Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
1.
Vaccine ; 42(24): 126269, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39241354

RESUMO

Recombinant influenza virus neuraminidase (NA) is a promising broadly protective influenza vaccine candidate. However, the recombinant protein alone is not sufficient to induce durable and protective immune responses and requires the coadministration of immunostimulatory molecules. Here, we evaluated the immunogenicity and cross-protective potential of a recombinant influenza virus N2 neuraminidase vaccine construct, adjuvanted with a toll-like receptor 9 (TLR9) agonist (CpG 1018® adjuvant), and alum. The combination of CpG 1018 adjuvant and alum induced a balanced and robust humoral and T-cellular immune response against the NA, which provided protection and reduced morbidity against homologous and heterologous viral challenges in mouse and hamster models. This study supports Syrian hamsters as a useful complementary animal model to mice for pre-clinical evaluation of influenza virus vaccines.


Assuntos
Adjuvantes Imunológicos , Anticorpos Antivirais , Vacinas contra Influenza , Neuraminidase , Infecções por Orthomyxoviridae , Animais , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Neuraminidase/imunologia , Neuraminidase/genética , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Camundongos , Adjuvantes Imunológicos/administração & dosagem , Feminino , Cricetinae , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Adjuvantes de Vacinas , Camundongos Endogâmicos BALB C , Proteção Cruzada/imunologia , Mesocricetus , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/imunologia , Compostos de Alúmen/administração & dosagem , Modelos Animais de Doenças , Imunidade Celular
2.
J Infect ; 89(4): 106238, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39121971

RESUMO

BACKGROUND: Immunity to SARS-CoV-2 vaccination and infection differs considerably among individuals. We investigate the critical pathways that influence vaccine-induced cross-variant serological immunity among individuals at high-risk of COVID-19 complications. METHODS: Neutralizing antibodies to the wild-type SARS-CoV-2 virus and its variants (Beta, Gamma, Delta and Omicron) were analyzed in patients with autoimmune diseases, chronic comorbidities (multimorbidity), and healthy controls. Antibody levels were assessed at baseline and at different intervals up to 12 months following primary and booster vaccination with either BNT162b2 or mRNA-1273. Immunity induced by vaccination with and without infection (hybrid immunity) was compared with that of unvaccinated individuals with recent SARS-CoV-2 infection. Plasma cytokines were analyzed to investigate variations in antibody production following vaccination. RESULTS: Patients with autoimmune diseases (n = 137) produced lesser antibodies to the wild-type SARS-CoV-2 virus and its variants compared with those in the multimorbidity (n = 153) and healthy groups (n = 229); antibody levels were significantly lower in patients with neuromyelitis optica and those on prednisolone, mycophenolate or rituximab treatment. Multivariate logistic regression analysis identified neuromyelitis optica (odds ratio 8.20, 95% CI 1.68-39.9) and mycophenolate (13.69, 3.78-49.5) as significant predictors of a poorer antibody response to vaccination (i.e, neutralizing antibody <40%). Infected participants exhibited antibody levels that were 28.7% higher (95% CI 24.7-32.7) compared to non-infected participants six months after receiving a booster vaccination. Individuals infected during the Delta outbreak generated cross-protective neutralizing antibodies against the Omicron variant in quantities comparable to those observed after infection with the Omicron variant itself. In contrast, unvaccinated individuals recently infected with the wild-type (n = 2390) consistently displayed lower levels of neutralizing antibodies against both the wild-type virus and other variants. Pathway analyses suggested an inverse relationship between baseline T cell subsets and antibody production following vaccination. CONCLUSION: Hybrid immunity confers a robust protection against COVID-19 among immunocompromised individuals.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Hospedeiro Imunocomprometido , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/prevenção & controle , Masculino , Feminino , SARS-CoV-2/imunologia , Pessoa de Meia-Idade , Anticorpos Antivirais/sangue , Hospedeiro Imunocomprometido/imunologia , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Idoso , Vacina BNT162/imunologia , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Vacinação , Proteção Cruzada/imunologia , Imunização Secundária , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Doenças Autoimunes/imunologia , Citocinas/sangue
3.
J Virol ; 98(9): e0035424, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39171925

