Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928236

RESUMO

The use of double-stranded RNA (dsRNA) for plant protection shows great potential as a sustainable alternative to traditional pesticides. This review summarizes the current state of knowledge on using exogenous dsRNA in plant protection and includes the latest findings on the safety and efficiency of this strategy. The review also emphasizes the need for a cautious and comprehensive approach, considering safety considerations such as off-target effects and formulation challenges. The regulatory landscape in different regions is also discussed, underscoring the need for specific guidelines tailored to dsRNA-based pesticides. The review provides a crucial resource for researchers, regulators, and industry stakeholders, promoting a balanced approach incorporating innovation with thorough safety assessments. The continuous dialog emphasized in this review is essential for shaping the future of dsRNA-based plant protection. As the field advances, collaboration among scientists, regulators, and industry partners will play a vital role in establishing guidelines and ensuring the responsible, effective, and sustainable use of dsRNA in agriculture.


Assuntos
RNA de Cadeia Dupla , Medição de Risco/métodos , Produtos Agrícolas/genética , Proteção de Cultivos/métodos , Praguicidas/toxicidade , Praguicidas/efeitos adversos , Doenças das Plantas/prevenção & controle , Agricultura/métodos
2.
J Environ Manage ; 360: 121178, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38796869

RESUMO

Despite the widespread usage to safeguard crops and manage pests, pesticides have detrimental effects on the environment and human health. The necessity to find sustainable agricultural techniques and meet the growing demand for food production has spurred the quest for pesticide substitutes other than traditional ones. The unique qualities of nanotechnology, including its high surface area-to-volume ratio, controlled release, and better stability, have made it a promising choice for pest management. Over the past ten years, there has been a noticeable growth in the usage of nanomaterials for pest management; however, concerns about their possible effects on the environment and human health have also surfaced. The purpose of this review paper is to give a broad overview of the worldwide trends and environmental effects of using nanomaterials in place of pesticides. The various types of nanomaterials, their characteristics, and their possible application in crop protection are covered. The limits of the current regulatory frameworks for nanomaterials in agriculture are further highlighted in this review. Additionally, it describes how standard testing procedures must be followed to assess the effects of nanomaterials on the environment and human health before their commercialization. In order to establish sustainable and secure nanotechnology-based pest control techniques, the review concludes by highlighting the significance of taking into account the possible hazards and benefits of nanomaterials for pest management and the necessity of an integrated approach. It also emphasizes the importance of more investigation into the behavior and environmental fate of nanomaterials to guarantee their safe and efficient application in agriculture.


Assuntos
Agricultura , Nanoestruturas , Praguicidas , Controle de Pragas/métodos , Nanotecnologia , Humanos , Proteção de Cultivos
3.
J Environ Sci Health B ; 59(7): 417-424, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38804855

RESUMO

The choice of effective crop protection technologies is a key factors in the economical production of oilseed rape. Insecticides belonging to the group of active substances butenolides and diamides are active substances available as seed treatments in oilseed rape and promising control tools in the crop protection technologies. Our laboratory experiment demonstrated that the experimental insecticides flupyradifurone and cyantraniliprole are both effective against Eurydema ventralis (Hemiptera: Pentatomidae) when used as a seed and in-crop treatments, but there is a fundamental difference in their insect mortality inducing effects. Flupyradifurone was found to have a total mortality 96 h after application based on basipetal translocation. In the case of cyantraniliprole, the insecticidal effect of the same treatment was 27% less. The experiment showed that the acropetal translocation of the tested active substances after seed treatment did not induce efficacy comparable to that of the basipetal translocation. The study of the biophoton emission of the plants demonstrated a verifiable correlation between the different application methods of the insecticides and the photon emission intensity per unit plant surface area. In conclusion, the systematic insecticides tested, in addition to having the expected insecticidal effect, interfere with plant life processes by enhancing photosynthetic activity.


