Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 948
Filtrar
1.
Theranostics ; 14(10): 4090-4106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994016

RESUMO

Purpose: Due to intrinsic defensive response, ferroptosis-activating targeted therapy fails to achieve satisfactory clinical benefits. Though p62-Keap1-Nrf2 axis is activated to form a negative feedback loop during ferroptosis induction, how p62 is activated remains largely unknown. Methods: MTS assay was applied to measure cell growth. Lipid ROS was detected with C11-BODIPY reagent by flow cytometer. Quantitative real-time PCR (qPCR) and western blotting were performed to determine mRNA and protein level. Immunofluorescence (IF) was performed to examine the distribution of proteins. Fluorescence recovery after photobleaching (FRAP) was adopted to evaluate p62 phase separation. Immunoprecipitation (IP), co-IP and Proximal ligation assay (PLA) were performed to detected protein posttranslational modifications and protein-protein interactions. Tumor xenograft model was employed to inspect in vivo growth of pancreatic cancer cells. Results: Upon ferroptosis induction, Nuclear Factor E2 Related Factor 2 (Nrf2) protein and its downstream genes such as HMOX1 and NQO1 were upregulated. Knockdown of p62 significantly reversed Nrf2 upregulation and Keap1 decrease after ferroptosis induction. Knockdown of either p62 or Nrf2 remarkably sensitized ferroptosis induction. Due to augmented p62 phase separation, formation of p62 bodies were increased to recruit Keap1 after ferroptosis induction. Protein arginine methyltransferase 6 (PRMT6) mediated asymmetric dimethylarginine (ADMA) of p62 to increase its oligomerization, promoting p62 phase separation and p62 body formation. Knockdown of p62 or PRMT6 notably sensitized pancreatic cancer cells to ferroptosis both in vitro and in vivo through suppressing Nrf2 signaling. Conclusion: During ferroptosis induction, PRMT6 mediated p62 ADMA to promote its phase separation, sequestering Keap1 to activate Nrf2 signaling and inhibit ferroptosis. Therefore, targeting PRMT6-mediated p62 ADMA could be a new option to sensitize ferroptosis for cancer treatment.


Assuntos
Arginina , Ferroptose , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Animais , Arginina/metabolismo , Arginina/análogos & derivados , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Camundongos , Linhagem Celular Tumoral , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Retroalimentação Fisiológica , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Camundongos Nus , Transdução de Sinais , Separação de Fases , Proteínas de Ligação a RNA
2.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000345

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs), the most highly prescribed drugs in the world for the treatment of pain, inflammation, and fever, cause gastric mucosal damage, including ulcers, directly or indirectly, by which the development of GI-safer (-sparing) NSAIDs relates to unmet medical needs. This study aimed to document the preventive effects of walnut polyphenol extracts (WPEs) against NSAID-induced gastric damage along with the molecular mechanisms. RGM-1 gastric mucosal cells were administered with indomethacin, and the expressions of the inflammatory mediators between indomethacin alone or a combination with WPEs were compared. The expressions of the inflammatory mediators, including COX-1 and COX-2, prostaglandin E2, 15-hydroxyprostaglandin dehydrogenase (15-PGDH), and antioxidant capacity, were analyzed by Western blot analysis, RT-PCR, and ELISA, respectively. HO-1, Nrf-2, and keap1 were investigated. The in vivo animal models were followed with in vitro investigations. The NSAIDs increased the expression of COX-2 and decreased COX-1 and 15-PGDH, but the WPEs significantly attenuated the NSAID-induced COX-2 expression. Interestingly, the WPEs induced the expression of 15-PGDH. By using the deletion constructs of the 15-PGDH promoter, we found that c-Jun is the most essential determinant of the WPE-induced up-regulation of 15-PGDH expression. We confirmed that the knockdown of c-Jun abolished the ability of the WPEs to up-regulate the 15-PGDH expression. In addition, the WPEs significantly increased the HO-1 expression. The WPEs increased the nuclear translocation of Nrf2 by Keap-1 degradation, and silencing Nrf2 markedly reduced the WPE-induced HO-1 expression. We found that the WPE-induced HO-1 up-regulation was attenuated in the cells harboring the mutant Keap1, in which the cysteine 151 residue was replaced by serine. These in vitro findings were exactly validated in indomethacin-induced gastric rat models. Daily walnut intake can be a promising nutritional supplement providing potent anti-inflammatory, antioxidative, and mucosa-protective effects against NSAID-induced GI damage.


