Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.054
Filtrar
1.
BMC Infect Dis ; 24(1): 893, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39217296

RESUMO

The present study utilized network pharmacology to identify therapeutic targets and mechanisms of Rehmannia glutinosa in sepsis treatment. RNA-sequencing was conducted on peripheral blood samples collected from 23 sepsis patients and 10 healthy individuals. Subsequently, the RNA sequence data were analyzed for differential expression. Identification of active components and their putative targets was achieved through the HERB and SwissTarget Prediction databases, respectively. Functional enrichment analysis was performed using GO and KEGG pathways. Additionally, protein-protein interaction networks were constructed and survival analysis of key targets was conducted. Single-cell RNA sequencing provided cellular localization data, while molecular docking explored interactions with central targets. Results indicated significant involvement of identified targets in inflammation and Th17 cell differentiation. Survival analysis linked several targets with mortality rates, while molecular docking highlighted potential interactions between active components and specific targets, such as rehmaionoside a with ADAM17 and rehmapicrogenin with CD81. Molecular dynamics simulations confirmed the stability of these interactions, suggesting Rehmannia glutinosa's role in modulating immune functions in sepsis.


Assuntos
Simulação de Acoplamento Molecular , Farmacologia em Rede , Rehmannia , Sepse , Humanos , Sepse/tratamento farmacológico , Rehmannia/química , Masculino , Feminino , Pessoa de Meia-Idade , Simulação de Dinâmica Molecular , Mapas de Interação de Proteínas , Idoso , Adulto , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Proteína ADAM17/metabolismo , Proteína ADAM17/genética
2.
Sci Rep ; 14(1): 17703, 2024 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085289

RESUMO

Renal interstitial fibrosis (RIF) is a prevalent consequence of chronic renal diseases, characterized by excessive extracellular matrix (ECM) deposition. A Disintegrin and Metalloprotease 17 (ADAM17), a transmembrane metalloproteinase, plays a central role in driving renal fibrosis progression by activating Notch 1 protein and the downstream TGF-ß signaling pathway. Our study investigated potential therapeutic interventions for renal fibrosis, focusing on human umbilical cord mesenchymal stem cell-derived extracellular vesicles (hucMSC-EVs). We found that hucMSC-EVs inhibit ADAM17, thereby impeding renal fibrosis progression. Analysis of hucMSC-EVs miRNA profiles revealed significant enrichment of miR-13474, which effectively targeted and inhibited ADAM17 mRNA expression, subsequently suppressing Notch1 activation, TGF-ß signaling, and collagen deposition. Overexpression of miR-13474 enhanced hucMSC-EVs' inhibitory effect on renal fibrosis, while its downregulation abolished this protective effect. Our findings highlight the efficacy of hucMSC-EVs overexpressing miR-13474 in mitigating renal fibrosis via ADAM17 targeting. These insights offer potential therapeutic strategies for managing renal fibrosis.


Assuntos
Proteína ADAM17 , Vesículas Extracelulares , Fibrose , Rim , Células-Tronco Mesenquimais , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Humanos , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Rim/metabolismo , Rim/patologia , Transdução de Sinais , Nefropatias/metabolismo , Nefropatias/terapia , Nefropatias/patologia , Nefropatias/genética , Fator de Crescimento Transformador beta/metabolismo , Camundongos
3.
J Immunother Cancer ; 12(7)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39053944

RESUMO

BACKGROUND: Natural killer (NK) cells are being extensively studied as a cell therapy for cancer. These cells are activated by recognition of ligands and antigens on tumor cells. Cytokine therapies, such as IL-15, are also broadly used to stimulate endogenous and adoptively transferred NK cells in patients with cancer. These stimuli activate the membrane protease ADAM17, which cleaves various cell-surface receptors on NK cells as a negative feedback loop to limit their cytolytic function. ADAM17 inhibition can enhance IL-15-mediated NK cell proliferation in vitro and in vivo. In this study, we investigated the underlying mechanism of this process. METHODS: Peripheral blood mononuclear cells (PBMCs) or enriched NK cells from human peripheral blood, either unlabeled or labeled with a cell proliferation dye, were cultured for up to 7 days in the presence of rhIL-15±an ADAM17 function-blocking antibody. Different fully human versions of the antibody were generated; Medi-1 (IgG1), Medi-4 (IgG4), Medi-PGLALA, Medi-F(ab')2, and TAB16 (anti-ADAM17 and anti-CD16 bispecific) to modulate CD16A binding. Flow cytometry was used to assess NK cell proliferation and phenotypic markers, immunoblotting to examine CD16A signaling, and IncuCyte-based live cell imaging to measure NK cell antitumor activity. RESULTS: The ADAM17 function-blocking monoclonal antibody (mAb) Medi-1 markedly increased early NK cell activation by IL-15. By using different engineered versions of the antibody, we demonstrate involvement by CD16A, an activating Fcγ receptor and well-described ADAM17 substrate. Hence, Medi-1 when bound to ADAM17 on NK cells is engaged by CD16A and blocks its shedding, inducing and prolonging its signaling. This process did not promote evident NK cell fratricide or dysfunction. Synergistic signaling by Medi-1 and IL-15 enhanced the upregulation of CD137 on CD16A+ NK cells and augmented their proliferation in the presence of PBMC accessory cells or an anti-CD137 agonistic mAb. CONCLUSIONS: Our data reveal for the first time that CD16A and CD137 underpin Medi-1 enhancement of IL-15-driven NK cell activation and proliferation, respectively, with the latter requiring PBMC accessory cells. The use of Medi-1 represents a novel strategy to enhance IL-15-driven NK cell proliferation, and it may be of therapeutic importance by increasing the antitumor activity of NK cells in patients with cancer.