RESUMO

Development of next-generation influenza virus vaccines is crucial to improve protection against circulating and emerging viruses. Current vaccine formulations have to be updated annually due to mutations in seasonal strains and do not offer protection against strains with pandemic potential. Computationally optimized broadly reactive antigen (COBRA) methodology has been utilized by our group to generate broadly reactive immunogens for individual influenza subtypes, which elicit protective immune responses against a broad range of strains over numerous seasons. Octavalent mixtures of COBRA hemagglutinin (HA) (H1, H2, H3, H5, H7, and influenza B virus) plus neuraminidase (NA) (N1 and N2) recombinant proteins mixed with c-di-AMP adjuvant were administered intranasally to naive or pre-immune ferrets in prime-boost fashion. Four weeks after final vaccination, collected sera were analyzed for breadth of antibody response, and the animals were challenged with seasonal or pre-pandemic strains. The octavalent COBRA vaccine elicited antibodies that recognized a broad panel of strains representing different subtypes, and these vaccinated animals were protected against influenza virus challenges. Overall, this study demonstrated that the mixture of eight COBRA HA/NA proteins mixed with an intranasal adjuvant is a promising candidate for a universal influenza vaccine. IMPORTANCE: Influenza is a respiratory virus which infects around a billion people globally every year, with millions experiencing severe illness. Commercial vaccine efficacy varies year to year and can be low due to mismatch of circulating virus strains. Thus, the formulation of current vaccines has to be adapted accordingly every year. The development of a broadly reactive influenza vaccine would lessen the global economic and public health burden caused by the different types of influenza viruses. The significance of our research is producing a promising universal vaccine candidate which provides protection against a wider range of virus strains over a wider range of time.


Assuntos
Administração Intranasal , Anticorpos Antivirais , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Animais , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Neuraminidase/imunologia , Neuraminidase/genética , Estações do Ano , Adjuvantes Imunológicos/administração & dosagem , Vacinação/métodos , Influenza Humana/prevenção & controle , Influenza Humana/imunologia , Influenza Humana/virologia , Humanos , Feminino , Proteção Cruzada/imunologia , Pandemias/prevenção & controle
4.
Emerg Microbes Infect ; 13(1): 2389095, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39101691

RESUMO

Influenza virus infection poses a continual menace to public health. Here, we developed soluble trimeric HA ectodomain vaccines by establishing interprotomer disulfide bonds in the stem region, which effectively preserve the native antigenicity of stem epitopes. The stable trimeric H1 ectodomain proteins exhibited higher thermal stabilities in comparison with unmodified HAs and showed strong binding activities towards a panel of anti-stem cross-reactive antibodies that recognize either interprotomer or intraprotomer epitopes. Negative stain transmission electron microscopy (TEM) analysis revealed the stable trimer architecture of the interprotomer disulfide-stapled WA11#5, NC99#2, and FLD#1 proteins as well as the irregular aggregation of unmodified HA molecules. Immunizations of mice with those trimeric HA ectodomain vaccines formulated with incomplete Freund's adjuvant elicited significantly more potent cross-neutralizing antibody responses and offered broader immuno-protection against lethal infections with heterologous influenza strains compared to unmodified HA proteins. Additionally, the findings of our study indicate that elevated levels of HA stem-specific antibody responses correlate with strengthened cross-protections. Our design strategy has proven effective in trimerizing HA ectodomains derived from both influenza A and B viruses, thereby providing a valuable reference for designing future influenza HA immunogens.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Dissulfetos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vacinas contra Influenza , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae , Animais , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Anticorpos Antivirais/imunologia , Camundongos , Dissulfetos/química , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Anticorpos Neutralizantes/imunologia , Feminino , Proteção Cruzada/imunologia , Reações Cruzadas , Humanos , Influenza Humana/prevenção & controle , Influenza Humana/imunologia , Influenza Humana/virologia , Epitopos/imunologia , Epitopos/genética , Epitopos/química , Multimerização Proteica , Vírus da Influenza B/imunologia , Vírus da Influenza B/genética , Vírus da Influenza B/química
5.
Nat Commun ; 15(1): 6712, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112489

RESUMO

Development of a vaccine against gonorrhoea is a global priority, driven by the rise in antibiotic resistance. Although Neisseria gonorrhoeae (Ng) infection does not induce substantial protective immunity, highly exposed individuals may develop immunity against re-infection with the same strain. Retrospective epidemiological studies have shown that vaccines containing Neisseria meningitidis (Nm) outer membrane vesicles (OMVs) provide a degree of cross-protection against Ng infection. We conducted a clinical trial (NCT04297436) of 4CMenB (Bexsero, GSK), a licensed Nm vaccine containing OMVs and recombinant antigens, comprising a single arm, open label study of two doses with 50 adults in coastal Kenya who have high exposure to Ng. Data from a Ng antigen microarray established that serum IgG and IgA reactivities against the gonococcal homologs of the recombinant antigens in the vaccine peaked at 10 but had declined by 24 weeks. For most reactive OMV-derived antigens, the reverse was the case. A cohort of similar individuals with laboratory-confirmed gonococcal infection were compared before, during, and after infection: their reactivities were weaker and differed from the vaccinated cohort. We conclude that the cross-protection of the 4CMenB vaccine against gonorrhoea could be explained by cross-reaction against a diverse selection of antigens derived from the OMV component.


