is a kind of marine invertebrate possessing abundant cytotoxic secondary metabolites, such as prostanoids and dolabellanes. In our continuous natural product study of C. spp., two previously undescribed prostanoids [clavulone I-15-one (1) and 12-O-deacetylclavulone I (2)] and eleven known analogs (3-13) were identified. The structures of these new compounds were elucidated based on analysis of their 1D and 2D NMR, HRESIMS, and IR data. Additionally, all tested prostanoids (1 and 3-13) showed potent cytotoxic activities against the human oral cancer cell line (Ca9-22). The major compound 3 showed cytotoxic activity against the Ca9-22 cells with the IC50 value of 2.11 ± 0.03 µg/mL, which echoes the cytotoxic effect of the coral extract. In addition, in silico tools were used to predict the possible effects of isolated compounds on human tumor cell lines and nitric oxide production, as well as the pharmacological potentials.


Assuntos
Antozoários , Antineoplásicos , Prostaglandinas , Humanos , Antozoários/química , Animais , Linhagem Celular Tumoral , Prostaglandinas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Óxido Nítrico/metabolismo , Concentração Inibidora 50 , Organismos Aquáticos , Estrutura Molecular
8.
Sci Adv ; 10(14): eadj7666, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569041

RESUMO

Inflammation-associated fibroblasts (IAFs) are associated with progression and drug resistance of chronic inflammatory diseases such as inflammatory bowel disease (IBD), but their direct impact on epithelial cells is unknown. Here, we developed an in vitro model whereby human colon fibroblasts are induced by specific cytokines and recapitulate key features of IAFs in vivo. When cocultured with patient-derived colon organoids (colonoids), IAFs induced rapid colonoid expansion and barrier disruption due to swelling and rupture of individual epithelial cells. Colonoids cocultured with IAFs also show increased DNA damage, mitotic errors, and proliferation arrest. These IAF-induced epithelial defects are mediated by a paracrine pathway involving prostaglandin E2 and its receptor EP4, leading to protein kinase A -dependent activation of the cystic fibrosis transmembrane conductance regulator. EP4-specific chemical inhibitors effectively prevented IAF-induced colonoid swelling and restored normal proliferation and genome stability. These findings reveal a mechanism by which IAFs could promote and perpetuate IBD and suggest a therapeutic avenue to mitigate inflammation-associated epithelial injury.


Assuntos
Doenças Inflamatórias Intestinais , Prostaglandinas , Humanos , Epitélio/metabolismo , Inflamação , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Fibroblastos/metabolismo
9.
Prostaglandins Other Lipid Mediat ; 172: 106836, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599513

RESUMO

Dravet syndrome is an intractable epilepsy with a high seizure burden that is resistant to current anti-seizure medications. There is evidence that neuroinflammation plays a role in epilepsy and seizures, however few studies have specifically examined neuroinflammation in Dravet syndrome under conditions of a higher seizure burden. Here we used an established genetic mouse model of Dravet syndrome (Scn1a+/- mice), to examine whether a higher seizure burden impacts the number and morphology of microglia in the hippocampus. Moreover, we examined whether a high seizure burden influences classical inflammatory mediators in this brain region. Scn1a+/- mice with a high seizure burden induced by thermal priming displayed a localised reduction in microglial cell density in the granule cell layer and subgranular zone of the dentate gyrus, regions important to postnatal neurogenesis. However, microglial cell number and morphology remained unchanged in other hippocampal subfields. The high seizure burden in Scn1a+/- mice did not affect hippocampal mRNA expression of classical inflammatory mediators such as interleukin 1ß and tumour necrosis factor α, but increased cyclooxygenase 2 (COX-2) expression. We then quantified hippocampal levels of prostanoids that arise from COX-2 mediated metabolism of fatty acids and found that Scn1a+/- mice with a high seizure burden displayed increased hippocampal concentrations of numerous prostaglandins, notably PGF2α, PGE2, PGD2, and 6-K-PGF1A, compared to Scn1a+/- mice with a low seizure burden. In conclusion, a high seizure burden increased hippocampal concentrations of various prostaglandin mediators in a mouse model of Dravet syndrome. Future studies could interrogate the prostaglandin pathways to further better understand their role in the pathophysiology of Dravet syndrome.