Assuntos
Inseticidas , Fotossíntese , Animais , Inseticidas/farmacologia , Fotossíntese/efeitos dos fármacos , Hemípteros/efeitos dos fármacos , Hemípteros/fisiologia , Brassica napus/efeitos dos fármacos , Pirazóis/farmacologia , Sementes/efeitos dos fármacos , Proteção de Cultivos/métodos , Piridinas/farmacologia , ortoaminobenzoatos/farmacologia , Controle de Insetos/métodos , 4-Butirolactona/análogos & derivados
4.
J Agric Food Chem ; 72(21): 12146-12155, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747516

RESUMO

In this study, an α-amylase-responsive controlled-release formulation was developed by capping polydopamine onto ß-cyclodextrin-modified abamectin-loaded hollow mesoporous silica nanoparticles. The prepared Aba@HMS@CD@PDA were subjected to characterization using various analytical techniques. The findings revealed that Aba@HMS@CD@PDA, featuring a loading rate of 18.8 wt %, displayed noteworthy release behavior of abamectin in the presence of α-amylase. In comparison to abamectin EC, Aba@HMS@CD@PDA displayed a significantly foliar affinity and improved rainfastness on lotus leaves. The results of field trail demonstrated a significantly higher control efficacy against Spodoptera litura Fabricius compared to abamectin EC at all concentrations after 7, 14, and 21 days of spaying, showcasing the remarkable persistence of Aba@HMS@CD@PDA. These results underscore the potential of Aba@HMS@CD@PDA as a novel and persistently effective strategy for sustainable on-demand crop protection. The application of nanopesticides can enhance the effectiveness and efficiency of pesticide utilization, contributing to more sustainable agricultural practices.


Assuntos
Proteção de Cultivos , Inseticidas , Nanopartículas , Spodoptera , alfa-Amilases , Animais , alfa-Amilases/química , alfa-Amilases/metabolismo , alfa-Amilases/antagonistas & inibidores , Nanopartículas/química , Proteção de Cultivos/métodos , Spodoptera/efeitos dos fármacos , Inseticidas/química , Inseticidas/farmacologia , Ivermectina/análogos & derivados , Ivermectina/química , Ivermectina/farmacologia , Polímeros/química , Dióxido de Silício/química , Controle de Insetos , Praguicidas/química , Praguicidas/farmacologia , Indóis/química , Indóis/farmacologia
5.
World J Microbiol Biotechnol ; 40(7): 217, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38806748

RESUMO

Plant pathogens with their abundance are harmful and cause huge damage to different agricultural crops and economy of a country as well as lead towards the shortage of food for humans. For their management, the utilization of entomopathogenic fungi is an eco-friendly technique, sustainable to the environment, safe for humans and has promising effect over chemical-based pesticides. This process requires a biochemical mechanism, including the production of enzymes, toxins, and other metabolites that facilitate host infection and invasion. Essential enzymes such as chitinase, proteinase, and lipase play a direct role in breaking down the host cuticle, the primary barrier to EPF (Entomopathogenic Fungi) infection. Additionally, secondary metabolites such as destruxins in Metarhizium, beauvericin in Beauveria, hirsutellides in Hirsutella, isarolides in Isaria, cordyols in Cordyceps, and vertihemipterins in Verticillium, among others, act both directly and indirectly to disable the defense mechanisms of insect hosts, thereby accelerating the EPF infection process. The chemical composition of these secondary metabolites varies, ranging from simple non-peptide pigments such as oosporine to highly complex piperazine derivatives such as vertihemiptellides. The biocontrol efficacy of EPF is extensively studied, with numerous fungal strains commercially available on a large scale for managing arthropod pests. This review emphasizes the role of proteins and enzymes against crop pathogens, detailing their mode of action, and describing the metabolites from entomopathogenic fungi and their biological activities. In doing so, these findings contribute to establishing a symbiotic equilibrium between agricultural productivity and environmental conservation.


Assuntos
Produtos Agrícolas , Fungos , Insetos , Controle Biológico de Vetores , Animais , Beauveria/metabolismo , Agentes de Controle Biológico/metabolismo , Cordyceps/metabolismo , Proteção de Cultivos/métodos , Produtos Agrícolas/parasitologia , Fungos/metabolismo , Insetos/microbiologia , Metarhizium/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Metabolismo Secundário
6.
Yi Chuan ; 46(4): 266-278, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38632090

RESUMO

RNA silencing (or RNA interference, RNAi) is a conserved mechanism for regulating gene expression in eukaryotes, which plays vital roles in plant development and response to biotic and abiotic stresses. The discovery of trans-kingdom RNAi and interspecies RNAi provides a theoretical basis for exploiting RNAi-based crop protection strategies. Here, we summarize the canonical RNAi mechanisms in plants and review representative studies associated with plant-pathogen interactions. Meanwhile, we also elaborate upon the principles of host-induced gene silencing, spray-induced gene silencing and microbe-induced gene silencing, and discuss their applications in crop protection, thereby providing help to establish novel RNAi-based crop protection strategies.