Assuntos
Proteína ADAM17 , Proliferação de Células , Interleucina-15 , Células Matadoras Naturais , Ativação Linfocitária , Receptores de IgG , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Proteína ADAM17/metabolismo , Interleucina-15/metabolismo , Interleucina-15/farmacologia , Receptores de IgG/metabolismo , Proteínas Ligadas por GPI/metabolismo
4.
J Biol Chem ; 300(7): 107480, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38897568

RESUMO

Phospholipase A2 receptor 1 (PLA2R1) is a 180-kDa transmembrane protein that plays a role in inflammation and cancer and is the major autoantigen in membranous nephropathy, a rare but severe autoimmune kidney disease. A soluble form of PLA2R1 has been detected in mouse and human serum. It is likely produced by proteolytic shedding of membrane-bound PLA2R1 but the mechanism is unknown. Here, we show that human PLA2R1 is cleaved by A Disintegrin And Metalloprotease 10 (ADAM10) and ADAM17 in HEK293 cells, mouse embryonic fibroblasts, and human podocytes. By combining site-directed mutagenesis and sequencing, we determined the exact cleavage site within the extracellular juxtamembrane stalk of human PLA2R1. Orthologs and paralogs of PLA2R1 are also shed. By using pharmacological inhibitors and genetic approaches with RNA interference and knock-out cellular models, we identified a major role of ADAM10 in the constitutive shedding of PLA2R1 and a dual role of ADAM10 and ADAM17 in the stimulated shedding. We did not observe evidence for cleavage by ß- or γ-secretase, suggesting that PLA2R1 may not be a substrate for regulated intramembrane proteolysis. PLA2R1 shedding occurs constitutively and can be triggered by the calcium ionophore ionomycin, the protein kinase C activator PMA, cytokines, and lipopolysaccharides, in vitro and in vivo. Altogether, our results show that PLA2R1 is a novel substrate for ADAM10 and ADAM17, producing a soluble form that is increased in inflammatory conditions and likely exerts various functions in physiological and pathophysiological conditions including inflammation, cancer, and membranous nephropathy.


Assuntos
Proteína ADAM10 , Proteína ADAM17 , Secretases da Proteína Precursora do Amiloide , Proteínas de Membrana , Receptores da Fosfolipase A2 , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Humanos , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Células HEK293 , Receptores da Fosfolipase A2/metabolismo , Receptores da Fosfolipase A2/genética , Podócitos/metabolismo , Proteólise , Domínios Proteicos , Ionomicina/farmacologia
5.
J Appl Physiol (1985) ; 137(3): 527-539, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38867666

RESUMO

Obstructive sleep apnea (OSA), characterized by episodes of intermittent hypoxia (IH), is highly prevalent in patients with abdominal aortic aneurysm (AAA). However, whether IH serves as an independent risk factor for AAA development remains to be investigated. Here, we determined the effects of chronic (6 mo) IH on angiotensin (Ang II)-induced AAA development in C57BL/6J male mice and investigated the underlying mechanisms of IH in cultured vascular smooth muscle cells (SMCs). IH increased the susceptibility of mice to develop AAA in response to Ang II infusion by facilitating the augmentation of the abdominal aorta's diameter as assessed by transabdominal ultrasound imaging. Importantly, IH with Ang II augmented aortic elastin degradation and the expression of matrix metalloproteinases (MMPs), mainly MMP8, MMP12, and a disintegrin and metalloproteinase-17 (ADAM17) as measured by histology and immunohistochemistry. Mechanistically, IH increased the activities of MMP2, MMP8, MMP9, MMP12, and ADAM17, while reducing the expression of the MMP regulator reversion-inducing cysteine-rich protein with Kazal motifs (RECK) in cultured SMCs. Aortic samples from human AAA were associated with decreased RECK and increased expression of ADAM17 and MMPs. These data suggest that IH facilitates AAA development when additional stressors are superimposed and that this occurs in association with an increased presence of aortic MMPs and ADAM17, potentially due to IH-induced modulation of RECK expression. These findings support a plausible synergistic link between OSA and AAA and provide a better understanding of the molecular mechanisms underlying the pathogenesis of AAA.NEW & NOTEWORTHY IH facilitates Ang II-induced abdominal aortic diameter expansion and AAA development in C57BL/6J male mice. IH upregulates the expression of specific MMPs such as MMP8, MMP12, and ADAM17. IH directly suppresses RECK expression and increases MMPs activity in SMCs. Human AAA tissues exhibit a downregulation of RECK and an upregulation of ADAM17 and MMPs.


