Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 382
Filtrar
1.
Mol Pharm ; 21(10): 5159-5170, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39312722

RESUMO

Zotizalkib (TPX-0131), a fourth-generation macrocyclic anaplastic lymphoma kinase (ALK) inhibitor, is designed to overcome resistance due to secondary ALK mutations in non-small cell lung cancer (NSCLC). We here evaluated the pharmacokinetic roles of the ABCB1 (P-gp/MDR1) and ABCG2 (BCRP) efflux transporters, OATP1 influx transporters and the metabolizing enzymes CES1 and CYP3A in plasma and tissue disposition of zotizalkib after oral administration in relevant mouse models. Zotizalkib was efficiently transported by hABCB1 in vitro. In vivo, a significant ∼9-fold higher brain-to-plasma ratio was observed in Abcb1a/b-/- and Abcb1a/b;Abcg2-/- compared to wild-type mice. No change in brain disposition was observed in Abcg2-/- mice, suggesting that mAbcb1a/b markedly restricts the brain accumulation of zotizalkib. ABCB1-mediated efflux of zotizalkib was completely inhibited by elacridar, a dual ABCB1/ABCG2 inhibitor, increasing brain exposure without any signs of acute CNS-related toxicities. In Oatp1a/b-/- mice, no marked changes in plasma exposure or tissue-to-plasma ratios were observed, indicating that zotizalkib is not a substantial in vivo substrate for mOatp1a/b. Zotizalkib may further be metabolized by CYP3A4 but only noticeably at low plasma concentrations. In Ces1-/- mice, a 2.5-fold lower plasma exposure was seen compared to wild-type, without alterations in tissue distribution. This suggests increased plasma retention of zotizalkib by binding to the abundant mouse plasma Ces1c. Notably, the hepatic expression of human CES1 did not affect zotizalkib plasma exposure or tissue distribution. The obtained pharmacokinetic insights may be useful for the further development and optimization of therapeutic efficacy and safety of zotizalkib and related compact macrocyclic ALK inhibitors.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Quinase do Linfoma Anaplásico , Encéfalo , Animais , Camundongos , Encéfalo/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Quinase do Linfoma Anaplásico/metabolismo , Quinase do Linfoma Anaplásico/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Camundongos Knockout , Masculino , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Humanos , Distribuição Tecidual , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Carboxilesterase/metabolismo , Carboxilesterase/antagonistas & inibidores , Carboxilesterase/genética , Administração Oral , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/genética , Proteína 1 Transportadora de Ânions Orgânicos/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo
2.
Mol Pharm ; 21(9): 4603-4617, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39166754

RESUMO

Modulation of the transport-mediated active uptake by human serum albumin (HSA) for highly protein-bound substrates has been reported and improved the in vitro-to-in vivo extrapolation (IVIVE) of hepatic clearance. However, evidence for the relevance of such a phenomenon in the case of renal transporters is sparse. In this study, transport of renal organic anion transporter 1 or 3 (OAT1/3) substrates into conditionally immortalized proximal tubular epithelial cells transduced with OAT1/3 was measured in the presence and absence of 1 and 4% HSA while keeping the unbound substrate concentration constant (based on measured fraction unbound, fu,inc). In the presence of 4% HSA, the unbound intrinsic active uptake clearance (CLint,u,active) of six highly protein-bound substrates increased substantially relative to the HSA-free control (3.5- to 122-fold for the OAT1 CLint,u,active, and up to 28-fold for the OAT3 CLint,u,active). The albumin-mediated uptake effect (fold increase in CLint,u,active) was more pronounced with highly bound substrates compared to no effect seen for weakly protein-bound substrates adefovir (OAT1-specific) and oseltamivir carboxylate (OAT3-specific). The relationship between OAT1/3 CLint,u,active and fu,inc agreed with the facilitated-dissociation model; a relationship was established between the albumin-mediated fold change in CLint,u,active and fu,inc for both the OAT1 and OAT3, with implications for IVIVE modeling. The relative activity factor and the relative expression factor based on global proteomic quantification of in vitro OAT1/3 expression were applied for IVIVE of renal clearance. The inclusion of HSA improved the bottom-up prediction of the level of OAT1/3-mediated secretion and renal clearance (CLsec and CLr), in contrast to the underprediction observed with the control (HSA-free) scenario. For the first time, this study confirmed the presence of the albumin-mediated uptake effect with renal OAT1/3 transporters; the extent of the effect was more pronounced for highly protein-bound substrates. We recommend the inclusion of HSA in routine in vitro OAT1/3 assays due to considerable improvements in the IVIVE of CLsec and CLr.