Assuntos
Mucosa Gástrica , Hidroxiprostaglandina Desidrogenases , Indometacina , Juglans , Fator 2 Relacionado a NF-E2 , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Indometacina/efeitos adversos , Juglans/química , Ratos , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Hidroxiprostaglandina Desidrogenases/metabolismo , Hidroxiprostaglandina Desidrogenases/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Masculino , Extratos Vegetais/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Linhagem Celular , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Polifenóis/farmacologia
3.
Int J Biol Sci ; 20(8): 3156-3172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904009

RESUMO

Pancreatic cancer is the deadliest malignancy with a poor response to chemotherapy but is potentially indicated for ferroptosis therapy. Here we identified that cytoplasmic polyadenylation element binding protein 1 (CPEB1) regulates NRF2 proteostasis and susceptibility to ferroptosis in pancreatic ductal adenocarcinoma (PDAC). We found that CPEB1 deficiency in cancer cells promotes the translation of p62/SQSTM1 by facilitating mRNA polyadenylation. Consequently, upregulated p62 enhances NRF2 stability by sequestering KEAP1, an E3 ligase for proteasomal degradation of NRF2, leading to the transcriptional activation of anti-ferroptosis genes. In support of the critical role of this signaling cascade in cancer therapy, CPEB1-deficient pancreatic cancer cells display higher resistance to ferroptosis-inducing agents than their CPEB1-normal counterparts in vitro and in vivo. Furthermore, based on the pathological evaluation of tissue specimens from 90 PDAC patients, we established that CPEB1 is an independent prognosticator whose expression level is closely associated with clinical therapeutic outcomes in PDAC. These findings identify the role of CPEB1 as a key ferroptosis regulator and a potential prognosticator in pancreatic cancer.


Assuntos
Ferroptose , Fator 2 Relacionado a NF-E2 , Neoplasias Pancreáticas , Humanos , Ferroptose/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Linhagem Celular Tumoral , Animais , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Camundongos , Proteostase , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Camundongos Nus
5.
Nat Commun ; 15(1): 4703, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830868

RESUMO

Nuclear factor erythroid 2-related factor 2 (NRF2) hyperactivation has been established as an oncogenic driver in a variety of human cancers, including non-small cell lung cancer (NSCLC). However, despite massive efforts, no specific therapy is currently available to target NRF2 hyperactivation. Here, we identify peptidylprolyl isomerase A (PPIA) is required for NRF2 protein stability. Ablation of PPIA promotes NRF2 protein degradation and blocks NRF2-driven growth in NSCLC cells. Mechanistically, PPIA physically binds to NRF2 and blocks the access of ubiquitin/Kelch Like ECH Associated Protein 1 (KEAP1) to NRF2, thus preventing ubiquitin-mediated degradation. Our X-ray co-crystal structure reveals that PPIA directly interacts with a NRF2 interdomain linker via a trans-proline 174-harboring hydrophobic sequence. We further demonstrate that an FDA-approved drug, cyclosporin A (CsA), impairs the interaction of NRF2 with PPIA, inducing NRF2 ubiquitination and degradation. Interestingly, CsA interrupts glutamine metabolism mediated by the NRF2/KLF5/SLC1A5 pathway, consequently suppressing the growth of NRF2-hyperactivated NSCLC cells. CsA and a glutaminase inhibitor combination therapy significantly retard tumor progression in NSCLC patient-derived xenograft (PDX) models with NRF2 hyperactivation. Our study demonstrates that targeting NRF2 protein stability is an actionable therapeutic approach to treat NRF2-hyperactivated NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteína 1 Associada a ECH Semelhante a Kelch , Neoplasias Pulmonares , Fator 2 Relacionado a NF-E2 , Peptidilprolil Isomerase , Estabilidade Proteica , Ubiquitinação , Animais , Feminino , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Progressão da Doença , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Camundongos Nus , Fator 2 Relacionado a NF-E2/metabolismo , Proteólise , Peptidilprolil Isomerase/metabolismo
6.
Int Immunopharmacol ; 137: 112362, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38901248

RESUMO

Oroxylin A (OA), a naturally active O-methylated flavone derived from Scutellaria baicalensis, is regarded as a potential drug with strong anticancer effects. Unfortunately, our understanding of the antineoplastic mechanism of oral exposure to such flavonoids is inadequate. Growing evidence has confirmed the important role of OA in the regulation of oxidative stress- and inflammatory-response-induced tissue injury. However, it remains unknown whether OA is capable of mitigating esophagus cancer (EC) progression and its potential molecular mechanism. Furthermore, the tripartite motif containing 40 (TRIM40) is a ubiquitin ligase that mediates the immune response. The potential molecular function of TRIM40 in regulating EC is largely unknown. We confirmed that OA-triggered oxidative stress markedly upregulates TRIM40. During the OA challenge, increased TRIM40 reduced oxidative stress and promoted the ER stress response. Inversely, deletion of TRIM40 facilitated oxidative stress and blocked cancer cell growth in vivo and in vitro. Mechanistically, in response to OA treatment, TRIM40 directly interacts with Keap1 and promotes ubiquitin-proteasome degradation, thus leading to the promotion of Nrf2 nuclear translocation and its downstream cascade activation, which increases antioxidant defense and cell survival. TRIM40 expression was positively correlated with Nrf2 expression and negatively associated with Keap1 expression in EC xenografts and human specimens. In addition, high TRIM40 expression correlates with poor patient survival in EC. The findings suggested that oral exposure to OA significantly mitigates EC development by targeting TRIM40 activity. These findings further elucidated the potential role of TRIM40 in EC progression by mediating Keap1 degradation, which could be considered a therapeutic target for the treatment of such a disease.


