Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.536
Filtrar
1.
Biomolecules ; 14(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39062584

RESUMO

Leucine-rich repeat kinase-2 (LRRK2), a gene mutated in familial and sporadic Parkinson's disease (PD), controls multiple cellular processes important for GLIA physiology. Interestingly, emerging studies report that LRRK2 is highly expressed in oligodendrocyte precursor cells (OPCs) compared to the pathophysiology of other brain cells and oligodendrocytes (OLs) in PD. Altogether, these observations suggest crucial function(s) of LRRK2 in OPCs/Ols, which would be interesting to explore. In this study, we investigated the role of LRRK2 in OLs. We showed that LRRK2 knock-out (KO) OPC cultures displayed defects in the transition of OPCs into OLs, suggesting a role of LRRK2 in OL differentiation. Consistently, we found an alteration of myelin basic protein (MBP) striosomes in LRRK2 KO mouse brains and reduced levels of oligodendrocyte transcription factor 2 (Olig2) and Mbp in olig2:EGFP and mbp:RFP transgenic zebrafish embryos injected with lrrk2 morpholino (MO). Moreover, lrrk2 knock-down zebrafish exhibited a lower amount of nerve growth factor (Ngf) compared to control embryos, which represents a potent regulator of oligodendrogenesis and myelination. Overall, our findings indicate that LRRK2 controls OL differentiation, affecting the number of mature OLs.


Assuntos
Diferenciação Celular , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Oligodendroglia , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/citologia , Diferenciação Celular/genética , Camundongos , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Camundongos Knockout , Proteína Básica da Mielina/metabolismo , Proteína Básica da Mielina/genética , Animais Geneticamente Modificados
2.
Nat Commun ; 15(1): 5173, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890352

RESUMO

Zika virus (ZikV) infection during pregnancy can cause congenital Zika syndrome (CZS) and neurodevelopmental delay in infants, of which the pathogenesis remains poorly understood. We utilize an established female pigtail macaque maternal-to-fetal ZikV infection/exposure model to study fetal brain pathophysiology of CZS manifesting from ZikV exposure in utero. We find prenatal ZikV exposure leads to profound disruption of fetal myelin, with extensive downregulation in gene expression for key components of oligodendrocyte maturation and myelin production. Immunohistochemical analyses reveal marked decreases in myelin basic protein intensity and myelinated fiber density in ZikV-exposed animals. At the ultrastructural level, the myelin sheath in ZikV-exposed animals shows multi-focal decompaction, occurring concomitant with dysregulation of oligodendrocyte gene expression and maturation. These findings define fetal neuropathological profiles of ZikV-linked brain injury underlying CZS resulting from ZikV exposure in utero. Because myelin is critical for cortical development, ZikV-related perturbations in oligodendrocyte function may have long-term consequences on childhood neurodevelopment, even in the absence of overt microcephaly.


Assuntos
Modelos Animais de Doenças , Bainha de Mielina , Oligodendroglia , Infecção por Zika virus , Zika virus , Animais , Infecção por Zika virus/virologia , Infecção por Zika virus/patologia , Oligodendroglia/virologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Feminino , Bainha de Mielina/metabolismo , Gravidez , Zika virus/patogenicidade , Complicações Infecciosas na Gravidez/virologia , Complicações Infecciosas na Gravidez/patologia , Macaca nemestrina , Encéfalo/virologia , Encéfalo/patologia , Encéfalo/metabolismo , Humanos , Proteína Básica da Mielina/metabolismo , Proteína Básica da Mielina/genética
3.
Ecotoxicol Environ Saf ; 278: 116393, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38714083

RESUMO

Micro(nano)plastic, as a new type of environmental pollutant, have become a potential threat to the life and health of various stages of biology. However, it is not yet clear whether they will affect brain development in the fetal stage. Therefore, this study aims to explore the potential effects of nanoplastics on the development of fetal rat brains. To assess the allocation of NPs (25 nm and 50 nm) in various regions of the fetal brain, pregnant rats were exposed to concentrations (50, 10, 2.5, and 0.5 mg/kg) of PS-NPs. Our results provided evidence of the transplacental transfer of PS-NPs to the fetal brain, with a prominent presence observed in several cerebral regions, notably the cerebellum, hippocampus, striatum, and prefrontal cortex. This distribution bias might be linked to the developmental sequence of each brain region. Additionally, we explored the influence of prenatal exposure on the myelin development of the cerebellum, given its the highest PS-NP accumulation in offspring. Compared with control rats, PS-NPs exposure caused a significant reduction in myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) expression, a decrease in myelin thickness, an increase in cell apoptosis, and a decline in the oligodendrocyte population. These effects gave rise to motor deficits. In conclusion, our results identified the specific distribution of NPs in the fetal brain following prenatal exposure and revealed that prenatal exposure to PS-NPs can suppress myelin formation in the cerebellum of the fetus.