Assuntos
Proteção de Cultivos , Plantas , Interferência de RNA , Plantas/genética , Eucariotos/genética , RNA Interferente Pequeno/genética
7.
J Agric Food Chem ; 72(14): 7919-7932, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38554092

RESUMO

Nine caffeoyl derivatives (1-9), including two new dicaffeoyl glycosides, brevicaudatosides A and B (1 and 2), and six flavonoids (10-15), were identified from overground Clematis brevicaudata DC. Compounds 1 and 13 exhibited significant oral toxicities against Acyrthosiphon pisum Harris with LC50 (half-lethal concentration) values of 0.12 and 0.28 mM, respectively. Meanwhile, compounds 1, 8, 10, 13, and 15 showed remarkable repellent effects against A. pisum with the repellent indexes valued at 1.00 under 50-200 µg/mL at 24 h. Compounds 1 and 8 also displayed moderate antifeedant activities against Plutella xylostella L. The shrunken bodies, especially for wizened cauda, and the ultrastructural damages of microvilli, mitochondrion, nucleus, and endoplasmic reticulum in midgut were toxic symptoms of A. pisum caused by 1 and 13. The inhibition of Chitinase was the main reason for their potent insecticidal activities. This study provided valuable pieces of evidence for the high value-added application of caffeoyl and flavonoid derivatives from C. brevicaudata as novel plant-origin biopesticides for crop protection.


Assuntos
Produtos Biológicos , Clematis , Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Inseticidas/química , Clematis/química , Flavonoides/farmacologia , Produtos Biológicos/farmacologia , Proteção de Cultivos
8.
Commun Biol ; 7(1): 337, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499741

RESUMO

Sustainable agriculture relies on implementing effective, eco-friendly crop protection strategies. However, the adoption of these green tactics by growers is limited by their high costs resulting from the insufficient integration of various components of Integrated Pest Management (IPM). In response, we propose a framework within IPM termed Multi-Dimensional Management of Multiple Pests (3MP). Within this framework, a spatial dimension considers the interactive effects of soil-crop-pest-natural enemy networks on pest prevalence, while a time dimension addresses pest interactions over the crop season. The 3MP framework aims to bolster the adoption of green IPM tactics, thereby extending environmental benefits beyond crop protection.


Assuntos
Agricultura , Controle de Pragas , Controle de Pragas/métodos , Agricultura/métodos , Proteção de Cultivos
9.
Biomolecules ; 14(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38540770

RESUMO

Sulforaphane (SFN) is one of the hydrolysates of glucosinolates (GSLs), primarily derived from Brassica vegetables like broccoli. In clinical therapy, SFN has been proven to display antimicrobial, anticancer, antioxidant, and anti-inflammatory properties. However, the antimicrobial effects and mechanism of SFN against plant pathogens need to be further elucidated, which limits its application in agriculture. In this study, the genetic factors involved in SFN biosynthesis in 33 B. oleracea varieties were explored. The finding showed that besides the genetic background of different B. oleracea varieties, myrosinase and ESP genes play important roles in affecting SFN content. Subsequently, the molecular identification cards of these 33 B. oleracea varieties were constructed to rapidly assess their SFN biosynthetic ability. Furthermore, an optimized protocol for SFN extraction using low-cost broccoli curds was established, yielding SFN-enriched extracts (SFN-ee) containing up to 628.44 µg/g DW of SFN. The antimicrobial activity assay confirmed that SFN-ee obtained here remarkably inhibit the proliferation of nine tested microorganisms including four plant pathogens by destroying their membrane integrity. Additionally, the data demonstrated that exogenous application of SFN-ee could also induce ROS accumulation in broccoli leaves. These results indicated that SFN-ee should play a dual role in defense against plant pathogens by directly killing pathogenic cells and activating the ROS signaling pathway. These findings provide new evidence for the antimicrobial effect and mechanism of SFN against plant pathogens, and suggest that SFN-ee can be used as a natural plant antimicrobial agent for crop protection and food preservation.