Assuntos
Anticorpos Antibacterianos , Gonorreia , Imunoglobulina A , Imunoglobulina G , Neisseria gonorrhoeae , Vacinação , Humanos , Gonorreia/imunologia , Gonorreia/prevenção & controle , Neisseria gonorrhoeae/imunologia , Adulto , Imunoglobulina A/imunologia , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Feminino , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/sangue , Quênia/epidemiologia , Vacinas Meningocócicas/imunologia , Vacinas Meningocócicas/administração & dosagem , Adulto Jovem , Antígenos de Bactérias/imunologia , Neisseria meningitidis/imunologia , Formação de Anticorpos/imunologia , Proteção Cruzada/imunologia , Pessoa de Meia-Idade
6.
Vaccine ; 42(24): 126215, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39213982

RESUMO

BACKGROUND: Bivalent human papillomavirus HPV16/18-AS04 vaccine (Cervarix, GSK) offers direct protection against HPV16/18. Results from randomised controlled trials showed cross protective effects and suggested that declines in some closely related HPV types could be expected in a population with high vaccination coverage. AIM: To evaluate the evidence for cross-protection afforded by HPV16/18-AS04 from post-implementation surveillance in England, and how this complements clinical trial data and post-implementation observations in other countries. METHODS: Evidence of cross-protection in young women offered vaccination with HPV16/18-AS04 was gathered from HPV surveillance in England. Data from clinical trials and other post-implementation studies were reviewed. RESULTS: Surveillance using anonymised residual specimens in England found declines of 52.3%, 67.4% and 33.3% against grouped HPV-31/33/45 in 16-18, 19-21, and 22-24 year olds, respectively. Additionally, type-specific analysis found that the prevalence of HPV31 declined to below 1% across all age groups. Cross-protection has been monitored and maintained for over 10 years since the introduction of the vaccination programme. Cross-protection against HPV6/11 was not found in English surveillance outcomes. CONCLUSION: Surveillance of type-specific infections in vaccine-eligible populations in England has generated clear evidence of cross-protective effects from HPV16/18-AS04 vaccination against high-risk HPV 31/33/45 infections, consistent with other post-implementation observations and confirming and in some ways exceeding expectations from clinical trials.


Assuntos
Proteção Cruzada , Papillomavirus Humano 16 , Papillomavirus Humano 18 , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Humanos , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/imunologia , Inglaterra/epidemiologia , Feminino , Infecções por Papillomavirus/prevenção & controle , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/virologia , Adolescente , Adulto Jovem , Papillomavirus Humano 18/imunologia , Proteção Cruzada/imunologia , Papillomavirus Humano 16/imunologia , Vacinação , Cobertura Vacinal/estatística & dados numéricos , Adulto , Vigilância de Produtos Comercializados
7.
Vaccine ; 42(23): 126217, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39163713

RESUMO

Klebsiella pneumoniae (K. pneumoniae) is an opportunistic pathogen and the major cause of healthcare-associated infections, which are increasingly complicated by the prevalence of highly invasive and hyper-virulent K. pneumoniae strains, necessitating the development of alternative strategies for combatting infections caused by this bacterium. In this study, we successfully constructed a fusion antigen called KP-Ag1, comprising three antigens (GlnH, FimA, and KPN_00466) that were previously identified through reverse vaccinology. Immunization with KP-Ag1 formulated with Al(OH)3 adjuvant elicited robust humoral and cellular immune response in mice, and conferred protective immunity in a murine model of K. pneumoniae lung infection. Further analysis of serum IgG subtypes from mice immunized with KP-Ag1 revealed a predominant IgG1 response, indicating that KP-Ag1 predominantly induces a Th2-biased immune response. Additionally, opsonophagocytic killing assay suggested that humoral immune responses play a pivotal role in mediating protection conferred by KP-Ag1. Moreover, KP-Ag1 was found to promote the activation and maturation of BMDCs in vitro, which is essential for subsequent efficient antigen presentation. More importantly, vaccination with KP-Ag1 demonstrated cross-protective efficacy against clinical isolates of K. pneumoniae varying in serotypes, antibiotic resistance, and virulence profiles. Therefore, KP-Ag1 holds promise as a candidate for K. pneumoniae vaccine development.