Assuntos
Encéfalo , Bainha de Mielina , Poliestirenos , Animais , Feminino , Gravidez , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Encéfalo/metabolismo , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Ratos , Poliestirenos/toxicidade , Poluentes Ambientais/toxicidade , Proteína Básica da Mielina/metabolismo , Exposição Materna , Nanopartículas/toxicidade , Apoptose/efeitos dos fármacos , Microplásticos/toxicidade , Ratos Sprague-Dawley , Troca Materno-Fetal , Feto/efeitos dos fármacos
4.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 394-402, 2024 Apr 15.
Artigo em Chinês | MEDLINE | ID: mdl-38660904

RESUMO

OBJECTIVES: To compare the repair effects of different doses of human umbilical cord mesenchymal stem cells (hUC-MSCs) on white matter injury (WMI) in neonatal rats. METHODS: Two-day-old Sprague-Dawley neonatal rats were randomly divided into five groups: sham operation group, WMI group, and hUC-MSCs groups (low dose, medium dose, and high dose), with 24 rats in each group. Twenty-four hours after successful establishment of the neonatal rat white matter injury model, the WMI group was injected with sterile PBS via the lateral ventricle, while the hUC-MSCs groups received injections of hUC-MSCs at different doses. At 14 and 21 days post-modeling, hematoxylin and eosin staining was used to observe pathological changes in the tissues around the lateral ventricles. Real-time quantitative polymerase chain reaction was used to detect the quantitative expression of myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) mRNA in the brain tissue. Immunohistochemistry was employed to observe the expression levels of GFAP and neuron-specific nuclear protein (NeuN) in the tissues around the lateral ventricles. TUNEL staining was used to observe cell apoptosis in the tissues around the lateral ventricles. At 21 days post-modeling, the Morris water maze test was used to observe the spatial learning and memory capabilities of the neonatal rats. RESULTS: At 14 and 21 days post-modeling, numerous cells with nuclear shrinkage and rupture, as well as disordered arrangement of nerve fibers, were observed in the tissues around the lateral ventricles of the WMI group and the low dose group. Compared with the WMI group, the medium and high dose groups showed alleviated pathological changes; the arrangement of nerve fibers in the medium dose group was relatively more orderly compared with the high dose group. Compared with the WMI group, there was no significant difference in the expression levels of MBP and GFAP mRNA in the low dose group (P>0.05), while the expression levels of MBP mRNA increased and GFAP mRNA decreased in the medium and high dose groups. The expression level of MBP mRNA in the medium dose group was higher than that in the high dose group, and the expression level of GFAP mRNA in the medium dose group was lower than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the protein expression of GFAP and NeuN in the low dose group (P>0.05), while the expression of NeuN protein increased and GFAP protein decreased in the medium and high dose groups. The expression of NeuN protein in the medium dose group was higher than that in the high dose group, and the expression of GFAP protein in the medium dose group was lower than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the number of apoptotic cells in the low dose group (P>0.05), while the number of apoptotic cells in the medium and high dose groups was less than that in the WMI group, and the number of apoptotic cells in the medium dose group was less than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the escape latency time in the low dose group (P>0.05); starting from the third day of the latency period, the escape latency time in the medium dose group was less than that in the WMI group (P<0.05). The medium and high dose groups crossed the platform more times than the WMI group (P<0.05). CONCLUSIONS: Low dose hUC-MSCs may yield unsatisfactory repair effects on WMI in neonatal rats, while medium and high doses of hUC-MSCs have significant repair effects, with the medium dose demonstrating superior efficacy.


Assuntos
Animais Recém-Nascidos , Transplante de Células-Tronco Mesenquimais , Ratos Sprague-Dawley , Cordão Umbilical , Substância Branca , Animais , Ratos , Humanos , Cordão Umbilical/citologia , Substância Branca/patologia , Substância Branca/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/análise , Células-Tronco Mesenquimais , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/análise , Proteína Básica da Mielina/metabolismo , Masculino , Apoptose , Feminino , RNA Mensageiro/análise , RNA Mensageiro/metabolismo
5.
Lasers Med Sci ; 39(1): 119, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679671