Assuntos
Proteína ADAM17 , Angiotensina II , Aorta Abdominal , Aneurisma da Aorta Abdominal , Hipóxia , Camundongos Endogâmicos C57BL , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/patologia , Animais , Masculino , Hipóxia/metabolismo , Hipóxia/complicações , Camundongos , Proteína ADAM17/metabolismo , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Miócitos de Músculo Liso/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Humanos , Metaloproteinases da Matriz/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Apneia Obstrutiva do Sono/metabolismo , Apneia Obstrutiva do Sono/fisiopatologia , Apneia Obstrutiva do Sono/complicações
6.
Signal Transduct Target Ther ; 9(1): 152, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38918390

RESUMO

CD8+ T cell immune responses are regulated by multi-layer networks, while the post-translational regulation remains largely unknown. Transmembrane ectodomain shedding is an important post-translational process orchestrating receptor expression and signal transduction through proteolytic cleavage of membrane proteins. Here, by targeting the sheddase A Disintegrin and Metalloprotease (ADAM)17, we defined a post-translational regulatory mechanism mediated by the ectodomain shedding in CD8+ T cells. Transcriptomic and proteomic analysis revealed the involvement of post-translational regulation in CD8+ T cells. T cell-specific deletion of ADAM17 led to a dramatic increase in effector CD8+ T cell differentiation and enhanced cytolytic effects to eliminate pathogens and tumors. Mechanistically, ADAM17 regulated CD8+ T cells through cleavage of membrane CD122. ADAM17 inhibition led to elevated CD122 expression and enhanced response to IL-2 and IL-15 stimulation in both mouse and human CD8+ T cells. Intriguingly, inhibition of ADAM17 in CD8+ T cells improved the efficacy of chimeric antigen receptor (CAR) T cells in solid tumors. Our findings reveal a critical post-translational regulation in CD8+ T cells, providing a potential therapeutic strategy of targeting ADAM17 for effective anti-tumor immunity.


Assuntos
Proteína ADAM17 , Linfócitos T CD8-Positivos , Diferenciação Celular , Proteína ADAM17/genética , Proteína ADAM17/imunologia , Linfócitos T CD8-Positivos/imunologia , Animais , Camundongos , Humanos , Diferenciação Celular/imunologia , Diferenciação Celular/genética , Diferenciação Celular/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/patologia
7.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892098

RESUMO

There is a lack of studies aiming to assess cellular a disintegrin and metalloproteinase-17 (ADAM-17) activity in COVID-19 patients and the eventual associations with the shedding of membrane-bound angiotensin-converting enzyme 2 (mACE2). In addition, studies that investigate the relationship between ACE2 and ADAM-17 gene expressions in organs infected by SARS-CoV-2 are lacking. We used data from the Massachusetts general hospital COVID-19 study (306 COVID-19 patients and 78 symptomatic controls) to investigate the association between plasma levels of 33 different ADAM-17 substrates and COVID-19 severity and mortality. As a surrogate of cellular ADAM-17 activity, an ADAM-17 substrate score was calculated. The associations between soluble ACE2 (sACE2) and the ADAM-17 substrate score, renin, key inflammatory markers, and lung injury markers were investigated. Furthermore, we used data from the Genotype-Tissue Expression (GTEx) database to evaluate ADAM-17 and ACE2 gene expressions by age and sex in ages between 20-80 years. We found that increased ADAM-17 activity, as estimated by the ADAM-17 substrates score, was associated with COVID-19 severity (p = 0.001). ADAM-17 activity was also associated with increased mortality but did not reach statistical significance (p = 0.06). Soluble ACE2 showed the strongest positive correlation with the ADAM-17 substrate score, follow by renin, interleukin-6, and lung injury biomarkers. The ratio of ADAM-17 to ACE2 gene expression was highest in the lung. This study indicates that increased ADAM-17 activity is associated with severe COVID-19. Our findings also indicate that there may a bidirectional relationship between membrane-bound ACE2 shedding via increased ADAM-17 activity, dysregulated renin-angiotensin system (RAS) and immune signaling. Additionally, differences in ACE2 and ADAM-17 gene expressions between different tissues may be of importance in explaining why the lung is the organ most severely affected by COVID-19, but this requires further evaluation in prospective studies.


Assuntos
Proteína ADAM17 , Enzima de Conversão de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Índice de Gravidade de Doença , Humanos , COVID-19/virologia , COVID-19/metabolismo , COVID-19/genética , COVID-19/patologia , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Pessoa de Meia-Idade , Feminino , Masculino , Idoso , Adulto , Idoso de 80 Anos ou mais , Adulto Jovem , Biomarcadores/sangue
8.
Cell Commun Signal ; 22(1): 322, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863060