Assuntos
Adjuvantes Imunológicos , Anticorpos Antibacterianos , Vacinas Bacterianas , Modelos Animais de Doenças , Imunoglobulina G , Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Klebsiella pneumoniae/imunologia , Infecções por Klebsiella/prevenção & controle , Infecções por Klebsiella/imunologia , Camundongos , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Adjuvantes Imunológicos/administração & dosagem , Feminino , Imunidade Humoral , Vacinação/métodos , Antígenos de Bactérias/imunologia , Pneumonia Bacteriana/prevenção & controle , Pneumonia Bacteriana/imunologia , Camundongos Endogâmicos BALB C , Imunidade Celular , Proteção Cruzada/imunologia
8.
Nat Commun ; 15(1): 5800, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987276

RESUMO

Enhancing influenza vaccine cross-protection is imperative to alleviate the significant public health burden of influenza. Heterologous sequential immunization may synergize diverse vaccine formulations and routes to improve vaccine potency and breadth. Here we investigate the effects of immunization strategies on the generation of cross-protective immune responses in female Balb/c mice, utilizing mRNA lipid nanoparticle (LNP) and protein-based PHC nanoparticle vaccines targeting influenza hemagglutinin. Our findings emphasize the crucial role of priming vaccination in shaping Th bias and immunodominance hierarchies. mRNA LNP prime favors Th1-leaning responses, while PHC prime elicits Th2-skewing responses. We demonstrate that cellular and mucosal immune responses are pivotal correlates of cross-protection against influenza. Notably, intranasal PHC immunization outperforms its intramuscular counterpart in inducing mucosal immunity and conferring cross-protection. Sequential mRNA LNP prime and intranasal PHC boost demonstrate optimal cross-protection against antigenically drifted and shifted influenza strains. Our study offers valuable insights into tailoring immunization strategies to optimize influenza vaccine effectiveness.


Assuntos
Administração Intranasal , Proteção Cruzada , Vacinas contra Influenza , Camundongos Endogâmicos BALB C , Nanopartículas , Infecções por Orthomyxoviridae , Animais , Feminino , Humanos , Camundongos , Anticorpos Antivirais/imunologia , Proteção Cruzada/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Imunidade nas Mucosas/imunologia , Imunização/métodos , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Lipídeos/química , Lipossomos , Nanopartículas/química , Nanovacinas/administração & dosagem , Nanovacinas/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Vacinação/métodos
9.
Hum Vaccin Immunother ; 20(1): 2357924, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38976659

RESUMO

The 4-component meningococcal serogroup B (MenB) vaccine, 4CMenB, the first broadly protective, protein-based MenB vaccine to be licensed, is now registered in more than 50 countries worldwide. Real-world evidence (RWE) from the last decade confirms its effectiveness and impact, with infant immunization programs showing vaccine effectiveness of 71-95% against invasive MenB disease and cross-protection against non-B serogroups, including a 69% decrease in serogroup W cases in 4CMenB-eligible cohorts in England. RWE from different countries also demonstrates the potential for additional moderate protection against gonorrhea in adolescents. The real-world safety profile of 4CMenB is consistent with prelicensure reports. Use of the endogenous complement human serum bactericidal antibody (enc-hSBA) assay against 110 MenB strains may enable assessment of the immunological effectiveness of multicomponent MenB vaccines in clinical trial settings. Equitable access to 4CMenB vaccination is required to better protect all age groups, including older adults, and vulnerable groups through comprehensive immunization policies.


Invasive meningococcal disease, caused by the bacterium Neisseria meningitidis(meningococcus), is rare but often devastating and can be deadly. Effective vaccines are available, including vaccines against meningococcal serogroup B disease. In 2013, the 4-component meningococcal serogroup B vaccine, 4CMenB, became the first broadly protective, protein-based vaccine against serogroup B to be licensed, with the second (bivalent vaccine, MenB-FHbp) licensed the following year. 4CMenB is now registered in more than 50 countries, in the majority, for infants and all age groups. In the US, it is approved for individuals aged 10­25 years. Evidence from immunization programs in the last decade, comparing vaccinated and unvaccinated individuals and the same population before and after vaccination, confirms the effectiveness and positive impact of 4CMenB against serogroup B disease. This also demonstrates that 4CMenB can provide protection against invasive diseases caused by other meningococcal serogroups. Furthermore, N. meningitidis is closely related to the bacterium that causes gonorrhea, N. gonorrhoeae, and emerging real-world evidence suggests that 4CMenB provides additional moderate protection against gonococcal disease. The safety of 4CMenB when given to large numbers of infants, children, adolescents, and adults is consistent with the 4CMenB safety profile reported before licensure.For the future, it would be beneficial to address differences among national guidelines for the recommended administration of 4CMenB, particularly where there is supportive epidemiological evidence but no equitable access to vaccination. New assays for assessing the potential effectiveness of meningococcal serogroup B vaccines in clinical trials are also required because serogroup B strains circulating in the population are extremely diverse across different countries.