Assuntos
Modelos Animais de Doenças , Epilepsias Mioclônicas , Hipocampo , Canal de Sódio Disparado por Voltagem NAV1.1 , Prostaglandinas , Convulsões , Animais , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/metabolismo , Epilepsias Mioclônicas/patologia , Camundongos , Hipocampo/metabolismo , Hipocampo/patologia , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Convulsões/metabolismo , Convulsões/genética , Convulsões/patologia , Prostaglandinas/metabolismo , Masculino , Microglia/metabolismo , Microglia/patologia
10.
Biol Pharm Bull ; 47(3): 580-590, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38432913

RESUMO

There are 48 nuclear receptors in the human genome, and many members of this superfamily have been implicated in human diseases. The NR4A nuclear receptor family consisting of three members, NR4A1, NR4A2, and NR4A3 (formerly annotated as Nur77, Nurr1, and NOR1, respectively), are still orphan receptors but exert pathological effects on immune-related and neurological diseases. We previously reported that prostaglandin A1 (PGA1) and prostaglandin A2 (PGA2) are potent activators of NR4A3, which bind directly to the ligand-binding domain (LBD) of the receptor. Recently, the co-crystallographic structures of NR4A2-LBD bound to PGA1 and PGA2 were reported, followed by reports of the neuroprotective effects of these possible endogenous ligands in mouse models of Parkinson's disease. Based on these structures, we modeled the binding structures of the other two members (NR4A1 and NR4A3) with these potential endogenous ligands using a template-based modeling method, and reviewed the similarity and diversity of ligand-binding mechanisms in the nuclear receptor family.


Assuntos
Doença de Parkinson , Humanos , Animais , Camundongos , Ligantes , Modelos Animais de Doenças , Domínios Proteicos , Prostaglandinas
11.
Am J Physiol Endocrinol Metab ; 326(5): E567-E576, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477664

RESUMO

Signaling through prostaglandin E2 EP3 receptor (EP3) actively contributes to the ß-cell dysfunction of type 2 diabetes (T2D). In T2D models, full-body EP3 knockout mice have a significantly worse metabolic phenotype than wild-type controls due to hyperphagia and severe insulin resistance resulting from loss of EP3 in extra-pancreatic tissues, masking any potential beneficial effects of EP3 loss in the ß cell. We hypothesized ß-cell-specific EP3 knockout (EP3 ßKO) mice would be protected from high-fat diet (HFD)-induced glucose intolerance, phenocopying mice lacking the EP3 effector, Gαz, which is much more limited in its tissue distribution. When fed a HFD for 16 wk, though, EP3 ßKO mice were partially, but not fully, protected from glucose intolerance. In addition, exendin-4, an analog of the incretin hormone, glucagon-like peptide 1, more strongly potentiated glucose-stimulated insulin secretion in islets from both control diet- and HFD-fed EP3 ßKO mice as compared with wild-type controls, with no effect of ß-cell-specific EP3 loss on islet insulin content or markers of replication and survival. However, after 26 wk of diet feeding, islets from both control diet- and HFD-fed EP3 ßKO mice secreted significantly less insulin as a percent of content in response to stimulatory glucose, with or without exendin-4, with elevated total insulin content unrelated to markers of ß-cell replication and survival, revealing severe ß-cell dysfunction. Our results suggest that EP3 serves a critical role in temporally regulating ß-cell function along the progression to T2D and that there exist Gαz-independent mechanisms behind its effects.NEW & NOTEWORTHY The EP3 receptor is a strong inhibitor of ß-cell function and replication, suggesting it as a potential therapeutic target for the disease. Yet, EP3 has protective roles in extrapancreatic tissues. To address this, we designed ß-cell-specific EP3 knockout mice and subjected them to high-fat diet feeding to induce glucose intolerance. The negative metabolic phenotype of full-body knockout mice was ablated, and EP3 loss improved glucose tolerance, with converse effects on islet insulin secretion and content.


Assuntos
Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Células Secretoras de Insulina , Animais , Camundongos , Secreção de Insulina , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Exenatida/farmacologia , Intolerância à Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Glucose/metabolismo , Camundongos Knockout , Prostaglandinas/metabolismo , Prostaglandinas/farmacologia
13.
Nat Commun ; 15(1): 2523, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514642

RESUMO

Prostaglandins have garnered significant attention from synthetic chemists due to their exceptional biological activities. In this report, we present a concise chemoenzymatic synthesis method for several representative prostaglandins, achieved in 5 to 7 steps. Notably, the common intermediate bromohydrin, a radical equivalent of Corey lactone, is chemoenzymatically synthesized in only two steps, which allows us to complete the synthesis of prostaglandin F2α in five steps on a 10-gram scale. The chiral cyclopentane core is introduced with high enantioselectivity, while the lipid chains are sequentially incorporated through a cost-effective process involving bromohydrin formation, nickel-catalyzed cross-couplings, and Wittig reactions. This cost-efficient synthesis route for prostaglandins holds the potential to make prostaglandin-related drugs more affordable and facilitate easier access to their analogues.