RESUMO

Bone resorption is driven through osteoclast differentiation by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-Β ligand (RANKL). We noted that a disintegrin and metalloproteinase (ADAM) 10 and ADAM17 are downregulated at the expression level during osteoclast differentiation of the murine monocytic cell line RAW264.7 in response to RANKL. Both proteinases are well known to shed a variety of single-pass transmembrane molecules from the cell surface. We further showed that inhibitors of ADAM10 or ADAM17 promote osteoclastic differentiation and furthermore enhance the surface expression of receptors for RANKL and M-CSF on RAW264.7 cells. Using murine bone marrow-derived monocytic cells (BMDMCs), we demonstrated that a genetic deficiency of ADAM17 or its required regulator iRhom2 leads to increased osteoclast development in response to M-CSF and RANKL stimulation. Moreover, ADAM17-deficient osteoclast precursor cells express increased levels of the receptors for RANKL and M-CSF. Thus, ADAM17 negatively regulates osteoclast differentiation, most likely through shedding of these receptors. To assess the time-dependent contribution of ADAM10, we blocked this proteinase by adding a specific inhibitor on day 0 of BMDMC stimulation with M-CSF or on day 7 of subsequent stimulation with RANKL. Only ADAM10 inhibition beginning on day 7 increased the size of developing osteoclasts indicating that ADAM10 suppresses osteoclast differentiation at a later stage. Finally, we could confirm our findings in human peripheral blood mononuclear cells (PBMCs). Thus, downregulation of either ADAM10 or ADAM17 during osteoclast differentiation may represent a novel regulatory mechanism to enhance their differentiation process. Enhanced bone resorption is a critical issue in osteoporosis and is driven through osteoclast differentiation by specific osteogenic mediators. The present study demonstrated that the metalloproteinases ADAM17 and ADAM10 critically suppress osteoclast development. This was observed for a murine cell line, for isolated murine bone marrow cells and for human blood cells by either preferential inhibition of the proteinases or by gene knockout. As a possible mechanism, we studied the surface expression of critical receptors for osteogenic mediators on developing osteoclasts. Our findings revealed that the suppressive effects of ADAM17 and ADAM10 on osteoclastogenesis can be explained in part by the proteolytic cleavage of surface receptors by ADAM10 and ADAM17, which reduces the sensitivity of these cells to osteogenic mediators. We also observed that osteoclast differentiation was associated with the downregulation of ADAM10 and ADAM17, which reduced their suppressive effects. We therefore propose that this downregulation serves as a feedback loop for enhancing osteoclast development.


Assuntos
Proteína ADAM10 , Proteína ADAM17 , Secretases da Proteína Precursora do Amiloide , Diferenciação Celular , Regulação para Baixo , Proteínas de Membrana , Osteoclastos , Ligante RANK , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Osteoclastos/metabolismo , Osteoclastos/citologia , Animais , Diferenciação Celular/genética , Camundongos , Regulação para Baixo/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Humanos , Ligante RANK/metabolismo , Células RAW 264.7 , Fator Estimulador de Colônias de Macrófagos/farmacologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos Endogâmicos C57BL
9.
Elife ; 132024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860651

RESUMO

The autoimmune disease lupus erythematosus (lupus) is characterized by photosensitivity, where even ambient ultraviolet radiation (UVR) exposure can lead to development of inflammatory skin lesions. We have previously shown that Langerhans cells (LCs) limit keratinocyte apoptosis and photosensitivity via a disintegrin and metalloprotease 17 (ADAM17)-mediated release of epidermal growth factor receptor (EGFR) ligands and that LC ADAM17 sheddase activity is reduced in lupus. Here, we sought to understand how the lupus skin environment contributes to LC ADAM17 dysfunction and, in the process, differentiate between effects on LC ADAM17 sheddase function, LC ADAM17 expression, and LC numbers. We show through transcriptomic analysis a shared IFN-rich environment in non-lesional skin across human lupus and three murine models: MRL/lpr, B6.Sle1yaa, and imiquimod (IMQ) mice. IFN-I inhibits LC ADAM17 sheddase activity in murine and human LCs, and IFNAR blockade in lupus model mice restores LC ADAM17 sheddase activity, all without consistent effects on LC ADAM17 protein expression or LC numbers. Anti-IFNAR-mediated LC ADAM17 sheddase function restoration is associated with reduced photosensitive responses that are dependent on EGFR signaling and LC ADAM17. Reactive oxygen species (ROS) is a known mediator of ADAM17 activity; we show that UVR-induced LC ROS production is reduced in lupus model mice, restored by anti-IFNAR, and is cytoplasmic in origin. Our findings suggest that IFN-I promotes photosensitivity at least in part by inhibiting UVR-induced LC ADAM17 sheddase function and raise the possibility that anifrolumab ameliorates lupus skin disease in part by restoring this function. This work provides insight into IFN-I-mediated disease mechanisms, LC regulation, and a potential mechanism of action for anifrolumab in lupus.