Assuntos
Neoplasias Esofágicas , Flavonoides , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Transdução de Sinais , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Humanos , Animais , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Linhagem Celular Tumoral , Masculino , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Camundongos Nus , Camundongos Knockout
7.
Life Sci Alliance ; 7(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38906677

RESUMO

Mitochondrial dysfunction is a common feature of C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD); however, it remains unclear whether this is a cause or consequence of the pathogenic process. Analysing multiple aspects of mitochondrial biology across several Drosophila models of C9orf72-ALS/FTD, we found morphology, oxidative stress, and mitophagy are commonly affected, which correlated with progressive loss of locomotor performance. Notably, only genetic manipulations that reversed the oxidative stress levels were also able to rescue C9orf72 locomotor deficits, supporting a causative link between mitochondrial dysfunction, oxidative stress, and behavioural phenotypes. Targeting the key antioxidant Keap1/Nrf2 pathway, we found that genetic reduction of Keap1 or pharmacological inhibition by dimethyl fumarate significantly rescued the C9orf72-related oxidative stress and motor deficits. Finally, mitochondrial ROS levels were also elevated in C9orf72 patient-derived iNeurons and were effectively suppressed by dimethyl fumarate treatment. These results indicate that mitochondrial oxidative stress is an important mechanistic contributor to C9orf72 pathogenesis, affecting multiple aspects of mitochondrial function and turnover. Targeting the Keap1/Nrf2 signalling pathway to combat oxidative stress represents a therapeutic strategy for C9orf72-related ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Modelos Animais de Doenças , Demência Frontotemporal , Proteína 1 Associada a ECH Semelhante a Kelch , Mitocôndrias , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Fenótipo , Transdução de Sinais , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Mitocôndrias/metabolismo , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Humanos , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Espécies Reativas de Oxigênio/metabolismo , Mitofagia/genética , Fumarato de Dimetilo/farmacologia , Masculino
8.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2316-2325, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812132

RESUMO

This study aimed to investigate the intervention effect of tetramethylpyrazine(TMP) combined with transplantation of neural stem cells(NSCs) on middle cerebral artery occlusion(MCAO) rat model and to explore the mechanism of TMP combined with NSCs transplantation on ischemic stroke based on the regulation of stem cell biological behavior. MCAO rats were randomly divided into a model group, a TMP group, an NSCs transplantation group, and a TMP combined with NSCs transplantation group according to neurological function scores. A sham group was set up at the same time. The neurological function score was used to evaluate the improvement of neurological function in MCAO rats after TMP combined with NSCs transplantation. The proliferation, migration, and differentiation of NSCs were evaluated by BrdU, BrdU/DCX, BrdU/NeuN, and BrdU/GFAP immunofluorescence labeling. The protein expression of stromal cell-derived factor 1(SDF-1), C-X-C motif chemokine receptor 4(CXCR4), as well as oxidative stress pathway proteins nuclear factor erythroid 2-related factor 2(Nrf2), Kelch-like ECH-associated protein 1(KEAP1), heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1) was detected by Western blot to study the migration mechanism of TMP combined with NSCs. The results showed that TMP combined with NSCs transplantation significantly improved the neurological function score in MCAO rats. Immunofluorescence staining showed a significant increase in the number of BrdU~+, BrdU~+/DCX~+, BrdU~+/NeuN~+, and BrdU~+/GFAP~+ cells in the TMP, NSCs transplantation, and combined treatment groups, with the combined treatment group showing the most significant increase. Further Western blot analysis revealed significantly elevated expression of CXCR4 protein in the TMP, NSCs transplantation, and combined treatment groups, along with up-regulated protein expression of Nrf2, HO-1, and NQO1, and decreased KEAP1 protein expression. This study showed that both TMP and NSCs transplantation can promote the recovery of neurological function by promoting the proliferation, migration, and differentiation of NSCs, and the effect of TMP combined with NSCs transplantation is superior. The mechanism of action may be related to the activation of the Nrf2/HO-1/CXCR4 pathway.