RESUMO

Orofacial nerve injuries may result in temporary or long-term loss of sensory function and decreased quality of life in patients. B vitamins are required for DNA synthesis and the repair and maintenance of phospholipids. In particular, vitamins B1, B6, and B12 are essential for neuronal function. Deficiency in vitamin B complex (VBC) has been linked to increased oxidative stress, inflammation and demyelination. Photobiomodulation (PBM) has antioxidant activity and is neuroprotective. In addition, a growing literature attests to the positive effects of PBM on nerve repair. To assess the effect of PBM and VBC on regenerative process we evaluated the expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), myelin basic protein (MBP), laminin and neurofilaments (NFs) using Western blotting to identify regenerative pattern after chronic constriction injury of the infraorbital nerve (CCI IoN) treated by PBM, VBC or its combination. After CCI IoN, the rats were divided into six groups naive, sham, injured (CCI IoN), treated with photobiomodulation (904 nm, 6.23 J/cm2, CCI IoN + PBM), treated with VBC (containing B1, B6 and B12) 5 times, CCI IoN + VBC) and treated with PBM and VBC (CCI IoN + VBC + PBM). The treatments could revert low expression of BDNF, MBP and laminin. Also reverted the higher expression of neurofilaments and enhanced expression of NGF. PBM and VBC could accelerate injured infraorbital nerve repair in rats through reducing the expression of neurofilaments, increasing the expression of BDNF, laminin and MBP and overexpressing NGF. These data support the notion that the use of PBM and VBC may help in the treatment of nerve injuries. This finding has potential clinical applications.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Modelos Animais de Doenças , Terapia com Luz de Baixa Intensidade , Fator de Crescimento Neural , Regeneração Nervosa , Complexo Vitamínico B , Animais , Ratos , Regeneração Nervosa/efeitos da radiação , Terapia com Luz de Baixa Intensidade/métodos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator de Crescimento Neural/metabolismo , Masculino , Laminina/metabolismo , Traumatismos do Nervo Facial/radioterapia , Traumatismos do Nervo Facial/terapia , Ratos Wistar , Proteína Básica da Mielina/metabolismo
6.
Genes (Basel) ; 15(4)2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38674338

RESUMO

Microribonucleic acids (miRNAs) comprising miR-23a/b clusters, specifically miR-23a and miR-27a, are recognized for their divergent roles in myelination within the central nervous system. However, cluster-specific miRNA functions remain controversial as miRNAs within the same cluster have been suggested to function complementarily. This study aims to clarify the role of miR-23a/b clusters in myelination using mice with a miR-23a/b cluster deletion (KO mice), specifically in myelin expressing proteolipid protein (PLP). Inducible conditional KO mice were generated by crossing miR-23a/b clusterflox/flox mice with PlpCre-ERT2 mice; the offspring were injected with tamoxifen at 10 days or 10 weeks of age to induce a myelin-specific miR-23a/b cluster deletion. Evaluation was performed at 10 weeks or 12 months of age and compared with control mice that were not treated with tamoxifen. KO mice exhibit impaired motor function and hypoplastic myelin sheaths in the brain and spinal cord at 10 weeks and 12 months of age. Simultaneously, significant decreases in myelin basic protein (MBP) and PLP expression occur in KO mice. The percentages of oligodendrocyte precursors and mature oligodendrocytes are consistent between the KO and control mice. However, the proportion of oligodendrocytes expressing MBP is significantly lower in KO mice. Moreover, changes in protein expression occur in KO mice, with increased leucine zipper-like transcriptional regulator 1 expression, decreased R-RAS expression, and decreased phosphorylation of extracellular signal-regulated kinases. These findings highlight the significant influence of miR-23a/b clusters on myelination during postnatal growth and aging.


Assuntos
Envelhecimento , MicroRNAs , Bainha de Mielina , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos , Bainha de Mielina/metabolismo , Bainha de Mielina/genética , Envelhecimento/genética , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/crescimento & desenvolvimento , Camundongos Knockout , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Medula Espinal/metabolismo , Medula Espinal/crescimento & desenvolvimento , Proteína Básica da Mielina/metabolismo , Proteína Básica da Mielina/genética , Oligodendroglia/metabolismo , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento
7.
Transgenic Res ; 33(3): 99-117, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684589

RESUMO

Golli-myelin basic proteins, encoded by the myelin basic protein gene, are widely expressed in neurons and oligodendrocytes in the central nervous system. Further, prior research has shown that Golli-myelin basic protein is necessary for myelination and neuronal maturation during central nervous system development. In this study, we established Golli-myelin basic protein-floxed mice to elucidate the cell-type-specific effects of Golli-myelin basic protein knockout through the generation of conditional knockout mice (Golli-myelin basic proteinsfl/fl; E3CreN), in which Golli-myelin basic proteins were specifically deleted in cerebellar granule neurons, where Golli-myelin basic proteins are expressed abundantly in wild-type mice. To investigate the role of Golli-myelin basic proteins in cerebellar granule neurons, we further performed histopathological analyses of these mice, with results indicating no morphological changes or degeneration of the major cellular components of the cerebellum. Furthermore, behavioral analysis showed that Golli-myelin basic proteinsfl/fl; E3CreN mice were healthy and did not display any abnormal behavior. These results suggest that the loss of Golli-myelin basic proteins in cerebellar granule neurons does not lead to cerebellar perturbations or behavioral abnormalities. This mouse model could therefore be employed to analyze the effect of Golli-myelin basic protein deletion in specific cell types of the central nervous system, such as other neuronal cells and oligodendrocytes, or in lymphocytes of the immune system.