Assuntos
Proteína ADAM17 , Células de Langerhans , Lúpus Eritematoso Sistêmico , Pele , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Animais , Humanos , Células de Langerhans/metabolismo , Camundongos , Pele/metabolismo , Pele/patologia , Pele/efeitos da radiação , Lúpus Eritematoso Sistêmico/metabolismo , Raios Ultravioleta/efeitos adversos , Feminino , Modelos Animais de Doenças , Transtornos de Fotossensibilidade/metabolismo , Interferons/metabolismo , Camundongos Endogâmicos MRL lpr
10.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892263

RESUMO

The cell surface metalloprotease ADAM17 (a disintegrin and metalloprotease 17) and its binding partners iRhom2 and iRhom1 (inactive Rhomboid-like proteins 1 and 2) modulate cell-cell interactions by mediating the release of membrane proteins such as TNFα (Tumor necrosis factor α) and EGFR (Epidermal growth factor receptor) ligands from the cell surface. Most cell types express both iRhoms, though myeloid cells exclusively express iRhom2, and iRhom1 is the main iRhom in the mouse brain. Here, we report that iRhom2 is uniquely expressed in olfactory sensory neurons (OSNs), highly specialized cells expressing one olfactory receptor (OR) from a repertoire of more than a thousand OR genes in mice. iRhom2-/- mice had no evident morphological defects in the olfactory epithelium (OE), yet RNAseq analysis revealed differential expression of a small subset of ORs. Notably, while the majority of ORs remain unaffected in iRhom2-/- OE, OSNs expressing ORs that are enriched in iRhom2-/- OE showed fewer gene expression changes upon odor environmental changes than the majority of OSNs. Moreover, we discovered an inverse correlation between the expression of iRhom2 compared to OSN activity genes and that odor exposure negatively regulates iRhom2 expression. Given that ORs are specialized G-protein coupled receptors (GPCRs) and many GPCRs activate iRhom2/ADAM17, we investigated if ORs could activate iRhom2/ADAM17. Activation of an olfactory receptor that is ectopically expressed in keratinocytes (OR2AT4) by its agonist Sandalore leads to ERK1/2 phosphorylation, likely via an iRhom2/ADAM17-dependent pathway. Taken together, these findings point to a mechanism by which odor stimulation of OSNs activates iRhom2/ADAM17 catalytic activity, resulting in downstream transcriptional changes to the OR repertoire and activity genes, and driving a negative feedback loop to downregulate iRhom2 expression.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Camundongos , Neurônios Receptores Olfatórios/metabolismo , Olfato/fisiologia , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Camundongos Knockout , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Mucosa Olfatória/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Humanos
11.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230481, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853546

RESUMO

Group I metabotropic glutamate receptors (Gp1-mGluRs) exert a host of effects on cellular functions, including enhancement of protein synthesis and the associated facilitation of long-term potentiation (LTP) and induction of long-term depression (LTD). However, the complete cascades of events mediating these events are not fully understood. Gp1-mGluRs trigger α-secretase cleavage of amyloid precursor protein, producing soluble amyloid precursor protein-α (sAPPα), a known regulator of LTP. However, the α-cleavage of APP has not previously been linked to Gp1-mGluR's actions. Using rat hippocampal slices, we found that the α-secretase inhibitor tumour necrosis factor-alpha protease inhibitor-1, which inhibits both disintegrin and metalloprotease 10 (ADAM10) and 17 (ADAM17) activity, blocked or reduced the ability of the Gp1-mGluR agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) to stimulate protein synthesis, metaplastically prime future LTP and elicit sub-maximal LTD. In contrast, the specific ADAM10 antagonist GI254023X did not affect the regulation of plasticity, suggesting that ADAM17 but not ADAM10 is involved in mediating these effects of DHPG. However, neither drug affected LTD that was strongly induced by either high-concentration DHPG or paired-pulse synaptic stimulation. Our data suggest that moderate Gp1-mGluR activation triggers α-secretase sheddase activity targeting APP or other membrane-bound proteins as part of a more complex signalling cascade than previously envisioned. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Secretases da Proteína Precursora do Amiloide , Hipocampo , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Biossíntese de Proteínas , Receptores de Glutamato Metabotrópico , Animais , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ratos , Receptores de Glutamato Metabotrópico/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Biossíntese de Proteínas/efeitos dos fármacos , Hipocampo/metabolismo , Proteína ADAM17/metabolismo , Proteína ADAM10/metabolismo , Ratos Sprague-Dawley , Masculino , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Proteínas de Membrana/metabolismo
12.
Cell Mol Gastroenterol Hepatol ; 18(3): 101365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38797477

RESUMO

BACKGROUND & AIMS: Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is an extracellular matrix regulator with anti-fibrotic effects. However, its expression and role in metabolic dysfunction-associated steatohepatitis (MASH) and hepatic fibrosis are poorly understood. METHODS: We generated a novel transgenic mouse model with RECK overexpression specifically in hepatocytes to investigate its role in Western diet (WD)-induced liver disease. Proteomic analysis and in vitro studies were performed to mechanistically link RECK to hepatic inflammation and fibrosis. RESULTS: Our results show that RECK expression is significantly decreased in liver biopsies from human patients diagnosed with MASH and correlated negatively with severity of metabolic dysfunction-associated steatotic liver disease (MASLD) and fibrosis. Similarly, RECK expression is downregulated in WD-induced MASH in wild-type mice. Hepatocyte-specific RECK overexpression significantly reduced hepatic pathology in WD-induced liver injury. Proteomic analysis highlighted changes in extracellular matrix and cell-signaling proteins. In vitro mechanistic studies linked RECK induction to reduced ADAM10 (a disintegrin and metalloproteinase domain-containing protein 10) and ADAM17 activity, amphiregulin release, epidermal growth factor receptor activation, and stellate cell activation. CONCLUSION: Our in vivo and mechanistic in vitro studies reveal that RECK is a novel upstream regulator of inflammation and fibrosis in the diseased liver, its induction is hepatoprotective, and thus highlights its potential as a novel therapeutic in MASH.