Assuntos
Proteína 1 Transportadora de Ânions Orgânicos , Transportadores de Ânions Orgânicos Sódio-Independentes , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Humanos , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transporte Biológico/fisiologia , Rim/metabolismo , Animais , Túbulos Renais Proximais/metabolismo , Albumina Sérica/metabolismo , Albumina Sérica Humana/metabolismo , Linhagem Celular
3.
Cell Rep Med ; 5(8): 101690, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39168099

RESUMO

Hyperuricemic nephropathy (HN) is a global metabolic disorder characterized by uric acid (UA) metabolism dysfunction, resulting in hyperuricemia (HUA) and tubulointerstitial fibrosis (TIF). Sodium-dependent glucose transporter 2 inhibitor, dapagliflozin, has shown potential in reducing serum UA levels in patients with chronic kidney disease (CKD), though its protective effects against HN remain uncertain. This study investigates the functional, pathological, and molecular changes in HN through histological, biochemical, and transcriptomic analyses in patients, HN mice, and UA-stimulated HK-2 cells. Findings indicate UA-induced tubular dysfunction and fibrotic activation, which dapagliflozin significantly mitigates. Transcriptomic analysis identifies estrogen-related receptor α (ERRα), a downregulated transcription factor in HN. ERRα knockin mice and ERRα-overexpressed HK-2 cells demonstrate UA resistance, while ERRα inhibition exacerbates UA effects. Dapagliflozin targets ERRα, activating the ERRα-organic anion transporter 1 (OAT1) axis to enhance UA excretion and reduce TIF. Furthermore, dapagliflozin ameliorates renal fibrosis in non-HN CKD models, underscoring the therapeutic significance of the ERRα-OAT1 axis in HN and CKD.


Assuntos
Compostos Benzidrílicos , Fibrose , Glucosídeos , Hiperuricemia , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Compostos Benzidrílicos/farmacologia , Fibrose/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Hiperuricemia/tratamento farmacológico , Hiperuricemia/complicações , Humanos , Camundongos , Masculino , Receptor ERRalfa Relacionado ao Estrogênio , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Nefropatias/metabolismo , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Camundongos Endogâmicos C57BL , Ácido Úrico/sangue , Receptores de Estrogênio/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/genética , Linhagem Celular , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/patologia , Modelos Animais de Doenças , Feminino
4.
Chem Biol Interact ; 399: 111123, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38964638

RESUMO

Pharmacokinetic changes induced by radiation following radiotherapy ("RT-PK" phenomenon) are of great significance to the effectiveness and safety of chemotherapeutic agents in clinical settings. The aims of this study were to clarify the organic anion transporters (Oats) involved in the "RT-PK" phenomenon of bestatin in rats following X-ray irradiation and to elucidate its potential mechanism via vitamin D signalling. Pharmacokinetic studies, uptake assays using rat kidney slices and primary proximal tubule cells, and molecular biological studies were performed. Significantly increased plasma concentrations and systemic exposure to bestatin were observed at 24 and 48 h following abdominal X-ray irradiation, regardless of oral or intravenous administration of the drugs in rats. Reduced renal clearance and cumulative urinary excretion of bestatin were observed at 24 and 48 h post-irradiation in rats following intravenous administration. The uptake of the probe substrates p-aminohippuric acid and oestrone 3-sulfate sodium in vitro and the expression of Oat1 and Oat3 in vivo were reduced in the corresponding models following irradiation. Moreover, the upregulation of the vitamin D receptor (Vdr) in mRNA and protein levels negatively correlated with the expressions and functions of Oat1 and Oat3 following irradiation. Additionally, elevated plasma urea nitrogen levels and histopathological changes were observed in rats after exposure to irradiation. The "RT-PK" phenomenon of bestatin occurs in rats after exposure to irradiation, possibly resulting in the regulation of the expressions and activities of renal Oats via activation of the Vdr signalling pathway.


Assuntos
Regulação para Baixo , Rim , Receptores de Calcitriol , Animais , Ratos , Receptores de Calcitriol/metabolismo , Masculino , Rim/metabolismo , Rim/efeitos da radiação , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/efeitos da radiação , Ratos Sprague-Dawley , Raios X , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/efeitos da radiação , Túbulos Renais Proximais/efeitos dos fármacos , Leucina/análogos & derivados
5.
Nutrients ; 16(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39064685

RESUMO

The organic anion transporters OAT1 (SLC22A6) and OAT3 (SLC22A8) are drug transporters that are expressed in the kidney, with well-established roles in the in vivo transport of drugs and endogenous metabolites. A comparatively unexplored potential function of these drug transporters is their contribution to the in vivo regulation of natural products (NPs) and their effects on endogenous metabolism. This is important for the evaluation of potential NP interactions with other compounds at the transporter site. Here, we have analyzed the NPs present in several well-established databases from Asian (Chinese, Indian Ayurvedic) and other traditions. Loss of OAT1 and OAT3 in murine knockouts caused serum alterations of many NPs, including flavonoids, vitamins, and indoles. OAT1- and OAT3-dependent NPs were largely separable based on a multivariate analysis of chemical properties. Direct binding to the transporter was confirmed using in vitro transport assays and protein binding assays. Our in vivo and in vitro results, considered in the context of previous data, demonstrate that OAT1 and OAT3 play a pivotal role in the handling of non-synthetic small molecule natural products, NP-derived antioxidants, phytochemicals, and nutrients (e.g., pantothenic acid, thiamine). As described by remote sensing and signaling theory, drug transporters help regulate redox states by meditating the movement of endogenous antioxidants and nutrients between organs and organisms. Our results demonstrate how dietary antioxidants and other NPs might feed into these inter-organ and inter-organismal pathways.