Assuntos
Cerebelo , Camundongos Knockout , Proteína Básica da Mielina , Neurônios , Animais , Neurônios/metabolismo , Camundongos , Cerebelo/metabolismo , Cerebelo/crescimento & desenvolvimento , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo
8.
Immunol Lett ; 267: 106852, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508497

RESUMO

We have recently characterized experimental autoimmune encephalomyelitis (EAE) induced in DA rats with spinal cord homogenate without complete Freund's adjuvant (CFA). The main advantage of this multiple sclerosis model is the lack of CFA-related confounding effects which represent the major obstacles in translating findings from EAE to multiple sclerosis. Here, antigen specificity of the cellular and humoral immune response directed against the central nervous system was explored. The reactivity of T and B cells to myelin basic protein, myelin oligodendrocyte glycoprotein, and ß-synuclein was detected. Having in mind that reactivity against ß-synuclein was previously associated with autoimmunity against the brain, the infiltration of immune cells into different brain compartments, i.e. pons, cerebellum, hippocampus, and cortex was determined. T cell infiltration was observed in all structures examined. This finding stimulated investigation of the effects of immunization on DA rat behavior using the elevated plus maze and the open field test. Rats recovered from EAE displayed increased anxiety-like behavior. These data support CFA-free EAE in DA rats as a useful model for multiple sclerosis research.


Assuntos
Encefalomielite Autoimune Experimental , Medula Espinal , Animais , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/metabolismo , Ratos , Medula Espinal/imunologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Modelos Animais de Doenças , Glicoproteína Mielina-Oligodendrócito/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Esclerose Múltipla/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Proteína Básica da Mielina/imunologia , Proteína Básica da Mielina/metabolismo , Encéfalo/patologia , Encéfalo/imunologia , Encéfalo/metabolismo , Feminino , Encefalite/imunologia , Encefalite/etiologia , Encefalite/patologia , Encefalite/metabolismo , Adjuvante de Freund/imunologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/patologia
9.
Neuroreport ; 35(3): 185-190, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38305106

RESUMO

The deamination of arginine and its conversion to citrulline is a modification observed in positively charged proteins such as histones or myelin basic protein (MBP). This reaction is catalyzed by peptidyl arginine deiminase (PAD), whose abnormal activation is associated with autoimmune diseases like rheumatoid arthritis and multiple sclerosis. However, the mechanisms that trigger PAD activation and the pathophysiological processes involved in hypercitrullination remain unknown. In this study, we investigated the interaction between PAD and various charged isomers of MBP, each differing in the degree of post-translational modification. Immunoprecipitation experiments were conducted to examine the binding between PAD and the different charge isomers of MBP. Our findings revealed that the phosphorylated forms of MBP (C3 and C4) exhibited a higher affinity for PAD compared to the unmodified (C1) and fully citrullinated forms (C8). Additionally, we observed that only in the presence of the unmodified C1 isomer did PAD undergo autocitrullination, which was inhibited by the endogenous guanidine-containing component, creatine. In the presence of other isomers, PAD did not undergo autocitrullination. Furthermore, we found that the unmodified isomer of MBP-C1 contains methylated arginines, which were not affected by the pre-treatment with PAD. Based on our findings, we propose that the increased phosphorylation of central threonines in the original MBP may trigger PAD activation, leading to increased citrullination of the protein and subsequent disorganization of the myelin sheath. These insights contribute to a better understanding of the underlying mechanisms in autoimmune diseases associated with hypercitrullination, potentially opening new avenues for therapeutic interventions.


Assuntos
Doenças Autoimunes , Proteína Básica da Mielina , Proteína-Arginina Desiminase do Tipo 2 , Humanos , Arginina/metabolismo , Doenças Autoimunes/metabolismo , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Proteína-Arginina Desiminase do Tipo 2/metabolismo
10.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(10): 1810-1814, 2023 Oct 20.
Artigo em Chinês | MEDLINE | ID: mdl-37933659

RESUMO

OBJECTIVE: To observe the effect of propofol on the expression of myelin basic protein (MBP) in developing zebrafish and explore the possible mechanisms. METHODS: A total of 180 zebrafish embryos at 6-48 h post-fertilization were randomly allocated into 3 equal groups and raised in fresh water (control group), water containing dimethyl sulfoxide (DMSO group) and water containing 30 µg/mL propofol (propofol group). On 3, 4, 5, 6, 7, 10 d post-fertilization, the juvenile fish were collected for detection of mRNA and protein expressions of MBP using RT-qPCR and Western blotting. TUNEL assay and immunofluorescence assay were used to detect apoptosis of the oligodendrocytes of the fish at 3 d post-fertilization; RT-qPCR and Western blotting were performed to detect the expressions of apoptosis-related factors caspase-8, caspase-9 and caspase-3. RESULTS: Compared with the control group, the fish with propofol exposure showed significantly decreased mRNA and protein expression of MBP at 3-7 d post-fertilization (P<0.05) with increased apoptosis of the oligodendrocytes and upregulated expressions of caspase-8, caspase-9 and caspase-3 at both the mRNA and protein levels. CONCLUSION: Propofol persistently inhibits MBP expression in developing zebrafish within a short term possibly by mediating apoptosis of the oligodendrocytes.