Assuntos
Modelos Animais de Doenças , Proteínas Ligadas por GPI , Hepatócitos , Camundongos Transgênicos , Animais , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/genética , Humanos , Camundongos , Hepatócitos/metabolismo , Hepatócitos/patologia , Proteômica , Fígado/metabolismo , Fígado/patologia , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Masculino , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Receptores ErbB/metabolismo , Transdução de Sinais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Anfirregulina/metabolismo , Anfirregulina/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/etiologia
13.
Curr Opin Hematol ; 31(5): 224-229, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38728102

RESUMO

PURPOSE OF REVIEW: Ectodomain shedding has been investigated since the late 1980s. The abundant and platelet specific GPIbα receptor is cleaved by ADAM17 resulting in the release of its ectodomain called glycocalicin. This review will address the role of glycocalicin as an end-stage marker of platelet turnover and storage lesion and will consider a potential function as effector in processes beyond hemostasis. RECENT FINDINGS: Glycocalicin has been described as a marker for platelet senescence, turnover and storage lesion but is not routinely used in a clinical setting because its diagnostic value is nondiscriminatory. Inhibition of glycocalicin shedding improves posttransfusion recovery but little is known (yet) about potential hemostatic improvements. In physiological settings, GPIbα shedding is restricted to the intracellular GPIbα receptor subpopulation suggesting a role for shedding or glycocalicin beyond hemostasis. SUMMARY: So far, all evidence represents glycocalicin as an end-stage biomarker of platelet senescence and a potential trigger for platelet clearance. The extensive list of interaction partners of GPIbα in fields beyond hemostasis opens new possibilities to investigate specific effector functions of glycocalicin.


Assuntos
Plaquetas , Complexo Glicoproteico GPIb-IX de Plaquetas , Humanos , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Plaquetas/metabolismo , Biomarcadores/metabolismo , Proteína ADAM17/metabolismo , Animais , Senescência Celular , Hemostasia
14.
JCI Insight ; 9(13)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771644

RESUMO

Hypotrichosis is a genetic disorder characterized by a diffuse and progressive loss of scalp and/or body hair. Nonetheless, the causative genes for several affected individuals remain elusive, and the underlying mechanisms have yet to be fully elucidated. Here, we discovered a dominant variant in a disintegrin and a metalloproteinase domain 17 (ADAM17) gene caused hypotrichosis with woolly hair. Adam17 (p.D647N) knockin mice mimicked the hair abnormality in patients. ADAM17 (p.D647N) mutation led to hair follicle stem cell (HFSC) exhaustion and caused abnormal hair follicles, ultimately resulting in alopecia. Mechanistic studies revealed that ADAM17 binds directly to E3 ubiquitin ligase tripartite motif-containing protein 47 (TRIM47). ADAM17 variant enhanced the association between ADAM17 and TRIM47, leading to an increase in ubiquitination and subsequent degradation of ADAM17 protein. Furthermore, reduced ADAM17 protein expression affected the Notch signaling pathway, impairing the activation, proliferation, and differentiation of HFSCs during hair follicle regeneration. Overexpression of Notch intracellular domain rescued the reduced proliferation ability caused by Adam17 variant in primary fibroblast cells.


Assuntos
Proteína ADAM17 , Alopecia , Folículo Piloso , Ubiquitina-Proteína Ligases , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Animais , Alopecia/genética , Alopecia/metabolismo , Alopecia/patologia , Camundongos , Folículo Piloso/metabolismo , Folículo Piloso/patologia , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Masculino , Transdução de Sinais/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Feminino , Mutação , Técnicas de Introdução de Genes , Proliferação de Células/genética , Diferenciação Celular/genética , Proteólise , Modelos Animais de Doenças , Fibroblastos/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética
15.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791188

RESUMO

In our previous studies, a novel cryothermal therapy (CTT) was developed to induce systemic long-term anti-tumor immunity. Natural killer (NK) cells were found to play an important role in CTT-induced long-term immune-mediated tumor control at the late stage after CTT, but the underlying mechanism is unclear. Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that have potent immunosuppressive effects on T cells and weaken the long-term benefits of immunotherapy. Consequently, overcoming MDSC immunosuppression is essential for maintaining the long-term efficacy of immunotherapy. In this study, we revealed that NK cells considerably diminish MDSC accumulation at the late stage after CTT, boost T cell production, increase T cell activation, and promote MDSC maturation, culminating in Th1-dominant CD4+ T cell differentiation and enhancing NK and CD8+ T cell cytotoxicity. Additionally, NK cells activate ERK signaling in MDSCs through NKG2D-ligand interaction to increase the activity of tumor necrosis factor (TNF)-α converting enzyme (TACE)-cleaved membrane TNF-α. Furthermore, Increased TACE activity releases more soluble TNF-α from MDSCs to promote MDSC maturation. In our studies, we propose a novel mechanism by which NK cells can overcome MDSC-induced immunosuppression and maintain CTT-induced persistent anti-tumor immunity, providing a prospective therapeutic option to improve the performance of cancer immunotherapy.