Assuntos
Anti-Infecciosos , Brassica , Isotiocianatos , Sulfóxidos , Brassica/metabolismo , Proteção de Cultivos , Espécies Reativas de Oxigênio/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
10.
Environ Sci Pollut Res Int ; 31(11): 16485-16496, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38319425

RESUMO

The underlying mechanisms through which silicon oxide nanoparticles (SiNPs) can confer salinity resistance to plants are poorly understood. This study explored the efficacy of supplementing nutrient solution with SiNPs (20-30 nm; 10 mg kg-1 soil) to stimulate metabolism and alleviate the risks associated with salinity (0.73 g kg-1 soil) in basil seedlings. For this purpose, variations in photosynthetic indices, proline osmoprotectant, antioxidant markers, phenylpropanoid metabolism, and transcriptional behaviors of genes were investigated. SiNPs increased shoot fresh weight (38%) and mitigated the risk associated with the salinity stress by 14%. SiNPs alleviated the inhibitory effects of salinity on the total chlorophyll concentration by 15%. The highest increase (twofold) in proline content was recorded in the SiNP-treated seedlings grown under salinity. The nano-supplement enhanced the activity of enzymatic antioxidants, including peroxidase (2.5-fold) and catalase (4.7-fold). SiNPs induced the expression of gamma-cadinene synthase (CDS) and caffeic acid O-methyltransferase (COMT) genes by 6.5- and 18.3-fold, respectively. SiNPs upregulated the eugenol synthase (EGS1) and fenchol synthase (FES) genes by six- and nine-fold, respectively. Salinity transcriptionally downregulated the geraniol synthase (GES) gene, while this gene displayed an upward trend in response to SiNPs by eight-fold. The nano-supplement transcriptionally stimulated the R-linalool synthase (LIS) gene by 3.3-fold. The terpinolene synthase (TES) gene displayed a similar trend to that of the GES gene. The highest expression (25-fold) of the phenylalanine ammonia-lyase (PAL) gene was recorded in seedlings supplemented with SiNPs. The physiological and molecular assessments demonstrated that employing SiNPs is a sustainable strategy for improving plant primary/secondary metabolism and crop protection.


Assuntos
Nanopartículas , Ocimum basilicum , Ocimum basilicum/metabolismo , Metabolismo Secundário , Proteção de Cultivos , Antioxidantes/metabolismo , Estresse Salino , Plântula , Prolina/metabolismo , Solo , Expressão Gênica
11.
Pest Manag Sci ; 80(6): 3047-3055, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38319125

RESUMO

BACKGROUND: An urgent need to find new methods for crop protection remains open due to the withdrawal from the market of the most toxic pesticides and increasing consumer awareness. One of the alternatives that can be used in modern agriculture is the use of bifunctional compounds whose actions towards plant protection are wider than those of conventional pesticides. RESULTS: In this study, we present the investigation of the biological efficacy of nine dual-functional salts containing a systemic acquired resistance (SAR)-inducing anion and the benzethonium cation. A significant result of the presented study is the discovery of the SAR induction activity of benzethonium chloride, which was previously reported only as an antimicrobial agent. Moreover, the concept of dual functionality was proven, as the application of presented compounds in a given concentrations resulted both in the control of human and plant bacteria species and induction of SAR. CONCLUSION: The strategy presented in this article shows the capabilities of derivatization of common biologically active compounds into their ionic derivatives to obtain bifunctional salts. This approach may be an example of the design of potential new compounds for modern agriculture. It provides plants with two complementary actions allowing to provide efficient protection to plants, if one mode of action is ineffective. © 2024 Society of Chemical Industry.


Assuntos
Benzetônio , Líquidos Iônicos , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Benzetônio/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Cátions/farmacologia , Cátions/química , Proteção de Cultivos/métodos , Bactérias/efeitos dos fármacos
12.
J Agric Food Chem ; 72(9): 4630-4638, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38407939