Assuntos
Proteína Básica da Mielina , Propofol , Peixe-Zebra , Animais , Apoptose , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Proteína Básica da Mielina/metabolismo , Propofol/farmacologia , RNA Mensageiro/metabolismo , Peixe-Zebra/embriologia
11.
Glia ; 71(10): 2343-2355, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37272718

RESUMO

Oligodendrocytes produce lipid-rich myelin sheaths that provide metabolic support to the underlying axon and facilitate saltatory conduction. Oligodendrocyte mitochondria supply the bulk of energy and carbon-chain backbones required for lipid synthesis. The sparsity of mitochondria in the myelin sheath suggests that tight regulation of mitochondrial trafficking is crucial for their efficient distribution in the cell. In particular, retention of mitochondria at axoglial junctions would support local lipid synthesis and membrane remodeling during myelination. How mitochondrial docking in oligodendrocytes is regulated is not known. Our findings indicate that syntaphilin (SNPH), a mitochondrial docking protein that has been characterized in neurons, is expressed by oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes in vitro and present in the myelin sheath in vivo. We have previously reported that bath application of netrin-1 promotes the elaboration of myelin basic protein-positive membranes, and that localized presentation of a netrin-1 coated microbead results in rapid accumulation of mitochondria at the site of oligodendrocyte-bead adhesion. Here we show that netrin-1 increases the redistribution of SNPH to oligodendrocyte processes during the expansion of myelin basic protein-positive membranes and that SNPH clusters at the oligodendrocyte plasma membrane at sites of adhesion with netrin-1-coated beads where mitochondria are retained. These findings suggest roles for SNPH in oligodendrocytes regulating netrin-1-mediated mitochondrial docking and myelin membrane expansion.


Assuntos
Proteína Básica da Mielina , Bainha de Mielina , Bainha de Mielina/metabolismo , Proteína Básica da Mielina/metabolismo , Netrina-1/metabolismo , Oligodendroglia/metabolismo , Mitocôndrias/metabolismo , Lipídeos
12.
J Neurochem ; 166(2): 280-293, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37309616

RESUMO

Neuroinflammation has been reported to be associated with white matter injury (WMI) after subarachnoid hemorrhage (SAH). As the main resident immune cells of the brain, microglia can be activated into proinflammatory and anti-inflammatory phenotypes. Toll-like receptor 4 (TLR4), expressed on the surface of the microglia, plays a key role in microglial inflammation. However, the relationship between TLR4, microglial polarization, and WMI following SAH remains unclear. In this study, a total of 121 male adult C57BL/6 wild-type (WT) mice, 20 WT mice at postnatal day 1 (P1), and 41 male adult TLR4 gene knockout (TLR4-/-) mice were used to investigate the potential role of TLR4-induced microglial polarization in early WMI after SAH by radiological, histological, microstructural, transcriptional, and cytological evidence. The results indicated that microglial inflammation was associated with myelin loss and axon damage, shown as a decrease in myelin basic protein (MBP), as well as increase in degraded myelin basic protein (dMBP) and amyloid precursor protein (APP). Gene knockout of TLR4 revised microglial polarization toward the anti-inflammatory phenotype and protected the white matter at an early phase after SAH (24 h), as shown through reduction of toxic metabolites, preservation of myelin, reductions in APP accumulation, reductions in white matter T2 hyperintensity, and increases in FA values. Cocultures of microglia and oligodendrocytes, the cells responsible for myelin production and maintenance, were established to further elucidate the relationship between microglial polarization and WMI. In vitro, TLR4 inhibition decreased the expression of microglial MyD88 and phosphorylated NF-κB, thereby inhibiting M1 polarization and mitigating inflammation. Decrease in TLR4 in the microglia increased preservation of neighboring oligodendrocytes. In conclusion, microglial inflammation has dual effects on early WMI after experimental SAH. Future explorations on more clinically relevant methods for modulating neuroinflammation are warranted to combat stroke with both WMI and gray matter destruction.


Assuntos
Lesões Encefálicas , Hemorragia Subaracnóidea , Substância Branca , Camundongos , Animais , Masculino , Microglia/metabolismo , Hemorragia Subaracnóidea/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteína Básica da Mielina/metabolismo , Proteína Básica da Mielina/farmacologia , Substância Branca/patologia , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Inflamação/patologia , Lesões Encefálicas/patologia , Anti-Inflamatórios/farmacologia
13.
Restor Neurol Neurosci ; 41(3-4): 83-89, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37355916