Assuntos
Células Matadoras Naturais , Células Supressoras Mieloides , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Fator de Necrose Tumoral alfa , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Animais , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , Ativação Linfocitária/imunologia , Diferenciação Celular , Ligantes , Proteína ADAM17/metabolismo
16.
J Clin Invest ; 134(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747287

RESUMO

Lymphedema is a debilitating disease with no effective cure and affects an estimated 250 million individuals worldwide. Prior studies have identified mutations in piezo-type mechanosensitive ion channel component 1 (PIEZO1), angiopoietin 2 (ANGPT2), and tyrosine kinase with Ig-like and EGF-like domains 1 (TIE1) in patients with primary lymphedema. Here, we identified crosstalk between these molecules and showed that activation of the mechanosensory channel PIEZO1 in lymphatic endothelial cells (LECs) caused rapid exocytosis of the TIE ligand ANGPT2, ectodomain shedding of TIE1 by disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), and increased TIE/PI3K/AKT signaling, followed by nuclear export of the transcription factor FOXO1. These data establish a functional network between lymphedema-associated genes and provide what we believe to be the first molecular mechanism bridging channel function with vascular signaling and intracellular events culminating in transcriptional regulation of genes expressed in LECs. Our study provides insights into the regulation of lymphatic function and molecular pathways involved in human disease.


Assuntos
Angiopoietina-2 , Proteína Forkhead Box O1 , Canais Iônicos , Linfangiogênese , Linfedema , Receptor de TIE-1 , Transdução de Sinais , Animais , Humanos , Camundongos , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Angiopoietina-2/metabolismo , Angiopoietina-2/genética , Células Endoteliais/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Canais Iônicos/metabolismo , Canais Iônicos/genética , Linfangiogênese/genética , Linfedema/metabolismo , Linfedema/genética , Linfedema/patologia , Mecanotransdução Celular , Receptor de TIE-1/metabolismo , Receptor de TIE-1/genética
17.
Mol Cell ; 84(11): 2152-2165.e5, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38781971

RESUMO

A disintegrin and metalloprotease 17 (ADAM17) is a membrane-tethered protease that triggers multiple signaling pathways. It releases active forms of the primary inflammatory cytokine tumor necrosis factor (TNF) and cancer-implicated epidermal growth factor (EGF) family growth factors. iRhom2, a rhomboid-like, membrane-embedded pseudoprotease, is an essential cofactor of ADAM17. Here, we present cryoelectron microscopy (cryo-EM) structures of the human ADAM17/iRhom2 complex in both inactive and active states. These reveal three regulatory mechanisms. First, exploiting the rhomboid-like hallmark of TMD recognition, iRhom2 interacts with the ADAM17 TMD to promote ADAM17 trafficking and enzyme maturation. Second, a unique iRhom2 extracellular domain unexpectedly retains the cleaved ADAM17 inhibitory prodomain, safeguarding against premature activation and dysregulated proteolysis. Finally, loss of the prodomain from the complex mobilizes the ADAM17 protease domain, contributing to its ability to engage substrates. Our results reveal how a rhomboid-like pseudoprotease has been repurposed during evolution to regulate a potent membrane-tethered enzyme, ADAM17, ensuring the fidelity of inflammatory and growth factor signaling.


Assuntos
Proteína ADAM17 , Microscopia Crioeletrônica , Transdução de Sinais , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Humanos , Células HEK293 , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Inflamação/metabolismo , Inflamação/genética , Proteólise , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Domínios Proteicos , Ligação Proteica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/genética , Peptídeos e Proteínas de Sinalização Intracelular
18.
Brain Behav ; 14(5): e3482, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38715397

RESUMO

INTRODUCTION: Chronic adolescent stress profoundly affects prefrontal cortical networks regulating top-down behavior control. However, the neurobiological pathways contributing to stress-induced alterations in the brain and behavior remain largely unknown. Chronic stress influences brain growth factors and immune responses, which may, in turn, disrupt the maturation and function of prefrontal cortical networks. The tumor necrosis factor alpha-converting enzyme/a disintegrin and metalloproteinase 17 (TACE/ADAM17) is a sheddase with essential functions in brain maturation, behavior, and inflammatory responses. This study aimed to determine the impact of stress on the prefrontal cortex and whether TACE/ADAM17 plays a role in these responses. METHODS: We used a Lewis rat model that incorporates critical elements of chronic psychosocial stress, such as uncontrollability, unpredictability, lack of social support, and re-experiencing of trauma. RESULTS: Chronic stress during adolescence reduced the acoustic startle reflex and social interactions while increasing extracellular free water content and TACE/ADAM17 mRNA levels in the medial prefrontal cortex. Chronic stress altered various ethological behavioral domains in the observation home cages (decreased ingestive behaviors and increased walking, grooming, and rearing behaviors). A group of rats was injected intracerebrally either with a novel Accell™ SMARTpool TACE/ADAM17 siRNA or a corresponding siRNA vehicle (control). The RNAscope Multiplex Fluorescent v2 Assay was used to visualize mRNA expression. Automated puncta quantification and analyses demonstrated that TACE/ADAM17 siRNA administration reduced TACE/ADAM17 mRNA levels in the medial prefrontal cortex (59% reduction relative to control). We found that the rats that received prefrontal cortical TACE/ADAM17 siRNA administration exhibited altered eating patterns (e.g., increased food intake and time in the feeding zone during the light cycle). CONCLUSION: This study supports that the prefrontal cortex is sensitive to adolescent chronic stress and suggests that TACE/ADAM17 may be involved in the brain responses to stress.