RESUMO

To investigate the potential application value of dehydroabietic acid, 27 novel dehydroabietyl-1,2,4-triazole-5-thioether-based derivatives were designed and characterized by IR, 1H NMR, 13C NMR, and LC-MS. Their antifungal activities were evaluated against five plant fungi, namely, Valsa mali, Colletotrichum orbiculare, Fusarium graminearum, Sclerotinia sclerotiorum, and Gaeumannomyces graminis; the results showed that compound 5h-1 (Co. 5h-1) exhibited a considerable inhibitory effect against V. mali. Moreover, in vivo experiments indicated that Co. 5h-1 had a certain protective effect on apple branches. The preliminary structure-activity relationship analysis suggested that the electron-withdrawing group on the benzyl group was significantly better than that of other substituent derivatives. Through electron microscopy analysis, it was found that Co. 5h-1 hindered the growth of mycelia, damaged their cell structure, and caused the large accumulation of reactive oxygen species (ROS). Preliminary research on the mode of action indicated that Co. 5h-1 could affect the activity of CAT by increasing the α-helix (0.790%), decreasing the ß-sheet (0.170%), which led to the accumulation of ROS. In addition, Co. 5h-1 also affected the activity of CYP51, hindered the biosynthesis of ergosterol, and increased cell membrane permeability. Overall, this above research proposed that Co. 5h-1 can be a novel leading structure for development of a fungicide agent.


Assuntos
Antifúngicos , Ascomicetos , Fungicidas Industriais , Resinas Vegetais , Antifúngicos/química , Proteção de Cultivos , Espécies Reativas de Oxigênio , Relação Estrutura-Atividade , Triazóis/farmacologia , Triazóis/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química
13.
Molecules ; 29(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38257354

RESUMO

The present work provides new evidence of the ongoing potential of surface-active ionic liquids (SAILs) and surface-active quaternary ammonium salts (surface-active QASs). To achieve this, a series of compounds were synthesized with a yield of ≥85%, and their thermal analyses were studied. Additionally, antimicrobial activity against both human pathogenic and soil microorganisms was investigated. Subsequently, their surface properties were explored with the aim of utilizing SAILs and surface-active QASs as alternatives to commercial amphiphilic compounds. Finally, we analyzed the wettability of the leaves' surface of plants occurring in agricultural fields at different temperatures (from 5 to 25 °C) and the model plant membrane of leaves. Our results show that the synthesized compounds exhibit higher activity than their commercial analogues such as, i.e., didecyldimethylammonium chloride (DDAC) and dodecyltrimethylammonium bromide (C12TAB), for which the CMC values are 2 mM and 15 mM. The effectiveness of the antimicrobial properties of synthesized compounds relies on their hydrophobic nature accompanied by a cut-off effect. Moreover, the best wettability of the leaves' surface was observed at 25 °C. Our research has yielded valuable insights into the potential effectiveness of SAILs and surface-active QASs as versatile compounds, offering a promising alternative to established antimicrobials and crop protection agents, all the while preserving substantial surface activity.


Assuntos
Anti-Infecciosos , Líquidos Iônicos , Humanos , Líquidos Iônicos/farmacologia , Sais , Anti-Infecciosos/farmacologia , Proteção de Cultivos , Folhas de Planta
14.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257384

RESUMO

In recent years, nutmeg (Myristica fragans Houtt.) has attracted considerable attention in the field of phytochemistry due to its diverse array of bioactive compounds. However, the potential application of nutmeg as a biorational for crop protection has been insufficiently explored. This study investigated the constituents of a nutmeg hydroethanolic extract via gas chromatography-mass spectrometry and vibrational spectroscopy. The research explored the extract's activity against phytopathogenic fungi and oomycetes, elucidating its mechanism of action. The phytochemical profile revealed fatty acids (including tetradecanoic acid, 9-octadecenoic acid, n-hexadecanoic acid, dodecanoic acid, and octadecanoic acid), methoxyeugenol, and elemicin as the main constituents. Previously unreported phytochemicals included veratone, gelsevirine, and montanine. Significant radial growth inhibition of mycelia was observed against Botrytis cinerea, Colletotrichum acutatum, Diplodia corticola, Phytophthora cinnamomi, and especially against Fusarium culmorum. Mode of action investigation, involving Saccharomyces cerevisiae labeled positively with propidium iodide, and a mutant strain affected in ERG6, encoding sterol C-24 methyltransferase, suggested that the extract induces a necrotic type of death and targets ergosterol biosynthesis. The evidence presented underscores the potential of nutmeg as a source of new antimicrobial agents, showing particular promise against F. culmorum.