RESUMO

BACKGROUND: The hippocampus is highly vulnerable to damage in the brain ischemia-reperfusion injury model. Leuprolide acetate has been shown to promote neurological recovery after injury in various regions of the central nervous system. OBJECTIVE: The objective of this study was to assess the histology of the hippocampus and the expression of neuronal recovery markers, specifically the 200 kDa neurofilaments and the myelin basic protein, in rats with brain ischemia-reperfusion injury treated with leuprolide acetate. METHODS: The rats were divided into three groups: Sham, ischemia-reperfusion with saline solution, and ischemia-reperfusion treated with leuprolide acetate. Coronal brain slices were obtained and stained with hematoxylin-eosin. The histological analysis involved quantifying the number of neurons in the hippocampal regions CA1, CA3 and DG. The myelin basic protein and neurofilaments were quantified using western blot. RESULTS: The number of neurons in CA1 and DG was significantly higher in the leuprolide acetate group compared to the untreated group. Additionally, the expression of neurofilament and myelin basic protein markers was significantly increased in rats treated with leuprolide acetate compared to the untreated rats. CONCLUSIONS: Leuprolide acetate promotes the recovery of hippocampal neurons in an acute brain ischemia-reperfusion injury model. These findings suggest that leuprolide acetate could be a potential therapeutic intervention for reversing damage in hippocampal ischemic lesions.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Traumatismo por Reperfusão , Ratos , Animais , Leuprolida/farmacologia , Leuprolida/uso terapêutico , Leuprolida/metabolismo , Proteína Básica da Mielina/metabolismo , Hipocampo/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Isquemia/metabolismo , Isquemia Encefálica/patologia , Reperfusão
14.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37239982

RESUMO

Histones play vital roles in chromatin function and gene transcription; however, they are very harmful in the intercellular space because they stimulate systemic inflammatory and toxic responses. Myelin basic protein (MBP) is the major protein of the axon myelin-proteolipid sheath. Antibodies-abzymes with various catalytic activities are specific features of some autoimmune diseases. IgGs against individual histones (H2A, H1, H2B, H3, and H4) and MBP were isolated from the blood of experimental-autoimmune-encephalomyelitis-prone C57BL/6 mice by several affinity chromatographies. These Abs-abzymes corresponded to various stages of EAE development: spontaneous EAE, MOG, and DNA-histones accelerated the onset, acute, and remission stages. IgGs-abzymes against MBP and five individual histones showed unusual polyreactivity in the complex formation and enzymatic cross-reactivity in the specific hydrolysis of the H2A histone. All the IgGs of 3-month-old mice (zero time) against MBP and individual histones demonstrated from 4 to 35 different H2A hydrolysis sites. The spontaneous development of EAE over 60 days led to a significant change in the type and number of H2A histone hydrolysis sites by IgGs against five histones and MBP. Mice treatment with MOG and the DNA-histone complex changed the type and number of H2A hydrolysis sites compared to zero time. The minimum number (4) of different H2A hydrolysis sites was found for IgGs against H2A (zero time), while the maximum (35) for anti-H2B IgGs (60 days after mice treatment with DNA-histone complex). Overall, it was first demonstrated that at different stages of EAE evolution, IgGs-abzymes against individual histones and MBP could significantly differ in the number and type of specific sites of H2A hydrolysis. The possible reasons for the catalytic cross-reactivity and great differences in the number and type of histone H2A cleavage sites were analyzed.


Assuntos
Encefalomielite Autoimune Experimental , Histonas , Animais , Camundongos , Histonas/metabolismo , Hidrólise , Proteína Básica da Mielina/metabolismo , Camundongos Endogâmicos C57BL , DNA/metabolismo , Autoanticorpos/metabolismo
15.
Neural Plast ; 2023: 8938674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006814

RESUMO

Several microRNAs (miRNAs), including miR-23 and miR-27a have been reportedly involved in regulating myelination in the central nervous system. Although miR-23 and miR-27a form clusters in vivo and the clustered miRNAs are known to perform complementary functions, the role of these miRNA clusters in myelination has not been studied. To investigate the role of miR-23-27-24 clusters in myelination, we generated miR-23-27-24 cluster knockout mice and evaluated myelination in the brain and spinal cord. Our results showed that 10-week-old knockout mice had reduced motor function in the hanging wire test compared to the wild-type mice. At 4 weeks, 10 weeks, and 12 months of age, knockout mice showed reduced myelination compared to wild-type mice. The expression levels of myelin basic protein and myelin proteolipid protein were also significantly lower in the knockout mice compared to the wild-type mice. Although differentiation of oligodendrocyte progenitor cells to oligodendrocytes was not inhibited in the knockout mice, the percentage of oligodendrocytes expressing myelin basic protein was significantly lower in 4-week-old knockout mice than that in wild-type mice. Proteome analysis and western blotting showed increased expression of leucine-zipper-like transcription regulator 1 (LZTR1) and decreased expression of R-RAS and phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) in the knockout mice. In summary, loss of miR-23-27-24 clusters reduces myelination and compromises motor functions in mice. Further, LZTR1, which regulates R-RAS upstream of the ERK1/2 pathway, a signal that promotes myelination, has been identified as a novel target of the miR-23-27-24 cluster in this study.