Assuntos
Proteína ADAM17 , Córtex Pré-Frontal , Ratos Endogâmicos Lew , Estresse Psicológico , Animais , Masculino , Ratos , Proteína ADAM17/metabolismo , Comportamento Animal/fisiologia , Córtex Pré-Frontal/metabolismo , Reflexo de Sobressalto/fisiologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/metabolismo , Feminino
19.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791495

RESUMO

Fibroblast growth factor 23 (FGF23) levels are often elevated in chronic kidney disease (CKD). FGF23 and inflammation are common characteristics in CKD, and both are associated with worse disease progression and the occurrence of complications. The existence of an interaction between FGF23 and inflammation has been suggested, each of which influences the expression and activity of the other, leading to a vicious feedback loop with adverse outcomes, including cardiovascular disease and mortality. In this work, we determined circulating FGF23 levels in a group of patients with CKD stages 3 and 4 subjected to elective femoral endarterectomy due to established peripheral artery disease (PAD), a condition resulting from an athero-inflammatory process, and we studied its associations with different inflammatory markers and mediators. We evaluated its association with serum tumor necrosis factor (TNF)α, interleukin (IL) 6, and IL10, as well as with the gene expression levels of these parameters and A disintegrin and metalloproteinase domain-containing protein (ADAM) 17 in femoral vascular tissue and peripheral blood circulating cells (PBCCs). We also analyzed its association with serum concentrations of C-reactive protein (CRP), the systemic immune inflammation index (SII), and the neutrophil-to-lymphocyte ratio (NLR). Finally, we determined the vascular immunoreactivity of protein TNFα in a subgroup of patients. FGF23 concentrations were independently associated with circulating and PBCC mRNA levels of TNFα. Worst kidney function and diabetes were also found to be contributing to FGF23 levels. Patients with higher levels of FGF23 also had greater vascular immunoreactivity for TNFα.


Assuntos
Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos , Doença Arterial Periférica , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/metabolismo , Doença Arterial Periférica/sangue , Doença Arterial Periférica/metabolismo , Doença Arterial Periférica/etiologia , Masculino , Feminino , Idoso , Fatores de Crescimento de Fibroblastos/sangue , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , Proteína ADAM17/metabolismo , Proteína ADAM17/sangue , Proteína ADAM17/genética , Interleucina-6/sangue , Interleucina-10/sangue , Inflamação/sangue , Inflamação/metabolismo
20.
Cell Mol Life Sci ; 81(1): 163, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570362

RESUMO

Proteolytic release of transmembrane proteins from the cell surface, the so called ectodomain shedding, is a key process in inflammation. Inactive rhomboid 2 (iRhom2) plays a crucial role in this context, in that it guides maturation and function of the sheddase ADAM17 (a disintegrin and metalloproteinase 17) in immune cells, and, ultimately, its ability to release inflammatory mediators such as tumor necrosis factor α (TNFα). Yet, the macrophage sheddome of iRhom2/ADAM17, which is the collection of substrates that are released by the proteolytic complex, is only partly known. In this study, we applied high-resolution proteomics to murine and human iRhom2-deficient macrophages for a systematic identification of substrates, and therefore functions, of the iRhom2/ADAM17 proteolytic complex. We found that iRhom2 loss suppressed the release of a group of transmembrane proteins, including known (e.g. CSF1R) and putative novel ADAM17 substrates. In the latter group, shedding of major histocompatibility complex class I molecules (MHC-I) was consistently reduced in both murine and human macrophages when iRhom2 was ablated. Intriguingly, it emerged that in addition to its shedding, iRhom2 could also control surface expression of MHC-I by an undefined mechanism. We have demonstrated the biological significance of this process by using an in vitro model of CD8+ T-cell (CTL) activation. In this model, iRhom2 loss and consequent reduction of MHC-I expression on the cell surface of an Epstein-Barr virus (EBV)-transformed lymphoblastoid cell line dampened activation of autologous CTLs and their cell-mediated cytotoxicity. Taken together, this study uncovers a new role for iRhom2 in controlling cell surface levels of MHC-I by a dual mechanism that involves regulation of their surface expression and ectodomain shedding.


Assuntos
Proteínas de Transporte , Infecções por Vírus Epstein-Barr , Animais , Humanos , Camundongos , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Proteínas de Transporte/metabolismo , Herpesvirus Humano 4 , Complexo Principal de Histocompatibilidade , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...