Assuntos
Isquemia Encefálica , Proteína Duplacortina , Fator 2 Relacionado a NF-E2 , Células-Tronco Neurais , Pirazinas , Ratos Sprague-Dawley , Receptores CXCR4 , Animais , Pirazinas/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/transplante , Células-Tronco Neurais/metabolismo , Ratos , Masculino , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Transplante de Células-Tronco/métodos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Humanos , Traumatismo por Reperfusão/terapia , Traumatismo por Reperfusão/metabolismo , Infarto da Artéria Cerebral Média/terapia , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética
9.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2222-2229, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812237

RESUMO

This study aims to investigate the effect and mechanism of Stellera chamaejasme extract(SCL) on multidrug resistance(MDR) in breast cancer. Human triple-negative breast cancer cell line MDA-MB-231 and its adriamycin-resistant cell line MDA-MB-231/ADR were used in the experiment. Cell viability was detected by methyl thiazolyl tetrazolium(MTT) assay, and cell apoptosis was detected by DAPI staining and Annexin-V/Pi double staining. Western blot(WB) was used to detect the expression levels of Keap1, Nrf2, HO-1, Bcl-2, Bax, caspase-9, and caspase-3. Immunofluorescence staining was used to observe the distribution of Nrf2 in the cell, and flow cytometry was used to detect the level of reactive oxygen species(ROS) in the cell. The results showed that the resis-tance factor of SCL was 0.69, and that of adriamycin and paclitaxel was 8.40 and 16.36, respectively. DAPI staining showed that SCL could cause nuclear shrinkage and fragmentation of breast cancer cells. Annexin-V/Pi double staining showed that the average apoptosis rate of the drug-resistant cells was 32.64% and 50.29%, respectively under medium and high doses of SCL. WB results showed that SCL could significantly reduce the expression levels of anti-apoptotic proteins Bcl-2, caspase-9, and caspase-3 and significantly increase the expression level of pro-apoptotic protein Bax. Further studies showed that SCL could significantly promote the expression of Keap1, significantly inhibit the expression of Nrf2 and HO-1, and significantly reduce the expression level of Nrf2 in the nucleus. Correspondingly, flow cytometry showed that the intracellular ROS level was significantly increased. In conclusion, SCL can significantly inhibit the proliferation of MDA-MB-231 multidrug-resistant cells of triple-negative breast cancer and cause cell apoptosis, and the mechanism is related to inhibiting Keap1/Nrf2 signaling pathway, leading to ROS accumulation in drug-resistant cells and increasing the expression of apoptosis-related proteins.


Assuntos
Apoptose , Resistencia a Medicamentos Antineoplásicos , Fator 2 Relacionado a NF-E2 , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Feminino , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Thymelaeaceae/química , Medicamentos de Ervas Chinesas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Doxorrubicina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proliferação de Células/efeitos dos fármacos , Células MDA-MB-231
10.
Free Radic Biol Med ; 221: 31-39, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38729452

RESUMO

Reactive oxygen species (ROS) are highly reactive and their accumulation causes oxidative damage to cells. Cells maintain survival upon mild oxidative stress with anti-oxidative systems, such as the kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) system. On the other hand, upon severe oxidative stress, cells undergo regulated cell death, including apoptosis, for eliminating damaged cells. To execute efficient cell death, cells need to turn off the anti-oxidant systems, while triggering cell death. However, it remains unknown how cells orchestrate these two conflicting systems under excessive oxidative stress. Herein, we show that when cells are exposed to excessive oxidative damage, an E3 ubiquitin ligase Roquin-2 (also known as RC3H2) plays a key role in switching cell fate from survival to death by terminating activation of transforming growth factor-ß-activated kinase 1 (TAK1), a positive regulator for Nrf2 activation. Roquin-2 interacted with TAK1 via four cysteine residues in TAK1 (C96, C302, C486, and C500) that are susceptible to oxidative stress and participate in oligomer formation via disulfide bonds, promoting K48-linked polyubiquitination and degradation of TAK1. Nrf2 was inactivated upon lethal oxidative stress in wild-type mouse embryonic fibroblast (MEF) cells, whereas it sustained activation and conferred resistance to Roquin-2 deficient cells, which was reversed by pharmacological or genetic inhibition of TAK1. These data demonstrate that in response to excessive ROS exposure, Roquin-2 promotes ubiquitination and degradation of TAK1 to suppress Nrf2 activation, and thereby contributes to an efficient cell death, providing insight into the pathogenesis of oxidative stress-related diseases, including cancer.


Assuntos
Apoptose , MAP Quinase Quinase Quinases , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Espécies Reativas de Oxigênio , Ubiquitina-Proteína Ligases , Ubiquitinação , Animais , Humanos , Camundongos , Morte Celular/genética , Células HEK293 , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
11.
Zhongguo Zhen Jiu ; 44(5): 549-54, 2024 May 12.
Artigo em Chinês | MEDLINE | ID: mdl-38764105