Assuntos
Myristica , Saccharomyces cerevisiae , Proteção de Cultivos , Ergosterol , Extratos Vegetais
15.
J Environ Manage ; 352: 119928, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38219662

RESUMO

This review investigates the potential of nanocellulose in agriculture, encompassing its structure, synthesis, modification, and applications. Our investigation of the characteristics of nanocellulose includes a comprehensive classification of its structure. Various mechanical, chemical and enzymatic synthesis techniques are evaluated, each offering distinct possibilities. The central role of surface functionalization is thoroughly examined. In particular, we are evaluating the conventional production of nanocellulose, thus contributing to the novelty. This review is a pioneering effort to comprehensively explore the use of nanocellulose in slow and controlled release fertilizers, revolutionizing nutrient management and improving crop productivity with reduced environmental impact. Additionally, our work uniquely integrates diverse applications of nanocellulose in agriculture, ranging from slow-release fertilizers, superabsorbent cellulose hydrogels for drought stress mitigation, and long-lasting crop protection via nanocellulose-based seed coatings. The study ends by identifying challenges and unexplored opportunities in the use of nanocellulose in agriculture. This review makes an innovative contribution by being the first comprehensive study to examine the multiple applications of nanocellulose in agriculture, including slow-release and controlled-release fertilizers.


Assuntos
Proteção de Cultivos , Fertilizantes , Preparações de Ação Retardada/química , Agricultura/métodos , Hidrogéis/química
16.
Pest Manag Sci ; 80(2): 220-234, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37555611

RESUMO

BACKGROUND: Unmanned aerial systems (UAS) are providing interesting disruptive solutions for spray application of crop protection products with very-low spray volumes (VLV) down to 8 L/ha that offer improved sustainability through reduced water volumes and reduced soil compaction. However, the efficacy of products can be reduced by the significantly lower crop/plant spray coverage and formulation designs that can compensate for this are highly important here. RESULTS: Suspension Concentrate (SC) formulations designed for VLV use containing and delivering low dose rates (g/ha) of organosilicone alkoxylate high-spreading surfactants were found to result in leaf coverage of VLVs comparable to those observed at higher spray volumes. High spreading was observed on textured leaf surfaces containing sub-micron sized epicuticular wax crystals. Greenhouse fungal disease studies showed enhanced efficacy with these SC formulations compared to standard SC formulations without these additives and maintained the observed increase in efficacy when applied at VLV. Alternatively, SC formulations without high spreading formulants but containing uptake promoting nonionic surfactants showed enhanced cuticle penetration through isolated cuticles at VLV in comparison to higher spray volumes, with coffee-ring spray deposit microstructures present at VLVs. Similarly, greenhouse studies showed enhanced efficacy that was maintained at VLV relative to SCs without these additives. CONCLUSION: At VLVs, SC formulations applied at relatively low dose rates (g/ha) of formulants (adjuvants) enhancing spreading on the leaf surface and/or uptake of the active ingredient(s) maintained good spreading, uptake and biological efficacy in greenhouse studies overcoming the coverage limitations of SC formulations without these additives. This result is unexpected considering the low dose rate of adjuvants used. © 2023 Bayer AG. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Proteção de Cultivos , Controle de Pragas , Tensoativos
17.
Int J Biol Macromol ; 254(Pt 3): 128051, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37956811

RESUMO

The adoption of environmentally friendly and efficient methods to control food spoilage and crop diseases has become a new worldwide trend. In the medical field, various enzyme-responsive controlled-release drug formulations have been developed for precision therapy. Recently, these materials and techniques have also begun to be applied in the fields of food preservation and agricultural protection. This review of contemporary research focuses on applications of enzyme-responsive controlled-release materials in the field of food preservation and crop protection. It covers a variety of composite controlled-release materials triggered by different types of enzymes and describes in detail their composition and structure, controlled-release mechanisms, and practical application effects. The enzyme-responsive materials have been employed to control foodborne pathogens, fungi, and pests. These enzyme-responsive controlled-release materials exhibit excellent capabilities for targeted drug delivery. Upon contact with microorganisms or pests, the polymer shell of the material is degraded by secreted enzymes from these organisms, thereby releasing drugs that kill or inhibit the organisms. In addition, multi-enzyme sensitive carriers have been created to improve the effectiveness and broad spectrum of the delivery system. The increasing trend towards the use of enzyme-responsive controlled-release materials has opened up countless possibilities in food and agriculture.