Assuntos
Antioxidantes , Produtos Biológicos , Proteína 1 Transportadora de Ânions Orgânicos , Transportadores de Ânions Orgânicos Sódio-Independentes , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/genética , Animais , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Camundongos , Nutrientes/metabolismo , Camundongos Knockout , Humanos , Transporte Biológico , Rim/metabolismo , Flavonoides/farmacocinética , Flavonoides/metabolismo
6.
Eur J Clin Pharmacol ; 80(7): 1069-1078, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38546841

RESUMO

PURPOSE: Adefovir (as dipivoxil) was selected as a probe drug in a previous transporter cocktail phenotyping study to assess renal organic anion transporter 1 (OAT1), with renal clearance (CLR) as the primary parameter describing renal elimination. An approximately 20% higher systemic exposure of adefovir was observed when combined with other cocktail components (metformin, sitagliptin, pitavastatin, and digoxin) compared to sole administration. The present evaluation applied a population pharmacokinetic (popPK) modeling approach to describe adefovir pharmacokinetics as a cocktail component in more detail. METHODS: Data from 24 healthy subjects were reanalyzed. After establishing a base model, covariate effects, including the impact of co-administered drugs, were assessed using forward inclusion then backward elimination. RESULTS: A one-compartment model with first-order absorption (including lag time) and a combination of nonlinear renal and linear nonrenal elimination best described the data. A significantly higher apparent bioavailability (73.6% vs. 59.0%) and a lower apparent absorption rate constant (2.29 h-1 vs. 5.18 h-1) were identified in the combined period compared to the sole administration period, while no difference was seen in renal elimination. The population estimate for the Michaelis-Menten constant (Km) of the nonlinear renal elimination was 170 nmol/L, exceeding the observed range of adefovir plasma maximum concentration, while the maximum rate (Vmax) of nonlinear renal elimination was 2.40 µmol/h at the median absolute estimated glomerular filtration rate of 105 mL/min. CONCLUSION: The popPK modeling approach indicated that the co-administration primarily affected the apparent absorption and/or prodrug conversion of adefovir dipivoxil, resulting in the minor drug-drug interaction observed for adefovir as a victim. However, renal elimination remained unaffected. The high Km value suggests that assessing renal OAT1 activity by CLR has no relevant misspecification error with the cocktail doses used.


Assuntos
Adenina , Modelos Biológicos , Organofosfonatos , Humanos , Organofosfonatos/farmacocinética , Organofosfonatos/sangue , Organofosfonatos/administração & dosagem , Adenina/análogos & derivados , Adenina/farmacocinética , Adenina/administração & dosagem , Masculino , Adulto , Feminino , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/genética , Interações Medicamentosas , Fenótipo , Pessoa de Meia-Idade , Adulto Jovem , Digoxina/farmacocinética , Digoxina/sangue , Digoxina/administração & dosagem , Metformina/farmacocinética , Metformina/administração & dosagem , Metformina/sangue , Fosfato de Sitagliptina/farmacocinética , Disponibilidade Biológica
7.
Fitoterapia ; 175: 105926, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537887

RESUMO

Hyperuricemia (HUA) is a metabolic disease characterized by the increase of serum uric acid (UA) level. Sargentodoxae Caulis (SC) is a commonly used herbal medicine for the treatment of gouty arthritis, traumatic swelling, and rheumatic arthritis in clinic. In this study, a total of fifteen compounds were identified in SC water extract using UHPLC-Q-TOF-MS/MS, including three phenolic acids, seven phenolic glycosides, four organic acids, and one lignan. Then, to study the hypouricemia effect of SC, a HUA mouse model was induced using a combination of PO, HX, and 20% yeast feed. After 14 days of treatment with the SC water extract, the levels of serum UA, creatinine (CRE), blood urea nitrogen (BUN) were reduced significantly, and the organ indexes were restored, the xanthine oxidase (XOD) activity were inhibited as well. Meanwhile, SC water extract could ameliorate the pathological status of kidneys and intestine of HUA mice. Additionally, quantitative real-time PCR (qRT-PCR) and western blotting results showed that SC water extract could increase the expression of ATP binding cassette subfamily G member 2 (ABCG2), organic cation transporter 1 (OCT1), organic anion transporter 1 (OAT1) and organic anion transporter 3 (OAT3), whereas decrease the expression of glucose transporter 9 (GLUT9). This study provided a data support for the clinical application of SC in the treatment of HUA.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Hiperuricemia , Ácido Úrico , Xantina Oxidase , Animais , Camundongos , Hiperuricemia/tratamento farmacológico , Masculino , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácido Úrico/sangue , Xantina Oxidase/metabolismo , Modelos Animais de Doenças , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Rim/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Transportadores de Ânions Orgânicos/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Hidroxibenzoatos/isolamento & purificação , Hidroxibenzoatos/farmacologia
8.
Nat Struct Mol Biol ; 30(11): 1794-1805, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37845412