Assuntos
MicroRNAs , Proteína Básica da Mielina , Camundongos , Animais , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Sistema Nervoso Central , Diferenciação Celular/fisiologia , Camundongos Knockout
16.
Molecules ; 28(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049736

RESUMO

Histones have vital roles in chromatin functioning and gene transcription. At the same time, they are pernicious in intercellular space because they stimulate systemic inflammatory and toxic responses. Myelin basic protein (MBP) is the major protein of the axon myelin-proteolipid sheath. Antibody-abzymes with various catalytic activities are specific features of some autoimmune diseases. IgGs against five individual histones (H2B, H1, H2A, H3, and H4) and MBP were isolated from the blood of experimental autoimmune encephalomyelitis-prone C57BL/6 mice by affinity chromatography. Abzymes corresponding to various stages of EAE development, including spontaneous EAE, myelin oligodendrocyte glycoprotein (MOG)- and DNA-histone complex-accelerated onset, as well as acute and remission stages, were analyzed. IgG-abzymes against MBP and five individual histones showed unusual polyreactivity in complex formation and enzymatic cross-reactivity in the specific hydrolysis of H2B histone. All IgGs against MBP and individual histones in 3-month-old mice (zero time) demonstrated from 4 to 11 different H2B hydrolysis sites. Spontaneous development of EAE during 60 days led to a significant change in the type and number of H2B hydrolysis sites by IgGs against the five histones and MBP. Mouse treatment with MOG and DNA-histone complex changed the type and number of H2B hydrolysis sites compared to zero time. The minimum number (3) of different H2B hydrolysis sites was found for IgGs against H3 20 days after mouse immunization with DNA-histone complex, whereas the maximum number (33) for anti-H2B IgGs was found 60 days after mouse treatment with DNA-histone complex. Overall, this is the first study to demonstrate that at different stages of EAE evolution, IgG-abzymes against five individual histones and MBP could significantly differ in the specific sites and number of H2B hydrolysis sites. Possible reasons for the catalytic cross-reactivity and significant differences in the number and type of histone H2B cleavage sites were analyzed.


Assuntos
Anticorpos Catalíticos , Encefalomielite Autoimune Experimental , Animais , Camundongos , Histonas/metabolismo , Hidrólise , Proteína Básica da Mielina/metabolismo , Camundongos Endogâmicos C57BL , DNA/metabolismo , Glicoproteína Mielina-Oligodendrócito , Anticorpos Catalíticos/metabolismo , Imunoglobulina G
17.
Clin Immunol ; 250: 109286, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907539

RESUMO

Neuro-Behçet's disease (NBD) contributes to poor prognosis in BD patients which lacks reliable laboratory biomarkers in assessing intrathecal injury. This study aimed to determine the diagnostic value of myelin basic protein (MBP), an indicator of central nervous system (CNS) myelin damage, in NBD patients and disease controls. Paired samples of cerebrospinal fluid (CSF) and serum MBP were measured using ELISA, while IgG and Alb were routinely examined before the MBP index was developed. CSF and serum MBP in NBD were significantly higher than in NIND, which could distinguish NBD from NIND with a specificity exceeding 90%, moreover, they could also be excellent discriminators for acute NBD and chronic progressive ones. We found positive linkage between MBP index and IgG index. Serial MBP monitoring confirmed serum MBP's sensitive response to disease recurrences and drug effects, whereas MBP index suggests relapses prior to clinical symptoms. MBP has high diagnostic yield for NBD with demyelination and identifies CNS pathogenic processes before imaging or clinical diagnosis.


Assuntos
Síndrome de Behçet , Proteína Básica da Mielina , Humanos , Síndrome de Behçet/sangue , Síndrome de Behçet/diagnóstico , Biomarcadores/sangue , Biomarcadores/metabolismo , Sistema Nervoso Central/metabolismo , Imunoglobulina G , Proteína Básica da Mielina/sangue , Proteína Básica da Mielina/metabolismo
18.
Cells ; 12(6)2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36980286

RESUMO

Myelin basic protein (MBP) is one of the key structural elements of the myelin sheath and has autoantigenic properties in multiple sclerosis (MS). Its intracellular interaction network is still partially deconvoluted due to the unfolded structure, abnormally basic charge, and specific cellular localization. Here we used the fusion protein of MBP with TurboID, an engineered biotin ligase that uses ATP to convert biotin to reactive biotin-AMP that covalently attaches to nearby proteins, to determine MBP interactome. Despite evident benefits, the proximity labeling proteomics technique generates high background noise, especially in the case of proteins tending to semi-specific interactions. In order to recognize unique MBP partners, we additionally mapped protein interaction networks for deaminated MBP variant and cyclin-dependent kinase inhibitor 1 (p21), mimicking MBP in terms of natively unfolded state, size and basic amino acid clusters. We found that in the plasma membrane region, MBP is colocalized with adhesion proteins occludin and myelin protein zero-like protein 1, solute carrier family transporters ZIP6 and SNAT1, Eph receptors ligand Ephrin-B1, and structural components of the vesicle transport machinery-synaptosomal-associated protein 23 (SNAP23), vesicle-associated membrane protein 3 (VAMP3), protein transport protein hSec23B and cytoplasmic dynein 1 heavy chain 1. We also detected that MBP potentially interacts with proteins involved in Fe2+ and lipid metabolism, namely, ganglioside GM2 activator protein, long-chain-fatty-acid-CoA ligase 4 (ACSL4), NADH-cytochrome b5 reductase 1 (CYB5R1) and metalloreductase STEAP3. Assuming the emerging role of ferroptosis and vesicle cargo docking in the development of autoimmune neurodegeneration, MBP may recruit and regulate the activity of these processes, thus, having a more inclusive role in the integrity of the myelin sheath.