Assuntos
Álcoois , Prostaglandinas , Prostaglandinas/síntese química
14.
Sci Rep ; 14(1): 6959, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521811

RESUMO

Abdominal aortic aneurysm (AAA) is a deadly, permanent ballooning of the aortic artery. Pharmacological and genetic studies have pointed to multiple proteins, including microsomal prostaglandin E2 synthase-1 (mPGES-1), as potentially promising targets. However, it remains unknown whether administration of an mPGES-1 inhibitor can effectively attenuate AAA progression in animal models. There are still no FDA-approved pharmacological treatments for AAA. Current research stresses the importance of both anti-inflammatory drug targets and rigor of translatability. Notably, mPGES-1 is an inducible enzyme responsible for overproduction of prostaglandin E2 (PGE2)-a well-known principal pro-inflammatory prostanoid. Here we demonstrate for the first time that a highly selective mPGES-1 inhibitor (UK4b) can completely block further growth of AAA in the ApoE-/- angiotensin (Ang)II mouse model. Our findings show promise for the use of a mPGES-1 inhibitor like UK4b as interventional treatment of AAA and its potential translation into the clinical setting.


Assuntos
Aneurisma da Aorta Abdominal , Animais , Camundongos , Angiotensina II , Aorta/metabolismo , Aneurisma da Aorta Abdominal/tratamento farmacológico , Aneurisma da Aorta Abdominal/metabolismo , Dinoprostona/uso terapêutico , Modelos Animais de Doenças , Prostaglandina-E Sintases/genética , Prostaglandinas
15.
J Control Release ; 368: 548-565, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462044

RESUMO

Cancer treatment is challenged due to immunosuppressive inflammatory tumour microenvironment (TME) caused by infiltration of tumour-promoting and inhibition of tumour-inhibiting immune cells. Here, we report the engineering of chimeric nanomicelles (NMs) targeting the cell proliferation using docetaxel (DTX) and inflammation using dexamethasone (DEX) that alters the immunosuppressive TME. We show that a combination of phospholipid-DTX conjugate and PEGylated-lipid-DEX conjugate can self-assemble to form sub-100 nm chimeric NMs (DTX-DEX NMs). Anti-cancer activities against syngeneic and xenograft mouse models showed that the DTX-DEX NMs are more effective in tumour regression, enhance the survival of mice over other treatment modes, and alter the tumour stroma. DTX-DEX NMs cause a significant reduction in myeloid-derived suppressor cells, alter the polarization of macrophages, and enhance the accumulation of cytotoxic CD4+ and CD8+ T cells in tumour tissues, along with alterations in cytokine expression. We further demonstrated that these DTX-DEX NMs inhibit the synthesis of prostaglandins, especially PGE2, by targeting the cyclooxygenase 2 that is partly responsible for immunosuppressive TME. Therefore, this study presents, for the first time, the engineering of lithocholic acid-derived chimeric NMs that affect the prostaglandin pathway, alter the TME, and mitigate tumour progression with enhanced mice survival.


Assuntos
Antineoplásicos , Prostaglandinas , Humanos , Camundongos , Animais , Prostaglandinas/farmacologia , Linfócitos T CD8-Positivos , Docetaxel/uso terapêutico , Docetaxel/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Terapia de Imunossupressão , Microambiente Tumoral , Linhagem Celular Tumoral
16.
Cell Rep ; 43(3): 113893, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38446662

RESUMO

Prostaglandin F2α (PGF2α) and thromboxane A2 (TXA2) are endogenous arachidonic acid metabolites, modulating diverse physiological processes including inflammation and cardiovascular homeostasis through activating PGF2α receptor (FP) and TXA2 receptor (TP). Ligands targeting FP and TP have demonstrated efficacy in treating conditions like glaucoma and cardiovascular diseases in humans, as well as reproductive-related diseases in animals. Here, we present five cryoelectron microscopy structures illustrating FP and TP in complex with Gq and bound to PGF2α (endogenous ligand), latanoprost acid (a clinical drug), and two other synthetic agonists. Combined with mutational and functional studies, these structures reveal not only structural features for the specific recognition of endogenous ligands and attainment of receptor selectivity of FP and TP but also the common mechanisms of receptor activation and Gq protein coupling. The findings may enrich our knowledge of ligand recognition and signal transduction of the prostanoid receptor family and facilitate rational ligand design toward these two receptors.