RESUMO

OBJECTIVE: To observe the protective effect of wheat-grain moxibustion on cyclophosphamide (CTX)-induced liver injury in mice, and explore its mechanism based on the nuclear factor E2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) signaling pathway. METHODS: Twenty-four male CD-1 (ICR) mice were randomly divided into a blank group, a model group, and a moxibustion group, with 8 mice in each group. The mice in the model group and the moxibustion group were intraperitoneally injected with CTX (80 mg/kg) to induce liver injury. The mice in the moxibustion group were treated with wheat-grain moxibustion at "Guanyuan" (CV 4) and bilateral "Zusanli" (ST 36) and "Sanyinjiao" (SP 6), with each acupoint being treated by 3 cones, approximately 30 seconds per cone, once daily for 7 days. After intervention, the general condition of the mice was observed; the liver mass was measured and the liver index was calculated; HE staining was used to observe the morphology of the liver, and the liver tissue pathological score was assessed; ELISA was used to detect the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), glutamate dehydrogenase (GLDH) and the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) in the liver; Western blot and real-time fluorescence quantitative PCR were used to detect the protein and mRNA expression of Nrf2, Keap1, and quinione acceptor oxidoreductase 1 (NQO1) in the liver. RESULTS: Compared with the blank group, the mice in the model group showed sluggishness, unsteady gait, and decreased body weight; liver index was increased (P<0.01); liver cells were loosely arranged, with a small number of cell swollen and exhibiting balloon-like changes; liver tissue pathological score was increased (P<0.05); the serum levels of AST, ALT, GLDH, and level of MDA in the liver were increased (P<0.05), and the levels of SOD and GSH-Px in the liver were decreased (P<0.05); protein and mRNA expression of Nrf2 and NQO1 in the liver was decreased (P<0.01), protein and mRNA expression of Keap1 in the liver was increased (P<0.01). Compared with the model group, the mice in the moxibustion group showed improvement in general condition; liver index was decreased (P<0.01); liver cell structure was relatively intact and clear, and liver tissue pathological score was decreased (P<0.05); the serum levels of AST, ALT, GLDH, and level of MDA in the liver were decreased (P<0.05), and the levels of SOD and GSH-Px in the liver were increased (P<0.05, P<0.01); protein and mRNA expression of Nrf2 and NQO1 in the liver was increased (P<0.05), protein and mRNA expression of Keap1 in the liver was decreased (P<0.05). CONCLUSION: The wheat-grain moxibustion may alleviate CTX-induced liver injury by activating the Nrf2-Keap1 signaling pathway and enhancing the expression of antioxidative enzyme system in the body.


Assuntos
Ciclofosfamida , Proteína 1 Associada a ECH Semelhante a Kelch , Fígado , Moxibustão , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Triticum , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Camundongos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Masculino , Transdução de Sinais/efeitos dos fármacos , Humanos , Ciclofosfamida/efeitos adversos , Triticum/química , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos Endogâmicos ICR , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/terapia , Doença Hepática Induzida por Substâncias e Drogas/genética , Antioxidantes/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
12.
Drug Dev Res ; 85(3): e22200, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747107

RESUMO

In this study, we analyzed and verified differentially expressed genes (DEGs) in ROS and KEAP1 crosstalk in oncogenic signatures using GEO data sets (GSE4107 and GSE41328). Multiple pathway enrichment analyses were finished based on DEGs. The genetic signature for colorectal adenocarcinoma (COAD) was identified by using the Cox regression analysis. Kaplan-Meier survival and receiver operating characteristic curve analysis were used to explore the prognosis value of specific genes in COAD. The potential immune signatures and drug sensitivity prediction were also analyzed. Promising small-molecule agents were identified and predicted targets of α-hederin in SuperPred were validated by molecular docking. Also, expression levels of genes and Western blot analysis were conducted. In total, 48 genes were identified as DEGs, and the hub genes such as COL1A1, CXCL12, COL1A2, FN1, CAV1, TIMP3, and IGFBP7 were identified. The ROS and KEAP1-associated gene signatures comprised of hub key genes were developed for predicting the prognosis and evaluating the immune cell responses and immune infiltration in COAD. α-hederin, a potential anti-colorectal cancer (CRC) agent, was found to enhance the sensitivity of HCT116 cells, regulate CAV1 and COL1A1, and decrease KEAP1, Nrf2, and HO-1 expression significantly. KEAP1-related genes could be an essential mediator of ROS in CRC, and KEAP1-associated genes were effective in predicting prognosis and evaluating individualized CRC treatment. Therefore, α-hederin may be an effective chemosensitizer for CRC treatments in clinical settings.


Assuntos
Neoplasias Colorretais , Proteína 1 Associada a ECH Semelhante a Kelch , Espécies Reativas de Oxigênio , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/análogos & derivados , Simulação de Acoplamento Molecular , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Prognóstico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
13.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731931