Assuntos
Infecções Meningocócicas , Vacinas Meningocócicas , Humanos , Vacinas Meningocócicas/imunologia , Vacinas Meningocócicas/administração & dosagem , Infecções Meningocócicas/prevenção & controle , Infecções Meningocócicas/imunologia , Infecções Meningocócicas/epidemiologia , Neisseria meningitidis Sorogrupo B/imunologia , Programas de Imunização , Gonorreia/prevenção & controle , Gonorreia/imunologia , Vacinação , Lactente , Adolescente , Proteção Cruzada/imunologia
10.
Arch Virol ; 169(8): 163, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990396

RESUMO

Antigenically divergent H7N9 viruses pose a potential threat to public health, with the poor immunogenicity of candidate H7N9 vaccines demonstrated in clinical trials underscoring the urgent need for more-effective H7N9 vaccines. In the present study, mice were immunized with various doses of a suspended-MDCK-cell-derived inactivated H7N9 vaccine, which was based on a low-pathogenic H7N9 virus, to assess cross-reactive immunity and cross-protection against antigenically divergent H7N9 viruses. We found that the CRX-527 adjuvant, a synthetic TLR4 agonist, significantly enhanced the humoral immune responses of the suspended-MDCK-cell-derived H7N9 vaccine, with significant antigen-sparing and immune-enhancing effects, including robust virus-specific IgG, hemagglutination-inhibiting (HI), neuraminidase-inhibiting (NI), and virus-neutralizing (VN) antibody responses, which are crucial for protection against influenza virus infection. Moreover, the CRX-527-adjuvanted H7N9 vaccine also elicited cross-protective immunity and cross-protection against a highly pathogenic H7N9 virus with a single vaccination. Notably, NI and VN antibodies might play an important role in cross-protection against lethal influenza virus infections. This study showed that a synthetic TLR4 agonist adjuvant has a potent immunopotentiating effect, which might be considered worth further development as a means of increasing vaccine effectiveness.


Assuntos
Anticorpos Antivirais , Imunidade Humoral , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae , Receptor 4 Toll-Like , Vacinas de Produtos Inativados , Animais , Subtipo H7N9 do Vírus da Influenza A/imunologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/imunologia , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Camundongos , Anticorpos Antivirais/imunologia , Cães , Células Madin Darby de Rim Canino , Vacinas de Produtos Inativados/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Feminino , Anticorpos Neutralizantes/imunologia , Proteção Cruzada/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Adjuvantes de Vacinas , Imunoglobulina G/imunologia , Imunoglobulina G/sangue
11.
Sci Rep ; 14(1): 17039, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048693

RESUMO

Rapidly waning immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires continued global access to affordable vaccines. Globally, inactivated SARS-CoV-2 vaccines have been widely used during the SARS-CoV-2 pandemic. In this proof-of-concept study we adapted an original-D614G SARS-CoV-2 virus to Vero cell culture as a strategy to enhance inactivated vaccine manufacturing productivity. A passage 60 (P60) virus showed enhanced fitness and 50-fold increased virus yield in a bioreactor compared to the original-D614G virus. It further remained susceptible to neutralization by plasma from SARS-CoV-2 vaccinated and convalescent individuals, suggesting exposure of relevant epitopes. Monovalent inactivated P60 and bivalent inactivated P60/omicron BA.1 vaccines induced neutralizing responses against original-D614G and BA.1 viruses in mice and hamsters, demonstrating that the P60 virus is a suitable vaccine antigen. Antibodies further cross-neutralized delta and BA.5 viruses. Importantly, the inactivated P60 vaccine protected hamsters against disease upon challenge with original-D614G or BA.1 virus, with minimal lung pathology and lower virus loads in the upper and lower airways. Antigenicity of the P60 virus was thus retained compared to the original virus despite the acquisition of cell culture adaptive mutations. Consequently, cell culture adaptation may be a useful approach to increase yields in inactivated vaccine antigen production.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Vacinas de Produtos Inativados , Animais , Células Vero , Chlorocebus aethiops , SARS-CoV-2/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Humanos , Proteção Cruzada/imunologia , Cricetinae , Feminino
12.
Virology ; 597: 110162, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38955082

RESUMO

There is an urgent need for influenza vaccines that offer broad cross-protection. The highly conserved ectodomain of the influenza matrix protein 2 (M2e) is a promising candidate; however, its low immunogenicity can be addressed. In this study, we developed influenza vaccines using the Lumazine synthase (LS) platform. The primary objective of this study was to determine the protective potential of M2e proteins expressed on Lumazine synthase (LS) nanoparticles. M2e-LS proteins, produced through the E. coli system, spontaneously assemble into nanoparticles. The study investigated the efficacy of the M2e-LS nanoparticle vaccine in mice. Mice immunized with M2e-LS nanoparticles exhibited significantly higher levels of intracellular cytokines than those receiving soluble M2e proteins. The M2e-LS protein exhibited robust immunogenicity and provided 100% protection against cross-clade influenza.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Complexos Multienzimáticos , Nanopartículas , Infecções por Orthomyxoviridae , Proteínas da Matriz Viral , Animais , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Vírus da Influenza A Subtipo H1N1/imunologia , Nanopartículas/química , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Complexos Multienzimáticos/imunologia , Complexos Multienzimáticos/metabolismo , Feminino , Camundongos Endogâmicos BALB C , Anticorpos Antivirais/imunologia , Citocinas/metabolismo , Proteção Cruzada/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/imunologia , Influenza Humana/virologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Viroporinas
13.
Dev Comp Immunol ; 159: 105221, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38925430