Assuntos
Receptores de Prostaglandina , Transdução de Sinais , Humanos , Animais , Ligantes , Microscopia Crioeletrônica , Receptores de Prostaglandina/metabolismo , Prostaglandinas
17.
Am J Physiol Endocrinol Metab ; 326(5): E555-E566, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446637

RESUMO

Prenatal exposure to maternal diabetes has been recognized as a significant cardiovascular risk factor, increasing the susceptibility to the emergence of conditions such as high blood pressure, atherosclerosis, and heart disease in later stages of life. However, it is unclear if offspring exposed to diabetes in utero have worse vascular outcomes on a high-salt (HS) diet. To test the hypothesis that in utero exposure to maternal diabetes predisposes to HS-induced vascular dysfunction, we treated adult male wild-type offspring (DM_Exp, 6 mo old) of diabetic Ins2+/C96Y mice (Akita mice) with HS (8% sodium chloride, 10 days) and analyzed endothelial function via wire myograph and cyclooxygenase (COX)-derived prostanoids pathway by ELISA, quantitative PCR, and immunochemistry. On a regular diet, DM_Exp mice did not manifest any vascular dysfunction, remodeling, or inflammation. However, HS increased aortic contractility to phenylephrine and induced endothelial dysfunction (analyzed by acetylcholine-induced endothelium-dependent relaxation), vascular hydrogen peroxide production, COX2 expression, and prostaglandin E2 (PGE2) overproduction. Interestingly, ex vivo antioxidant treatment (tempol) or COX1/2 (indomethacin) or COX2 (NS398) inhibitors improved or reverted the endothelial dysfunction in DM_Exp mice fed a HS diet. Finally, DM_Exp mice fed with HS exhibited greater circulating cytokines and chemokines accompanied by vascular inflammation. In summary, our findings indicate that prenatal exposure to maternal diabetes predisposes to HS-induced vascular dysfunction, primarily through the induction of oxidative stress and the generation of COX2-derived PGE2. This supports the concept that in utero exposure to maternal diabetes is a cardiovascular risk factor in adulthood.NEW & NOTEWORTHY Using a unique mouse model of prenatal exposure to maternal type 1 diabetes, our study demonstrates the novel observation that prenatal exposure to maternal diabetes results in a predisposition to high-salt (HS) dietary-induced vascular dysfunction and inflammation in adulthood. Mechanistically, we demonstrated that in utero exposure to maternal diabetes and HS intake induces vascular oxidative stress, cyclooxygenase-derived prostaglandin E2, and inflammation.


Assuntos
Diabetes Gestacional , Endotélio Vascular , Efeitos Tardios da Exposição Pré-Natal , Prostaglandinas , Animais , Feminino , Camundongos , Gravidez , Ciclo-Oxigenase 2/metabolismo , Diabetes Gestacional/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Inflamação/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Prostaglandinas/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos , Cloreto de Sódio na Dieta/metabolismo
18.
Anim Reprod Sci ; 264: 107452, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522133

RESUMO

Maternal recognition of pregnancy (MRP) is a term utilized in mammals to describe pathways in which the conceptus alters the endometrial environment to prevent regression of corpora lutea to ensure continued production of progesterone (P4) required for establishment and maintenance of pregnancy. For nearly 40 years after publication of the endocrine/exocrine theory, conceptus estrogen (E2) was considered the primary maternal recognition signal in the pig. Conceptus production of prostaglandin E2 (PGE2) was also considered to be a major factor in preventing luteolysis. An addition to E2 and PGE2, pig conceptuses produce interleukin 1B2 (IL1B2) and interferons (IFN) delta (IFND) and gamma (IFNG). The present review provides brief history of the discovery of E2, PGs and IFNS which led to research investigating the role of these conceptus secreted factors in establishing and maintaining pregnancy in the pig. The recent utilization of gene editing technology allowed a more direct approach to investigate the in vivo roles of IL1B2, E2, PGE2, AND IFNG for establishment of pregnancy. These studies revealed unknown functions for IFNG and ILB2 in addition to PGE2 and E2. Thus, pregnancy recognition signal is via a servomechanism in requiring sequential effects of P4, E2, IL1B2, PGE2 and IFNG. Results indicate that the original established dogma for the role of conceptus E2 and PGs in MRP is a far too simplified model that involves the interplay of numerous mechanisms for inhibiting luteolysis, inducing critical elongation of the conceptuses and resolution of inflammation in pigs.