RESUMO

Organic anion transporters (OATs) of the SLC22 family have crucial roles in the transport of organic anions, including metabolites and therapeutic drugs, and in transporter-mediated drug-drug interactions. In the kidneys, OATs facilitate the elimination of metabolic waste products and xenobiotics. However, their transport activities can lead to the accumulation of certain toxic compounds within cells, causing kidney damage. Moreover, OATs are important drug targets, because their inhibition modulates the elimination or retention of substrates linked to diseases. Despite extensive research on OATs, the molecular basis of their substrate and inhibitor binding remains poorly understood. Here we report the cryo-EM structures of rat OAT1 (also known as SLC22A6) and its complexes with para-aminohippuric acid and probenecid at 2.1, 2.8 and 2.9 Å resolution, respectively. Our findings reveal a highly conserved substrate binding mechanism for SLC22 transporters, wherein four aromatic residues form a cage to accommodate the polyspecific binding of diverse compounds.


Assuntos
Proteína 1 Transportadora de Ânions Orgânicos , Transportadores de Ânions Orgânicos , Ratos , Animais , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Microscopia Crioeletrônica , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Rim/metabolismo
9.
Biochem Pharmacol ; 218: 115867, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37866801

RESUMO

Transporter-mediated drug-drug interactions (DDIs) are assessed using probe drugs and in vitro and in vivo models during drug development. The utility of endogenous metabolites as transporter biomarkers is emerging for prediction of DDIs during early phases of clinical trials. Endogenous metabolites such as pyridoxic acid and kynurenic acid have shown potential to predict DDIs mediated by organic anion transporters (OAT1 and OAT3). However, these metabolites have not been assessed in rats as potential transporter biomarkers. We carried out a rat pharmacokinetic DDI study using probenecid and furosemide as OAT inhibitor and substrate, respectively. Probenecid administration led to a 3.8-fold increase in the blood concentrations and a 3-fold decrease in renal clearance of furosemide. High inter-individual and intra-day variability in pyridoxic acid and kynurenic acid, and no or moderate effect of probenecid administration on these metabolites suggest their limited utility for prediction of Oat-mediated DDI in rats. Therefore, rat blood and urine samples were further analysed using untargeted metabolomics. Twenty-one m/z features (out of >8000 detected features) were identified as putative biomarkers of rat Oat1 and Oat3 using a robust biomarker qualification approach. These m/z features belong to metabolic pathways such as fatty acid analogues, peptides, prostaglandin analogues, bile acid derivatives, flavonoids, phytoconstituents, and steroids, and can be used as a panel to decrease variability caused by processes other than Oats. When validated, these putative biomarkers will be useful in predicting DDIs caused by Oats in rats.


Assuntos
Transportadores de Ânions Orgânicos , Ratos , Animais , Transportadores de Ânions Orgânicos/metabolismo , Probenecid/farmacologia , Probenecid/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Eliminação Renal , Furosemida/farmacologia , Furosemida/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Ácido Cinurênico/metabolismo , Ácido Cinurênico/farmacologia , Ácido Piridóxico/metabolismo , Ácido Piridóxico/farmacologia , Interações Medicamentosas , Biomarcadores/metabolismo , Rim/metabolismo
10.
Int J Mol Sci ; 24(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37895098

RESUMO

Organic anion transporters 1 and 3 (OAT1 and OAT3) play a crucial role in kidney function by regulating the secretion of multiple renally cleared small molecules and toxic metabolic by-products. Assessing the activity of these transporters is essential for drug development purposes as they can significantly impact drug disposition and safety. OAT1 and OAT3 are amongst the most abundant drug transporters expressed in human renal proximal tubules. However, their expression is lost when cells are isolated and cultured in vitro, which is a persistent issue across all human and animal renal proximal tubule cell models, including primary cells and cell lines. Although it is well known that the overall expression of drug transporters is affected in vitro, the underlying reasons for the loss of OAT1 and OAT3 are still not fully understood. Nonetheless, research into the regulatory mechanisms of these transporters has provided insights into the molecular pathways underlying their expression and activity. In this review, we explore the regulatory mechanisms that govern the expression and activity of OAT1 and OAT3 and investigate the physiological changes that proximal tubule cells undergo and that potentially result in the loss of these transporters. A better understanding of the regulation of these transporters could aid in the development of strategies, such as introducing microfluidic conditions or epigenetic modification inhibitors, to improve their expression and activity in vitro and to create more physiologically relevant models. Consequently, this will enable more accurate assessment for drug development and safety applications.