RESUMO

The hepatic deletion of Rbpjκ (RbpjF/F::AlbCre) in the mouse leads to exhibition of the Alagille syndrome phenotype during early postnatal liver development with hyperlipidemia and cholestasis due to attenuated disruption of NOTCH signaling. Given the roles of NRF2 signaling in the regulation of lipid metabolism and bile ductal formation, it was anticipated that these symptoms could be alleviated by enhancing NRF2 signaling in the RbpjF/F::AlbCre mouse by hepatic deletion of Keap1 in compound Keap1F/F::RbpjF/F::AlbCre mice. Unexpectedly, these mice developed higher hepatic and plasma cholesterol levels with more severe cholestatic liver damage during the pre-weaning period than in the RbpjF/F::AlbCre mice. In addition, hypercholesterolemia and hepatic damage were sustained throughout the growth period unlike in the RbpjF/F::AlbCre mouse. These enhanced abnormalities in lipid metabolism appear to be due to NRF2-dependent changes in gene expression related to cholesterol synthetic and subsequent bile acid production pathways. Notably, the hepatic expression of Cyp1A7 and Abcb11 genes involved in bile acid homeostasis was significantly reduced in Keap1F/F::RbpjF/F::AlbCre compared to RbpjF/F::AlbCre mice. The accumulation of liver cholesterol and the weakened capacity for bile excretion during the 3 pre-weaning weeks in the Keap1F/F::RbpjF/F::AlbCre mice may aggravate hepatocellular damage level caused by both excessive cholesterol and residual bile acid toxicity in hepatocytes. These results indicate that a tuned balance of NOTCH and NRF2 signaling is of biological importance for early liver development after birth.


Assuntos
Hepatomegalia , Hipercolesterolemia , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina , Proteína 1 Associada a ECH Semelhante a Kelch , Fígado , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Camundongos , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Fígado/metabolismo , Fígado/patologia , Hepatomegalia/genética , Hepatomegalia/metabolismo , Hepatomegalia/patologia , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Metabolismo dos Lipídeos/genética , Deleção de Genes , Transdução de Sinais , Colesterol/metabolismo , Camundongos Knockout , Masculino , Ácidos e Sais Biliares/metabolismo
14.
Cell Mol Biol Lett ; 29(1): 71, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745155

RESUMO

BACKGROUND: Genetic abnormalities in the FGFR signalling occur in 40% of breast cancer (BCa) patients resistant to anti-ER therapy, which emphasizes the potential of FGFR-targeting strategies. Recent findings indicate that not only mutated FGFR is a driver of tumour progression but co-mutational landscapes and other markers should be also investigated. Autophagy has been recognized as one of the major mechanisms underlying the role of tumour microenvironment in promotion of cancer cell survival, and resistance to anti-ER drugs. The selective autophagy receptor p62/SQSTM1 promotes Nrf-2 activation by Keap1/Nrf-2 complex dissociation. Herein, we have analysed whether the negative effect of FGFR2 on BCa cell response to anti-ER treatment involves the autophagy process and/or p62/Keap1/Nrf-2 axis. METHODS: The activity of autophagy in ER-positive MCF7 and T47D BCa cell lines was determined by analysis of expression level of autophagy markers (p62 and LC3B) and monitoring of autophagosomes' maturation. Western blot, qPCR and proximity ligation assay were used to determine the Keap1/Nrf-2 interaction and Nrf-2 activation. Analysis of 3D cell growth in Matrigel® was used to assess BCa cell response to applied treatments. In silico gene expression analysis was performed to determine FGFR2/Nrf-2 prognostic value. RESULTS: We have found that FGFR2 signalling induced autophagy in AMPKα/ULK1-dependent manner. FGFR2 activity promoted dissociation of Keap1/Nrf-2 complex and activation of Nrf-2. Both, FGFR2-dependent autophagy and activation of Nrf-2 were found to counteract the effect of anti-ER drugs on BCa cell growth. Moreover, in silico analysis showed that high expression of NFE2L2 (gene encoding Nrf-2) combined with high FGFR2 expression was associated with poor relapse-free survival (RFS) of ER+ BCa patients. CONCLUSIONS: This study revealed the unknown role of FGFR2 signalling in activation of autophagy and regulation of the p62/Keap1/Nrf-2 interdependence, which has a negative impact on the response of ER+ BCa cells to anti-ER therapies. The data from in silico analyses suggest that expression of Nrf-2 could act as a marker indicating potential benefits of implementation of anti-FGFR therapy in patients with ER+ BCa, in particular, when used in combination with anti-ER drugs.


Assuntos
Autofagia , Neoplasias da Mama , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Humanos , Autofagia/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Feminino , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Linhagem Celular Tumoral , Células MCF-7 , Transdução de Sinais/efeitos dos fármacos , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética
15.
Sci Rep ; 14(1): 11162, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750095

RESUMO

Lipid accumulation in macrophages (Mφs) is a hallmark of atherosclerosis. Yet, how lipid loading modulates Mφ inflammatory responses remains unclear. We endeavored to gain mechanistic insights into how pre-loading with free cholesterol modulates Mφ metabolism upon LPS-induced TLR4 signaling. We found that activities of prolyl hydroxylases (PHDs) and factor inhibiting HIF (FIH) are higher in cholesterol loaded Mφs post-LPS stimulation, resulting in impaired HIF-1α stability, transactivation capacity and glycolysis. In RAW264.7 cells expressing mutated HIF-1α proteins resistant to PHDs and FIH activities, cholesterol loading failed to suppress HIF-1α function. Cholesterol accumulation induced oxidative stress that enhanced NRF2 protein stability and triggered a NRF2-mediated antioxidative response prior to and in conjunction with LPS stimulation. LPS stimulation increased NRF2 mRNA and protein expression, but it did not enhance NRF2 protein stability further. NRF2 deficiency in Mφs alleviated the inhibitory effects of cholesterol loading on HIF-1α function. Mutated KEAP1 proteins defective in redox sensing expressed in RAW264.7 cells partially reversed the effects of cholesterol loading on NRF2 activation. Collectively, we showed that cholesterol accumulation in Mφs induces oxidative stress and NRF2 stabilization, which when combined with LPS-induced NRF2 expression leads to enhanced NRF2-mediated transcription that ultimately impairs HIF-1α-dependent glycolytic and inflammatory responses.