RESUMO

Infections with pathogenic Vibrio strains are associated with high summer mortalities of Pacific oysters Magalana (Crassostrea) gigas, affecting production worldwide. This raises the question of how M. gigas cultures can be protected against deadly Vibro infection. There is increasing experimental evidence of immune priming in invertebrates, where previous exposure to a low pathogen load boosts the immune response upon secondary exposure. Priming responses, however, appear to vary in their specificity across host and parasite taxa. To test priming specificity in the Vibrio - M. gigas system, we used two closely related Vibrio splendidus strains with differing degrees of virulence towards M. gigas. These V. splendidus strains were either isolated in the same location as the oysters (sympatric, opening up the potential for co-evolution) or in a different location (allopatric). We extracted cell-free haemolymph plasma from infected and control oysters to test the influence of humoral immune effectors on bacterial growth in vitro. While addition of haemolypmph plasma in general promoted growth of both strains, priming by an exposure to a sublethal dose of bacterial cells lead to inhibitory effects against a subsequent challenge with a potentially lethal dose in vitro. Inhibitory effects and immune priming was strongest when oysters had been primed with the sympatric Vibrio strain, but inhibitory effects were seen both when challenged with the sympatric as well as against allopatric V. splendidus, suggesting some degree of cross protection. The stronger immune priming against the sympatric strain suggests that priming could be more efficient against matching local strains potentially adding a component of local adaptation or co-evolution to immune priming in oysters. These in vitro results, however, were not reflected in the in vivo infection data, where we saw increased bacterial loads following an initial challenge. This discrepancy might suggests that that it is the humoral part of the oyster immune system that produces the priming effects seen in our in vitro experiments.


Assuntos
Crassostrea , Proteção Cruzada , Vibrioses , Vibrio , Animais , Vibrio/imunologia , Crassostrea/imunologia , Crassostrea/microbiologia , Vibrioses/imunologia , Proteção Cruzada/imunologia , Hemolinfa/imunologia , Hemolinfa/microbiologia , Imunidade Humoral , Interações Hospedeiro-Patógeno/imunologia , Virulência
14.
J Gen Virol ; 105(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38861287

RESUMO

Increased human-to-human transmission of monkeypox virus (MPXV) is cause for concern, and antibodies directed against vaccinia virus (VACV) are known to confer cross-protection against Mpox. We used 430 serum samples derived from the Scottish patient population to investigate antibody-mediated cross-neutralization against MPXV. By combining electrochemiluminescence immunoassays with live-virus neutralization assays, we show that people born when smallpox vaccination was routinely offered in the United Kingdom have increased levels of antibodies that cross-neutralize MPXV. Our results suggest that age is a risk factor of Mpox infection, and people born after 1971 are at higher risk of infection upon exposure.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Monkeypox virus , Mpox , Vacina Antivariólica , Humanos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacina Antivariólica/imunologia , Vacina Antivariólica/administração & dosagem , Adulto , Pessoa de Meia-Idade , Monkeypox virus/imunologia , Adulto Jovem , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Mpox/imunologia , Mpox/prevenção & controle , Feminino , Adolescente , Idoso , Masculino , Proteção Cruzada/imunologia , Escócia , Fatores Etários , Testes de Neutralização , Criança , Vacinação , Varíola/prevenção & controle , Varíola/imunologia , Pré-Escolar , Reações Cruzadas , Idoso de 80 Anos ou mais
15.
J Virol ; 98(7): e0076924, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38829138