Assuntos
Transportadores de Ânions Orgânicos Sódio-Independentes , Transportadores de Ânions Orgânicos , Animais , Humanos , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Proteína 1 Transportadora de Ânions Orgânicos/genética , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Células Epiteliais/metabolismo , Transportadores de Ânions Orgânicos/metabolismo
11.
Xenobiotica ; 53(8-9): 559-571, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37885225

RESUMO

Cisplatin is a widely used chemotherapeutic agent to treat solid tumours in clinics. However, cisplatin-induced acute kidney injury (AKI) limits its clinical application. This study investigated the effect of hyperoside (a flavonol glycoside compound) on regulating AKI.The model of cisplatin-induced AKI was established, and hyperoside was preadministered to investigate its effect on improving kidney injury.Hyperoside ameliorated renal pathological damage, reduced the accumulation of SCr, BUN, Kim-1 and indoxyl sulphate in vivo, increased the excretion of indoxyl sulphate into the urine, and upregulated the expression of renal organic anion transporter 1 (Oat1). Moreover, evaluation of rat kidney slices demonstrated that hyperoside promoted the uptake of PAH (p-aminohippurate, the Oat1 substrate), which was confirmed by transient over-expression of OAT1 in HEK-293T cells. Additionally, hyperoside upregulated the mRNA expression of Oat1 upstream regulators hepatocyte nuclear factor-1α (HNF-1α) and pregnane X receptor (PXR).These findings indicated hyperoside could protect against cisplatin-induced AKI by promoting indoxyl sulphate excretion through regulating the expression and function of Oat1, suggesting hyperoside may offer a potential tactic for cisplatin-induced AKI treatment.


Assuntos
Injúria Renal Aguda , Cisplatino , Ratos , Animais , Cisplatino/efeitos adversos , Cisplatino/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/genética , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Indicã/toxicidade , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Rim/metabolismo
12.
Front Biosci (Landmark Ed) ; 28(9): 228, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37796687

RESUMO

BACKGROUND: Disorders of purine metabolism are the main cause of hyperuricemia. Current drugs for the treatment of hyperuricemia usually cause a degree of cardiovascular damage. METHODS: This study aimed to investigate the therapeutic effects of Armillaria mellea fruiting body (AFB), Armillaria rhizomorph (AR) and Armillaria mellea fermentation product (after rhizomorphs removal) (AFP) on hyperuricemic mice. The hyperuricemia mouse model was established by oral administration of potassium oxonate 0.9 g⋅kg-1 and hypoxanthine 0.5 g⋅kg-1 for two weeks. Starting from the third week, the intragastric administration of the intervention drug group was as follows: Allopurinol 0.013 g⋅kg-1, AFB (3.9 and 7.8 g⋅kg-1), AR (3.9 and 7.8 g⋅kg-1), AFP (1.95 and 3.9 g⋅kg-1) once daily for 14 days. RESULTS: Results showed that AFB, AR, and AFP reduced the contents of serum uric acid, serum creatinine, and blood urea nitrogen in hyperuricemic mice and the mechanism of action might be through up-regulation of the expression levels of organic anion transporter 1/organic anion transporter 3 proteins in kidney tissue. AR and AFP both exhibited better uric acid-lowering effects than AFB, which may be due to the higher purine content of AFB. CONCLUSIONS: Armillaria mellea and its fermentation products can treat hyperuricemia by up-regulating OAT1 protein and OAT3 protein, reducing uric acid content in mice.


Assuntos
Armillaria , Mel , Hiperuricemia , Transportadores de Ânions Orgânicos , Camundongos , Animais , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/genética , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Armillaria/metabolismo , Rim , Ácido Úrico/metabolismo , Ácido Úrico/farmacologia , Fermentação , alfa-Fetoproteínas , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/farmacologia , Transportadores de Ânions Orgânicos/uso terapêutico , Purinas/metabolismo , Purinas/farmacologia , Purinas/uso terapêutico
13.
Nat Struct Mol Biol ; 30(11): 1786-1793, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37482561

RESUMO

In mammals, the kidney plays an essential role in maintaining blood homeostasis through the selective uptake, retention or elimination of toxins, drugs and metabolites. Organic anion transporters (OATs) are responsible for the recognition of metabolites and toxins in the nephron and their eventual urinary excretion. Inhibition of OATs is used therapeutically to improve drug efficacy and reduce nephrotoxicity. The founding member of the renal organic anion transporter family, OAT1 (also known as SLC22A6), uses the export of α-ketoglutarate (α-KG), a key intermediate in the Krebs cycle, to drive selective transport and is allosterically regulated by intracellular chloride. However, the mechanisms linking metabolite cycling, drug transport and intracellular chloride remain obscure. Here, we present cryogenic-electron microscopy structures of OAT1 bound to α-KG, the antiviral tenofovir and clinical inhibitor probenecid, used in the treatment of Gout. Complementary in vivo cellular assays explain the molecular basis for α-KG driven drug elimination and the allosteric regulation of organic anion transport in the kidney by chloride.