Assuntos
Colesterol , Subunidade alfa do Fator 1 Induzível por Hipóxia , Lipopolissacarídeos , Macrófagos , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Colesterol/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Regulação para Cima/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
16.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791545

RESUMO

Hypertension stands as the leading global cause of mortality, affecting one billion individuals and serving as a crucial risk indicator for cardiovascular morbidity and mortality. Elevated salt intake triggers inflammation and hypertension by activating antigen-presenting cells (APCs). We found that one of the primary reasons behind this pro-inflammatory response is the epithelial sodium channel (ENaC), responsible for transporting sodium ions into APCs and the activation of NADPH oxidase, leading to increased oxidative stress. Oxidative stress increases lipid peroxidation and the formation of pro-inflammatory isolevuglandins (IsoLG). Long noncoding RNAs (lncRNAs) play a crucial role in regulating gene expression, and MALAT1, broadly expressed across cell types, including blood vessels and inflammatory cells, is also associated with inflammation regulation. In hypertension, the decreased transcriptional activity of nuclear factor erythroid 2-related factor 2 (Nrf2 or Nfe2l2) correlates with heightened oxidative stress in APCs and impaired control of various antioxidant genes. Kelch-like ECH-associated protein 1 (Keap1), an intracellular inhibitor of Nrf2, exhibits elevated levels of hypertension. Sodium, through an increase in Sp1 transcription factor binding at its promoter, upregulates MALAT1 expression. Silencing MALAT1 inhibits sodium-induced Keap1 upregulation, facilitating the nuclear translocation of Nrf2 and subsequent antioxidant gene transcription. Thus, MALAT1, acting via the Keap1-Nrf2 pathway, modulates antioxidant defense in hypertension. This review explores the potential role of the lncRNA MALAT1 in controlling the Keap1-Nrf2-antioxidant defense pathway in salt-induced hypertension. The inhibition of MALAT1 holds therapeutic potential for the progression of salt-induced hypertension and cardiovascular disease (CVD).


Assuntos
Hipertensão , RNA Longo não Codificante , Animais , Humanos , Regulação da Expressão Gênica , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/etiologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos
17.
Mol Cell ; 84(10): 1904-1916.e7, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759626

RESUMO

Many types of human cancers suppress the expression of argininosuccinate synthase 1 (ASS1), a rate-limiting enzyme for arginine production. Although dependency on exogenous arginine can be harnessed by arginine-deprivation therapies, the impact of ASS1 suppression on the quality of the tumor proteome is unknown. We therefore interrogated proteomes of cancer patients for arginine codon reassignments (substitutants) and surprisingly identified a strong enrichment for cysteine (R>C) in lung tumors specifically. Most R>C events did not coincide with genetically encoded R>C mutations but were likely products of tRNA misalignments. The expression of R>C substitutants was highly associated with oncogenic kelch-like epichlorohydrin (ECH)-associated protein 1 (KEAP1)-pathway mutations and suppressed by intact-KEAP1 in KEAP1-mutated cancer cells. Finally, functional interrogation indicated a key role for R>C substitutants in cell survival to cisplatin, suggesting that regulatory codon reassignments endow cancer cells with more resilience to stress. Thus, we present a mechanism for enriching lung cancer proteomes with cysteines that may affect therapeutic decisions.


Assuntos
Arginina , Cisteína , Proteína 1 Associada a ECH Semelhante a Kelch , Neoplasias Pulmonares , Proteoma , Humanos , Cisteína/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteoma/metabolismo , Arginina/metabolismo , Mutação , Argininossuccinato Sintase/metabolismo , Argininossuccinato Sintase/genética , Cisplatino/farmacologia , Linhagem Celular Tumoral , Proteômica/métodos , Regulação Neoplásica da Expressão Gênica , Sobrevivência Celular/efeitos dos fármacos , RNA de Transferência/metabolismo , RNA de Transferência/genética
18.
Pathol Oncol Res ; 30: 1611590, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605929