Assuntos
Biotina , Proteína Básica da Mielina , Proteômica , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Proteínas , Proteômica/métodos , Mapas de Interação de Proteínas
19.
J Vis Exp ; (192)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36847366

RESUMO

The process of myelination is essential to enable rapid and sufficient signal transduction in the nervous system. In the peripheral nervous system, neurons and Schwann cells engage in a complex interaction to control the myelination of axons. Disturbances of this interaction and breakdown of the myelin sheath are hallmarks of inflammatory neuropathies and occur secondarily in neurodegenerative disorders. Here, we present a coculture model of dorsal root ganglion explants and Schwann cells, which develops a robust myelination of peripheral axons to investigate the process of myelination in the peripheral nervous system, study axon-Schwann cell interactions, and evaluate the potential effects of therapeutic agents on each cell type separately. Methodologically, dorsal root ganglions of embryonic rats (E13.5) were harvested, dissociated from their surrounding tissue, and cultured as whole explants for 3 days. Schwann cells were isolated from 3-week-old adult rats, and sciatic nerves were enzymatically digested. The resulting Schwann cells were purified by magnetic-activated cell sorting and cultured under neuregulin and forskolin-enriched conditions. After 3 days of dorsal root ganglion explant culture, 30,000 Schwann cells were added to one dorsal root ganglion explant in a medium containing ascorbic acid. The first signs of myelination were detected on day 10 of coculture, through scattered signals for myelin basic protein in immunocytochemical staining. From day 14 onward, myelin sheaths were formed and propagated along the axons. Myelination can be quantified by myelin basic protein staining as a ratio of the myelination area and axon area, to account for the differences in axonal density. This model provides experimental opportunities to study various aspects of peripheral myelination in vitro, which is crucial for understanding the pathology of and possible treatment opportunities for demyelination and neurodegeneration in inflammatory and neurodegenerative diseases of the peripheral nervous system.


Assuntos
Gânglios Espinais , Proteína Básica da Mielina , Ratos , Animais , Proteína Básica da Mielina/metabolismo , Técnicas de Cocultura , Células de Schwann , Axônios/fisiologia , Bainha de Mielina/metabolismo , Nervo Isquiático , Células Cultivadas
20.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768413

RESUMO

Proteasomes exist in mammalian cells in multiple combinatorial variants due to the diverse regulatory particles and exchange of catalytic subunits. Here, using biotin carboxyl carrier domain of transcarboxylase from Propionibacterium shermanii fused with different proteasome subunits of catalytic and regulatory particles, we report comprehensive characterization of highly homogenous one-step purified human constitutive and immune 20S and 26S/30S proteasomes. Hydrolysis of a multiple sclerosis (MS) autoantigen, myelin basic protein (MBP), by engineered human proteasomes with different catalytic phenotypes, revealed that peptides which may be directly loaded on the HLA class I molecules are produced mainly by immunoproteasomes. We detected at least five MBP immunodominant core regions, namely, LPRHRDTGIL, SLPQKSHGR, QDENPVVHFF, KGRGLSLSRF and GYGGRASDY. All peptides, except QDENPVVHFF, which originates from the encephalitogenic MBP part, were associated with HLA I alleles considered to increase MS risk. Prediction of the affinity of HLA class I to this peptide demonstrated that MS-protective HLA-A*44 and -B*35 molecules are high-affinity binders, whereas MS-associated HLA-A*23, -A*24, -A*26 and -B*51 molecules tend to have moderate to low affinity. The HLA-A*44 molecules may bind QDENPVVHFF and its deamidated form in several registers with unprecedently high affinity, probably linking its distinct protective phenotype with thymic depletion of the repertoire of autoreactive cytotoxic T cells or induction of CD8+ regulatory T cells, specific to the encephalitogenic MBP peptide.


Assuntos
Esclerose Múltipla , Proteína Básica da Mielina , Animais , Humanos , Proteína Básica da Mielina/metabolismo , Complexo de Endopeptidases do Proteassoma , Ligantes , Fragmentos de Peptídeos , Peptídeos/química , Esclerose Múltipla/genética , Epitopos Imunodominantes , Antígenos HLA-A , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...