Assuntos
Cloretos , Proteína 1 Transportadora de Ânions Orgânicos , Animais , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Cloretos/metabolismo , Rim/metabolismo , Transporte Biológico , Ânions/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mamíferos/metabolismo
14.
Drug Metab Dispos ; 51(9): 1177-1187, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37385755

RESUMO

The proximal tubule plays an important role in the kidney and is a major site of drug interaction and toxicity. Analysis of kidney toxicity via in vitro assays is challenging, because only a few assays that reflect functions of drug transporters in renal proximal tubular epithelial cells (RPTECs) are available. In this study, we aimed to develop a simple and reproducible method for culturing RPTECs by monitoring organic anion transporter 1 (OAT1) as a selection marker. Culturing RPTECs in spherical cellular aggregates increased OAT1 protein expression, which was low in the conventional two-dimensional (2D) culture, to a level similar to that in human renal cortices. By proteome analysis, it was revealed that the expression of representative two proximal tubule markers was maintained and 3D spheroid culture improved the protein expression of approximately 7% of the 139 transporter proteins detected, and the expression of 2.3% of the 4,800 proteins detected increased by approximately fivefold that in human renal cortices. Furthermore, the expression levels of approximately 4,800 proteins in three-dimensional (3D) RPTEC spheroids (for 12 days) were maintained for over 20 days. Cisplatin and adefovir exhibited transporter-dependent ATP decreases in 3D RPTEC spheroids. These results indicate that the 3D RPTEC spheroids developed by monitoring OAT1 gene expression are a simple and reproducible in vitro experimental system with improved gene and protein expressions compared with 2D RPTECs and were more similar to that in human kidney cortices. Therefore, it can potentially be used for evaluating human renal proximal tubular toxicity and drug disposition. SIGNIFICANCE STATEMENT: This study developed a simple and reproducible spheroidal culture method with acceptable throughput using commercially available RPTECs by monitoring OAT1 gene expression. RPTECs cultured using this new method showed improved mRNA/protein expression profiles to those in 2D RPTECs and were more similar to those of human kidney cortices. This study provides a potential in vitro proximal tubule system for pharmacokinetic and toxicological evaluations during drug development.


Assuntos
Rim , Proteína 1 Transportadora de Ânions Orgânicos , Humanos , Rim/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/genética , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Expressão Gênica , Células Epiteliais/metabolismo
15.
Drug Metab Dispos ; 51(7): 844-850, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37059471

RESUMO

Organic anion transporters 1 and 3 (OAT1/3) occupy a key role in mediating renal elimination. Kynurenic acid (KYNA) was previously discovered as an effective endogenous biomarker to assess drug-drug interaction (DDI) for OAT inhibitors. Here, further in vitro and in vivo investigation was performed to characterize the elimination routes and feasibility of KYNA, along with other reported endogenous metabolites, as biomarkers of Oat1/3 inhibition in bile duct-cannulated (BDC) cynomolgus monkeys. Our results suggested that KYNA is a substrate of OAT1/3 and OAT2, but not OCT2, MATE1/2K, or NTCP, and that it shares comparable affinities between OAT1 and OAT3. Renal and biliary excretions and plasma concentration-time profiles of KYNA, pyridoxic acid (PDA), homovanillic acid (HVA), and coproporphyrin I (CP-I) were assessed in BDC monkeys dosed with either probenecid (PROB) at 100 mg/kg or the control vehicle. Renal excretion of KYNA, PDA, and HVA was determined to be the major elimination route. The maximum concentration and the area under the plasma concentration-time curve (Cmax and AUC0-24h) of KYNA were about 11.6- and 3.7-fold higher in the PROB group than in the vehicle group. Renal clearance of KYNA decreased by 3.2-fold, but biliary clearance (CLbile) was not altered after PROB administration. A similar trend was observed for PDA and HVA. Interestingly, an elevation of plasma concentration and reduction of CP-I CLbile were observed after PROB treatment, which suggested inhibition of the CP-I Oatp-Mrp2 transport axis by PROB. Overall, our results indicated that KYNA could potentially facilitate early and reliable assessment of DDI liabilities of Oat inhibition in monkeys. SIGNIFICANCE STATEMENT: This work reported renal excretion as the major elimination pathway for kynurenic acid, pyridoxic acid, and homovanillic acid. Administration of probenecid reduced renal clearance and increased plasma exposure of these biomarkers in monkeys, consistent with the observation in humans. These endogenous biomarkers discovered in monkeys could be potentially used to evaluate the clinical drug-drug interactions in the early phase of drug development.