RESUMO

Highly pathogenic viruses from family Phenuiviridae, which are mainly transmitted by arthropods, have intermittently sparked epidemics worldwide. In particular, tick-borne bandaviruses, such as severe fever with thrombocytopenia syndrome virus (SFTSV), continue to spread in mountainous areas, resulting in an average mortality rate as high as 10.5%, highlighting the urgency and importance of vaccine development. Here, an mRNA vaccine developed based on the full-length SFTSV glycoprotein, containing both the receptor-binding domain and the fusion domain, was shown to confer complete protection against SFTSV at a very low dose by triggering a type 1 helper T cell-biased cellular immune response in rodents. Moreover, the vaccine candidate elicited long-term immunity and protection against SFTSV for at least 5 months. Notably, it provided complete cross-protection against other bandaviruses, such as the Heartland virus and Guertu virus, in lethal challenge models. Further research revealed that the conserved epitopes among bandaviruses within the full-length SFTSV glycoprotein may facilitate broad-spectrum protection mediated by the cellular immune response. Collectively, these findings demonstrate that the full-length SFTSV glycoprotein mRNA vaccine is a promising vaccine candidate for SFTSV and other bandaviruses, and provide guidance for the development of broad-spectrum vaccines from conserved antigens and epitopes. IMPORTANCE: Tick-borne bandaviruses, such as SFTSV and Heartland virus, sporadically trigger outbreaks in addition to influenza viruses and coronaviruses, yet there are no specific vaccines or therapeutics against them. mRNA vaccine technology has advantages in terms of enabling in situ expression and triggering cellular immunity, thus offering new solutions for vaccine development against intractable viruses, such as bandaviruses. In this study, we developed a novel vaccine candidate for SFTSV by employing mRNA vaccination technology and using a full-length glycoprotein as an antigen target. This candidate vaccine confers complete and durable protection against SFTSV at a notably low dose while also providing cross-protection against Heartland virus and Guertu virus. This study highlights the prospective value of full-length SFTSV-glycoprotein-based mRNA vaccines and suggests a potential strategy for broad-spectrum bandavirus vaccines.


Assuntos
Glicoproteínas , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Vacinas Virais , Animais , Phlebovirus/imunologia , Phlebovirus/genética , Camundongos , Febre Grave com Síndrome de Trombocitopenia/prevenção & controle , Febre Grave com Síndrome de Trombocitopenia/imunologia , Glicoproteínas/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Vacinas de mRNA/imunologia , Proteção Cruzada/imunologia , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Feminino , Imunidade Celular , Camundongos Endogâmicos BALB C
16.
Vaccine ; 42(22): 126008, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-38834431

RESUMO

Globally, influenza poses a substantial threat to public health, serving as a major contributor to both morbidity and mortality. The current vaccines for seasonal influenza are not optimal. A novel recombinant hemagglutinin (rHA) protein-based quadrivalent seasonal influenza vaccine, SCVC101, has been developed. SCVC101-S contains standard dose protein (15µg of rHA per virus strain) and an oil-in-water adjuvant, CD-A, which enhances the immunogenicity and cross-protection of the vaccine. Preclinical studies in mice, rats, and rhesus macaques demonstrate that SCVC101-S induces robust humoral and cellular immune responses, surpassing those induced by commercially available vaccines. Notably, a single injection with SCVC101-S can induce a strong immune response in macaques, suggesting the potential for a standard-dose vaccination with a recombinant protein influenza vaccine. Furthermore, SCVC101-S induces cross-protection immune responses against heterologous viral strains, indicating broader protection than current vaccines. In conclusion, SCVC101-S has demonstrated safety and efficacy in preclinical settings and warrants further investigation in human clinical trials. Its potential as a valuable addition to the vaccines against seasonal influenza, particularly for the elderly population, is promising.


Assuntos
Anticorpos Antivirais , Proteção Cruzada , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vacinas contra Influenza , Macaca mulatta , Vacinas Sintéticas , Animais , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteção Cruzada/imunologia , Camundongos , Ratos , Feminino , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Imunidade Celular , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Imunidade Humoral , Adjuvantes de Vacinas/administração & dosagem , Humanos
17.
Epidemics ; 48: 100776, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38944025

RESUMO

Influenza A has two hemagglutinin groups, with stronger cross-immunity to reinfection within than between groups. Here, we explore the implications of this heterogeneity for proposed cross-protective influenza vaccines that may offer broad, but not universal, protection. While the development goal for the breadth of human influenza A vaccine is to provide cross-group protection, vaccines in current development stages may provide better protection against target groups than non-target groups. To evaluate vaccine formulation and strategies, we propose a novel perspective: a vaccine population-level target product profile (PTPP). Under this perspective, we use dynamical models to quantify the epidemiological impacts of future influenza A vaccines as a function of their properties. Our results show that the interplay of natural and vaccine-induced immunity could strongly affect seasonal subtype dynamics. A broadly protective bivalent vaccine could lower the incidence of both groups and achieve elimination with sufficient vaccination coverage. However, a univalent vaccine at low vaccination rates could permit a resurgence of the non-target group when the vaccine provides weaker immunity than natural infection. Moreover, as a proxy for pandemic simulation, we analyze the invasion of a variant that evades natural immunity. We find that a future vaccine providing sufficiently broad and long-lived cross-group protection at a sufficiently high vaccination rate, could prevent pandemic emergence and lower the pandemic burden. This study highlights that as well as effectiveness, breadth and duration should be considered in epidemiologically informed TPPs for future human influenza A vaccines.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Humanos , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/epidemiologia , Influenza Humana/imunologia , Vírus da Influenza A/imunologia , Proteção Cruzada/imunologia
18.
Vaccine ; 42(25): 126066, 2024 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38876835