Assuntos
Proteção de Cultivos , Sistemas de Liberação de Medicamentos , Preparações de Ação Retardada/farmacologia , Agricultura/métodos , Conservação de Alimentos
18.
Environ Toxicol Chem ; 43(1): 19-30, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37850744

RESUMO

Copper-containing fungicides have been used in agriculture since 1885. The divalent copper ion is a nonbiodegradable multisite inhibitor that has a strictly protective, nonsystemic effect on plants. Copper-containing plant protection products currently approved in Germany contain copper oxychloride, copper hydroxide, and tribasic copper sulfate. Copper is primarily used to control oomycete pathogens in grapevine, hop, potato, and fungal diseases in fruit production. In the environment, copper is highly persistent and toxic to nontarget organisms. The latter applies for terrestric and aquatic organisms such as earthworms, insects, birds, fish, Daphnia, and algae. Hence, copper fungicides are currently classified in the European Union as candidates for substitution. Pertinently, copper also exhibits significant mammalian toxicity (median lethal dose oral = 300-2500 mg/kg body wt in rats). To date, organic production still profoundly relies on the use of copper fungicides. Attempts to reduce doses of copper applications and the search for copper substitutes have not been successful. Copper compounds compared with modern synthetic fungicides with similar areas of use display significantly higher risks for honey bees (3- to 20-fold), beneficial insects (6- to 2000-fold), birds (2- to 13-fold), and mammals (up to 17-fold). These data contradict current views that crop protection in organic farming is associated with lower environmental or health risks. Further limitations in the range and use of modern single-site fungicides may force conventional production to fill the gaps with copper fungicides to counteract fungicide resistance. In contrast to the European Union Green Deal goals, the intended expansion of organic farming in Europe would further enhance the use of copper fungicides and hence increase the overall risks of chemical crop protection in Europe. Environ Toxicol Chem 2024;43:19-30. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Fungicidas Industriais , Animais , Ratos , Abelhas , Fungicidas Industriais/toxicidade , Cobre/toxicidade , Agricultura Orgânica , Proteção de Cultivos , Agricultura , Mamíferos
19.
ALTEX ; 41(1): 119-130, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-37658815

RESUMO

In 2019, the US EPA Administrator issued a directive directing the agency away from reliance on vertebrate tests by 2035, whilst maintaining high-quality human health and environmental risk assessments. There is no accepted approach to achieve this. The decade-long duration of the crop protection (CP) chemical R&D process therefore requires both the invention and application of a modernized approach to those CP chemical projects entering corporate research portfolios by the mid-2020s. We conducted problem formulation discussions with regulatory agency scientists which created the problem statement: "Develop, demonstrate, and implement a modern scientifically sound and robust strategy that applies appropriate and flexible exposure and effects characterization without chemical specific vertebrate tests to reliably address risk, uncertainties, and deficiencies in data and its interpretation with equivalent confidence as do the currently accepted test guidelines and meet the regulatory needs of the agencies". The solution must provide the knowledge needed to confidently conclude human health and environmental protective risk assessments. Exploring this led to a conceptual model involving the creation and parallel submission of a new approach without reliance on chemical-specific vertebrate tests. Assessment in parallel to a traditional package will determine whether it supports some, or all, of the necessary risk management actions. Analysis of any deficiencies will provide valuable feedback to focus development of tools or approaches for subsequent iterations. When found to provide sufficient information, it will form the technical foun­dation of stakeholder engagement to explore acceptance of a new approach to CP chemical risk assessment.


The US EPA, and other regulatory agencies, aim to reduce the use of vertebrate animal tests for assessing risks of crop protection chemicals. There is currently no accepted way to do this. We outline a proposal to perform both the assessment using traditional vertebrate testing and a set of new non-animal methods. These data sets must each be combined with a calculated estimate of user exposure to the pesticide based on its intended use. Comparing the outcome of these two assess­ments will show whether the set of non-animal methods needs to be improved further. When the new approach appears to reliably predict the risks, the different stakeholders must be brought together to assess whether the non-animal methods package is acceptable and can replace the tests on vertebrate animals while maintaining the same level of protection of human health and the environment.


Assuntos
Segurança Química , Humanos , Proteção de Cultivos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...