Assuntos
Transportadores de Ânions Orgânicos , Probenecid , Humanos , Animais , Macaca fascicularis/metabolismo , Probenecid/farmacologia , Probenecid/metabolismo , Ácido Piridóxico , Ácido Homovanílico , Estudos de Viabilidade , Ácido Cinurênico , Transportadores de Ânions Orgânicos/metabolismo , Biomarcadores/metabolismo , Interações Medicamentosas , Rim/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo
16.
Molecules ; 28(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36838982

RESUMO

Bentysrepinine (Y101) is a novel phenylalanine dipeptide for the treatment of hepatitis B virus. Renal excretion played an important role in the elimination of Y101 and its metabolites, M8 and M9, in healthy Chinese subjects, although the molecular mechanisms of renal excretion and potential drug-drug interactions (DDIs) remain unclear. The present study aimed to determine the organic anion transporters (OATs) involved in the renal disposition of Y101 and to predict the potential DDI between Y101 and entecavir, the first-line agent against HBV and a substrate of OAT1/3. Pharmacokinetic studies and uptake assays using rat kidney slices, as well as hOAT1/3-HEK293 cells, were performed to evaluate potential DDI. The co-administration of probenecid (an inhibitor of OATs) significantly increased the plasma concentrations and area under the plasma concentration-time curves of M8 and M9 but not Y101, while reduced renal clearance and the cumulative urinary excretion of M8 were observed in rats. The time course of Y101 and M8 uptake via rat kidney slices was temperature-dependent. Moreover, the uptake of M8 was inhibited significantly by probenecid and benzylpenicillin, but not by p-aminohippurate or tetraethyl ammonium. M8 was found to be a substrate of hOAT3, but Y101 is not a substrate of either hOAT1 or hOAT3. Additionally, the entecavir inhibited the uptake of M8 in the hOAT3-transfected cells and rat kidney slices in vitro. Interestingly, no significant changes were observed in the pharmacokinetic parameters of Y101, M8 or entecavir, regardless of intravenous or oral co-administration of Y101 and entecavir in rats. In conclusion, M8 is a substrate of OAT3 in rats and humans. Furthermore, M8 also mediates the DDI between Y101 and entecavir in vitro, mediated by OAT3. We speculate that it would be safe to use Y101 with entecavir in clinical practice. Our results provide useful information with which to predict the DDIs between Y101 and other drugs that act as substrates of OAT3.


Assuntos
Proteína 1 Transportadora de Ânions Orgânicos , Transportadores de Ânions Orgânicos Sódio-Independentes , Humanos , Ratos , Animais , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Probenecid/metabolismo , Probenecid/farmacologia , Ratos Wistar , Células HEK293 , Dipeptídeos/metabolismo , Interações Medicamentosas , Rim/metabolismo
17.
AAPS J ; 25(1): 13, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627500

RESUMO

Organic anion transporter 1 (OAT1) expressed in the kidney plays an important role in the elimination of numerous anionic drugs used in the clinic. We report here that insulin, a pancreas-secreted hormone, regulated the expression and activity of kidney-specific OAT1 both in cultured cells and in rats. We showed that treatment of OAT1-expressing cells with insulin led to an increase in OAT1 expression, transport activity, and SUMOylation. Such insulin-induced increase was blocked by afuresertib, a specific inhibitor for protein kinase B (PKB), suggesting insulin regulates OAT1 through PKB signaling pathway. Furthermore, insulin stimulated transport activity and SUMOylation of endogenously expressed OAT1 in rat kidneys. In conclusion, our data support a remote sensing and signaling model, in which OAT1 plays an essential role in intercellular and inter-organ communication and in maintaining local and whole-body homeostasis. Such complex and dedicated communication is carried out by insulin, and PKB signaling and membrane sorting.


Assuntos
Insulina , Proteína 1 Transportadora de Ânions Orgânicos , Ratos , Animais , Insulina/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Tecnologia de Sensoriamento Remoto , Rim/metabolismo , Transdução de Sinais , Hormônios Pancreáticos/metabolismo , Insulina Regular Humana , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo
18.
Sci Rep ; 12(1): 18308, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316339