RESUMO

This study aims to analyze if the results from different serological assays, used alone or combined, could match the outcome of challenge infection with foot-and-mouth disease virus (FMDV) after vaccination in cattle. Day-of-challenge sera from animals that had been vaccinated 21 days before with monovalent formulations containing inactivated A Iran 96 or A Iran 99 virus strains were used. Challenge and serology were performed with A22 Iraq strain. IgG1 titers and total-IgG avidity indexes were significantly higher in protected animals (p < 0.01) while IgG2-titers were not related to protection (p > 0.05). An IgG1 avidity ELISA was developed to analyze in one step, IgG1 levels and avidity. This assay estimated protection with 96 % accuracy. A strong agreement with challenge results was achieved (K = 0.85), suggesting a role of high-affinity IgG1 in protection against FMDV. These results support the assessment of the single dilution IgG1-Avidity ELISA to predict cross-protection in FMDV-vaccinated cattle.


Assuntos
Anticorpos Antivirais , Afinidade de Anticorpos , Doenças dos Bovinos , Proteção Cruzada , Ensaio de Imunoadsorção Enzimática , Vírus da Febre Aftosa , Febre Aftosa , Imunoglobulina G , Vacinação , Vacinas Virais , Animais , Febre Aftosa/prevenção & controle , Febre Aftosa/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Bovinos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Vírus da Febre Aftosa/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacinas Virais/imunologia , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/imunologia , Proteção Cruzada/imunologia , Vacinação/métodos
19.
Viruses ; 16(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38932129

RESUMO

The complete lack of yellow fever virus (YFV) in Asia, and the lack of urban YFV transmission in South America, despite the abundance of the peridomestic mosquito vector Aedes (Stegomyia.) aegypti is an enigma. An immunologically naïve population of over 2 billion resides in Asia, with most regions infested with the urban YF vector. One hypothesis for the lack of Asian YF, and absence of urban YF in the Americas for over 80 years, is that prior immunity to related flaviviruses like dengue (DENV) or Zika virus (ZIKV) modulates YFV infection and transmission dynamics. Here we utilized an interferon α/ß receptor knock-out mouse model to determine the role of pre-existing dengue-2 (DENV-2) and Zika virus (ZIKV) immunity in YF virus infection, and to determine mechanisms of cross-protection. We utilized African and Brazilian YF strains and found that DENV-2 and ZIKV immunity significantly suppresses YFV viremia in mice, but may or may not protect relative to disease outcomes. Cross-protection appears to be mediated mainly by humoral immune responses. These studies underscore the importance of re-assessing the risks associated with YF outbreak while accounting for prior immunity from flaviviruses that are endemic.


Assuntos
Proteção Cruzada , Vírus da Dengue , Modelos Animais de Doenças , Camundongos Knockout , Receptor de Interferon alfa e beta , Febre Amarela , Vírus da Febre Amarela , Infecção por Zika virus , Zika virus , Animais , Febre Amarela/imunologia , Febre Amarela/prevenção & controle , Febre Amarela/virologia , Camundongos , Proteção Cruzada/imunologia , Vírus da Febre Amarela/imunologia , Zika virus/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia , Vírus da Dengue/imunologia , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/deficiência , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Flavivirus/imunologia , Aedes/virologia , Aedes/imunologia , Dengue/imunologia , Dengue/prevenção & controle , Dengue/virologia , Feminino , Viremia/imunologia , Mosquitos Vetores/virologia , Mosquitos Vetores/imunologia , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/prevenção & controle , Infecções por Flavivirus/virologia , Camundongos Endogâmicos C57BL
20.
Viruses ; 16(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38932273

RESUMO

The epidemiology of different respiratory viral infections is believed to be affected by prior viral infections in addition to seasonal effects. This PROSPERO-registered systematic review identified 7388 studies, of which six met our criteria to answer the question specifically. The purpose of this review was to compare the prevalence of sequential viral infections in those with previously documented positive versus negative swabs. The pooled prevalence of sequential viral infections over varying periods from 30-1000 days of follow-up was higher following a negative respiratory viral swab at 0.15 than following a positive swab at 0.08, indicating the potential protective effects of prior respiratory viral infections. However, significant heterogeneity and publication biases were noted. There is some evidence, albeit of low quality, of a possible protective effect of an initial viral infection against subsequent infections by a different virus, which is possibly due to broad, nonspecific innate immunity. Future prospective studies are needed to validate our findings.


Assuntos
Proteção Cruzada , Infecções Respiratórias , Viroses , Humanos , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/prevenção & controle , Viroses/imunologia , Viroses/prevenção & controle , Proteção Cruzada/imunologia , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...