Assuntos
Citocinas , Prostaglandinas , Animais , Feminino , Gravidez , Suínos/fisiologia , Prostaglandinas/metabolismo , Citocinas/metabolismo , Citocinas/genética , Hormônios Esteroides Gonadais/metabolismo , Prenhez/fisiologia
19.
Cell Tissue Res ; 396(2): 231-243, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438567

RESUMO

C-C motif chemokine ligand 2 (CCL2) has been reported to be expressed in the bovine endometrium during pregnancy. However, the details of its functions involved in the implantation mechanism are still not clear. The purpose of this study is to analyze the functional properties of CCL2 in the bovine endometrium and embryos. The expression of CCR2 was not different between the luteal phase and implantation phase of their endometrial tissues, but was significantly high in IFNa treated bovine endometrial stromal (BES) cells in vitro. The expressions of PGES1, PGES2, AKR1C4, and AKR1C4 were high at the implantation stage compared with the luteal stage. On the other hand, PGES2 and AKR1B1 in BEE and PGES3 and AKR1A1 in BES were significantly increased by CCL2 treatment, respectively. The expressions of PCNA and IFNt were found significantly high in the bovine trophoblastic cells (BT) treated with CCL2 compared to the control. CCL2 significantly increased the attachment rate of BT vesicles to BEE in in vitro co-culture system. The expression of OPN and ICAM-1 increased in BEE, and ICAM-1 increased in BT by CCL2 treatment, respectively. The present results indicate that CCL2 has the potential to regulate the synthesis of PGs in the endometrium and the embryo growth. In addition, CCL2 has the possibility to regulate the process of bovine embryo attachment to the endometrium by modulation of binding molecules expression.


Assuntos
Quimiocina CCL2 , Implantação do Embrião , Endométrio , Prostaglandinas , Animais , Bovinos , Feminino , Gravidez , Quimiocina CCL2/metabolismo , Implantação do Embrião/genética , Endométrio/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Interferon Tipo I , Proteínas da Gravidez , Prostaglandinas/metabolismo , Receptores CCR2/metabolismo , Células Estromais/metabolismo , Trofoblastos/metabolismo , Trofoblastos/citologia
20.
Arthritis Res Ther ; 26(1): 61, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38444034

RESUMO

BACKGROUND: Disease-modifying antirheumatic drugs (DMARDs) are widely used for treating rheumatoid arthritis (RA). However, there are no established biomarkers to predict a patient's response to these therapies. Prostanoids, encompassing prostaglandins, prostacyclins, and thromboxanes, are potent lipid mediators implicated in RA progression. Nevertheless, the influence of DMARDs on prostanoid biosynthesis in RA patients remains poorly understood. This study aims to assess the impact of various DMARDs on urinary prostanoids levels and to explore whether urinary prostanoid profiles correlate with disease activity or response to therapy. METHODS: This study included 152 Swedish female patients with early RA, all rheumatoid factor (RF) positive, enrolled in the NORD-STAR trial (registration number: NCT01491815). Participants were randomized into four therapeutic regimes: methotrexate (MTX) combined with (i) prednisolone (arm ACT), (ii) TNF-α blocker certolizumab pegol (arm CZP), (iii) CTLA-4Ig abatacept (arm ABA), or (iv) IL-6R blocker tocilizumab (arm TCZ). Urine samples, collected before start of treatment and at 24 weeks post-treatment, were analyzed for tetranor-prostaglandin E metabolite (tPGEM), tetranor-prostaglandin D metabolite (tPGDM), 2,3-dinor thromboxane B2 (TXBM), 2,3-dinor-6-keto prostaglandin F1a (PGIM), leukotriene E4 (LTE4) and 12-hydroxyeicosatetraenoic acid (12-HETE) using liquid chromatography-mass spectrometry (LC-MS). Generalized estimating equation (GEE) models were used to analyze the change in urinary eicosanoids and their correlations to clinical outcomes. RESULTS: Patients receiving MTX combined with CZP or TCZ exhibited significant elevations in urinary tPGEM and TXBM levels after 24 weeks of treatment. Other eicosanoids did not show significant alterations in response to any treatment. Baseline urinary eicosanoid levels did not correlate with baseline clinical disease activity index (CDAI) levels, nor with changes in CDAI from baseline to week 24. Their levels were also similar between patients who achieved CDAI remission and those with active disease at week 24. CONCLUSIONS: Treatment with anti-TNF or anti-IL6R agents in early RA patients leads to an increased systemic production of proinflammatory and prothrombotic prostanoids. However, urinary eicosanoid levels do not appear to be predictive of the response to DMARDs therapy.


Assuntos
Antirreumáticos , Artrite Reumatoide , Dimaprit/análogos & derivados , Humanos , Feminino , Prostaglandinas , Antirreumáticos/uso terapêutico , Inibidores do Fator de Necrose Tumoral , Artrite Reumatoide/tratamento farmacológico , Metotrexato , Certolizumab Pegol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...