RESUMO

Lung cancer is a paradigm for a genetically driven tumor. A variety of drugs were developed targeting specific biomarkers requiring testing for tumor genetic alterations in relevant biomarkers. Different next-generation sequencing technologies are available for library generation: 1) anchored multiplex-, 2) amplicon based- and 3) hybrid capture-based-PCR. Anchored multiplex PCR-based sequencing was investigated for routine molecular testing within the national Network Genomic Medicine Lung Cancer (nNGM). Four centers applied the anchored multiplex ArcherDX-Variantplex nNGMv2 panel to re-analyze samples pre-tested during routine diagnostics. Data analyses were performed by each center and compiled centrally according to study design. Pre-defined standards were utilized, and panel sensitivity was determined by dilution experiments. nNGMv2 panel sequencing was successful in 98.9% of the samples (N = 90). With default filter settings, all but two potential MET exon 14 skipping variants were identified at similar allele frequencies. Both MET variants were found with an adapted calling filter. Three additional variants (KEAP1, STK11, TP53) were called that were not identified in pre-testing analyses. Only total DNA amount but not a qPCR-based DNA quality score correlated with average coverage. Analysis was successful with a DNA input as low as 6.25 ng. Anchored multiplex PCR-based sequencing (nNGMv2) and a sophisticated user-friendly Archer-Analysis pipeline is a robust and specific technology to detect tumor genetic mutations for precision medicine of lung cancer patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Reação em Cadeia da Polimerase Multiplex , Fator 2 Relacionado a NF-E2/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Mutação/genética , Sequenciamento de Nucleotídeos em Larga Escala , Biomarcadores , DNA
19.
Oncoimmunology ; 13(1): 2340154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601319

RESUMO

Metabolism reprogramming within the tumor microenvironment (TME) can have a profound impact on immune cells. Identifying the association between metabolic phenotypes and immune cells in lung adenocarcinoma (LUAD) may reveal mechanisms of resistance to immune checkpoint inhibitors (ICIs). Metabolic phenotypes were classified by expression of metabolic genes. Somatic mutations and transcriptomic features were compared across the different metabolic phenotypes. The metabolic phenotype of LUAD is predominantly determined by reductase-oxidative activity and is divided into two categories: redoxhigh LUAD and redoxlow LUAD. Genetically, redoxhigh LUAD is mainly driven by mutations in KEAP1, STK11, NRF2, or SMARCA4. These mutations are more prevalent in redoxhigh LUAD (72.5%) compared to redoxlow LUAD (17.4%), whereas EGFR mutations are more common in redoxlow LUAD (19.0% vs. 0.7%). Single-cell RNA profiling of pre-treatment and post-treatment samples from patients receiving neoadjuvant chemoimmunotherapy revealed that tissue-resident memory CD8+ T cells are responders to ICIs. However, these cells are significantly reduced in redoxhigh LUAD. The redoxhigh phenotype is primarily attributed to tumor cells and is positively associated with mTORC1 signaling. LUAD with the redoxhigh phenotype demonstrates a lower response rate (39.1% vs. 70.8%, p = 0.001), shorter progression-free survival (3.3 vs. 14.6 months, p = 0.004), and overall survival (12.1 vs. 31.2 months, p = 0.022) when treated with ICIs. The redoxhigh phenotype in LUAD is predominantly driven by mutations in KEAP1, STK11, NRF2, and SMARCA4. This phenotype diminishes the number of tissue-resident memory CD8+ T cells and attenuates the efficacy of ICIs.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP , Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Fator 2 Relacionado a NF-E2/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Oxirredução , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Imunoterapia , Mutação , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Linfócitos T , Linfócitos T CD8-Positivos , Microambiente Tumoral/genética , DNA Helicases , Proteínas Nucleares , Fatores de Transcrição
20.
Mol Biol Rep ; 51(1): 556, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642177

RESUMO

BACKGROUND: The Keap1-Nrf2 pathway serves as a central regulator that mediates transcriptional responses to xenobiotic and oxidative stimuli. Recent studies have shown that Keap1 and Nrf2 can regulate transcripts beyond antioxidant and detoxifying genes, yet the underlying mechanisms remain unclear. Our research has uncovered that Drosophila Keap1 (dKeap1) and Nrf2 (CncC) proteins can control high-order chromatin structure, including heterochromatin. METHODS AND RESULTS: In this study, we identified the molecular interaction between dKeap1 and lamin Dm0, the Drosophila B-type lamin responsible for the architecture of nuclear lamina and chromatin. Ectopic expression of dKeap1 led to an ectopic localization of lamin to the intra-nuclear area, corelated with the spreading of the heterochromatin marker H3K9me2 into euchromatin regions. Additionally, mis-regulated dKeap1 disrupted the morphology of the nuclear lamina. Knocking down of dKeap1 partially rescued the lethality induced by lamin overexpression, suggesting their genetic interaction during development. CONCLUSIONS: The discovered dKeap1-lamin interaction suggests a novel role for the Keap1 oxidative/xenobiotic response factor in regulating chromatin architecture.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch , Laminas , Lâmina Nuclear , Xenobióticos , Animais , Cromatina/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Heterocromatina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Laminas/genética , Laminas/química , Laminas/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Xenobióticos/metabolismo , Núcleo Celular/metabolismo , Lâmina Nuclear/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...