RESUMO

In vitro and in vivo studies have established the organic anion transporters OAT1 (SLC22A6, NKT) and OAT3 (SLC22A8) among the main multi-specific "drug" transporters. They also transport numerous endogenous metabolites, raising the possibility of drug-metabolite interactions (DMI). To help understand the role of these drug transporters on metabolism across scales ranging from organ systems to organelles, a formal multi-scale analysis was performed. Metabolic network reconstructions of the omics-alterations resulting from Oat1 and Oat3 gene knockouts revealed links between the microbiome and human metabolism including reactions involving small organic molecules such as dihydroxyacetone, alanine, xanthine, and p-cresol-key metabolites in independent pathways. Interestingly, pairwise organ-organ interactions were also disrupted in the two Oat knockouts, with altered liver, intestine, microbiome, and skin-related metabolism. Compared to older models focused on the "one transporter-one organ" concept, these more sophisticated reconstructions, combined with integration of a multi-microbial model and more comprehensive metabolomics data for the two transporters, provide a considerably more complex picture of how renal "drug" transporters regulate metabolism across the organelle (e.g. endoplasmic reticulum, Golgi, peroxisome), cellular, organ, inter-organ, and inter-organismal scales. The results suggest that drugs interacting with OAT1 and OAT3 can have far reaching consequences on metabolism in organs (e.g. skin) beyond the kidney. Consistent with the Remote Sensing and Signaling Theory (RSST), the analysis demonstrates how transporter-dependent metabolic signals mediate organ crosstalk (e.g., gut-liver-kidney) and inter-organismal communication (e.g., gut microbiome-host).


Assuntos
Microbioma Gastrointestinal , Proteína 1 Transportadora de Ânions Orgânicos , Transportadores de Ânions Orgânicos Sódio-Independentes , Humanos , Redes e Vias Metabólicas , Metabolômica , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo
19.
Eur J Pharm Sci ; 175: 106217, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35644507

RESUMO

The organic anion transporter 1 (OAT1) is mainly expressed in proximal tubule cells, where it mediates the renal uptake of endogenous and exogenous compounds. Thereby, it has enormous clinical relevance particularly in drug-drug interactions. The aim of the present in vitro study was to elucidate potential species dependent disparity of human and mouse OAT1 in handling of structural diverse drugs and pesticides. A basic functional comparison of the two transporters showed a similar time-dependent uptake of the substrate para-aminohippuric acid (PAH), the affinity (Km) was 94 µM for hOAT1 and 32 µM for mOat1. Inhibition experiments for hOAT1 and mOat1 provided IC50 values for glibenclamide of 5.1 and 6.4 µM and for probenecid of 31 and 11 µM. Than the interaction of hOAT1 and mOat1 with 23 drugs and 13 pesticides was examined. Three pesticides and thirteen drugs showed high inhibitory potency of 50% or more to both transporters. Furthermore, we identified rosiglitazone as a differential active inhibitor, with stronger inhibitory properties (IC50) to mOat1 (7.7 µM) than to hOAT1 (31 µM), and olmesartan with the most pronounced difference: The IC50 of hOAT1 (0.40 µM) was 48-fold lower than of mOat1 (19 µM). In conclusion, we found a strong correlation for the inhibitory effects of most drugs and pesticides on human and mouse OAT1. But the example of olmesartan shows that species differences have to be considered when extrapolating data from mouse to human.


Assuntos
Proteína 1 Transportadora de Ânions Orgânicos , Praguicidas , Animais , Transporte Biológico , Humanos , Rim/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Praguicidas/metabolismo
20.
Clin Pharmacol Ther ; 112(3): 653-664, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35490380

RESUMO

Probenecid is used to treat gout and hyperuricemia as well as increase plasma levels of antiviral drugs and antibiotics. In vivo, probenecid mainly inhibits the renal SLC22 organic anion transporters OAT1 (SLC22A6), OAT3 (SLC22A8), and URAT1 (SLC22A12). To understand the endogenous role of these transporters in humans, we administered probenecid to 20 healthy participants and metabolically profiled the plasma and urine before and after dosage. Hundreds of metabolites were significantly altered, indicating numerous drug-metabolite interactions. We focused on potential OAT1 substrates by identifying 97 metabolites that were significantly elevated in the plasma and decreased in the urine, indicating OAT-mediated clearance. These included signaling molecules, antioxidants, and gut microbiome products. In contrast, urate was the only metabolite significantly decreased in the plasma and elevated in the urine, consistent with an effect on renal reuptake by URAT1. Additional support comes from metabolomics analyses of our Oat1 and Oat3 knockout mice, where over 50% of the metabolites that were likely OAT substrates in humans were elevated in the serum of the mice. Fifteen of these compounds were elevated in both knockout mice, whereas six were exclusive to the Oat1 knockout and 4 to the Oat3 knockout. These may be endogenous biomarkers of OAT function. We also propose a probenecid stress test to evaluate kidney proximal tubule organic anion transport function in kidney disease. Consistent with the Remote Sensing and Signaling Theory, the profound changes in metabolite levels following probenecid treatment support the view that SLC22 transporters are hubs in the regulation of systemic human metabolism.


Assuntos
Transportadores de Ânions Orgânicos , Proteínas de Transporte de Cátions Orgânicos , Animais , Ânions/metabolismo , Ânions/farmacologia , Humanos , Rim/metabolismo , Camundongos , Camundongos Knockout , Proteína 1 Transportadora de Ânions Orgânicos/antagonistas & inibidores , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Probenecid/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...