Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 883
Filtrar
1.
Mol Biol Rep ; 51(1): 828, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033258

RESUMO

Niemann-Pick disease type C (NPC) is a rare neurodegenerative condition resulted from mutations in NPC1 and NPC2 genes. This cellular lipid transferring disorder mainly involves endocytosed cholesterol trafficking. The accumulation of cholesterol and glycolipids in late endosomes and lysosomes results in progressive neurodegeneration and death. Recently, genome editing technologies, particularly CRISPR/Cas9 have offered the opportunity to create disease models to screen novel therapeutic options for this disorder. Moreover, these methods have been used for the purpose of gene therapy. This review summarizes the studies that focused on the application of CRISPR/Cas9 technology for exploring the mechanism of intracellular cholesterol transferring, and screening of novel agents for treatment of NPC.


Assuntos
Sistemas CRISPR-Cas , Colesterol , Edição de Genes , Terapia Genética , Doença de Niemann-Pick Tipo C , Sistemas CRISPR-Cas/genética , Humanos , Doença de Niemann-Pick Tipo C/terapia , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Edição de Genes/métodos , Terapia Genética/métodos , Colesterol/metabolismo , Animais , Proteína C1 de Niemann-Pick , Modelos Animais de Doenças
2.
Nat Cell Biol ; 26(7): 1093-1109, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38886558

RESUMO

Extracellular vesicles such as exosomes are now recognized as key players in intercellular communication. Their role is influenced by the specific repertoires of proteins and lipids, which are enriched when they are generated as intraluminal vesicles (ILVs) in multivesicular endosomes. Here we report that a key component of small extracellular vesicles, the tetraspanin CD63, sorts cholesterol to ILVs, generating a pool that can be mobilized by the NPC1/2 complex, and exported via exosomes to recipient cells. In the absence of CD63, cholesterol is retrieved from the endosomes by actin-dependent vesicular transport, placing CD63 and cholesterol at the centre of a balance between inward and outward budding of endomembranes. These results establish CD63 as a lipid-sorting mechanism within endosomes, and show that ILVs and exosomes are alternative providers of cholesterol.


Assuntos
Colesterol , Endossomos , Exossomos , Tetraspanina 30 , Tetraspanina 30/metabolismo , Colesterol/metabolismo , Exossomos/metabolismo , Endossomos/metabolismo , Humanos , Animais , Proteína C1 de Niemann-Pick , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Transporte Biológico , Actinas/metabolismo , Camundongos
3.
Cell Biochem Funct ; 42(4): e4028, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38715125

RESUMO

Niemann-Pick disease (NPD) is another type of metabolic disorder that is classified as lysosomal storage diseases (LSDs). The main cause of the disease is mutation in the SMPD1 (type A and B) or NPC1 or NPC2 (type C) genes, which lead to the accumulation of lipid substrates in the lysosomes of the liver, brain, spleen, lung, and bone marrow cells. This is followed by multiple cell damage, dysfunction of lysosomes, and finally dysfunction of body organs. So far, about 346, 575, and 30 mutations have been reported in SMPD1, NPC1, and NPC2 genes, respectively. Depending on the type of mutation and the clinical symptoms of the disease, the treatment will be different. The general aim of the current study is to review the clinical and molecular characteristics of patients with NPD and study various treatment methods for this disease with a focus on gene therapy approaches.


Assuntos
Terapia Genética , Mutação , Proteína C1 de Niemann-Pick , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Doença de Niemann-Pick Tipo C/terapia , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/patologia , Doenças de Niemann-Pick/genética , Doenças de Niemann-Pick/metabolismo , Doenças de Niemann-Pick/terapia , Doenças de Niemann-Pick/patologia , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética
4.
Int J Mol Sci ; 25(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38791456

RESUMO

Presenilin proteins (PS1 and PS2) represent the catalytic subunit of γ-secretase and play a critical role in the generation of the amyloid ß (Aß) peptide and the pathogenesis of Alzheimer disease (AD). However, PS proteins also exert multiple functions beyond Aß generation. In this study, we examine the individual roles of PS1 and PS2 in cellular cholesterol metabolism. Deletion of PS1 or PS2 in mouse models led to cholesterol accumulation in cerebral neurons. Cholesterol accumulation was also observed in the lysosomes of embryonic fibroblasts from Psen1-knockout (PS1-KO) and Psen2-KO (PS2-KO) mice and was associated with decreased expression of the Niemann-Pick type C1 (NPC1) protein involved in intracellular cholesterol transport in late endosomal/lysosomal compartments. Mass spectrometry and complementary biochemical analyses also revealed abnormal N-glycosylation of NPC1 and several other membrane proteins in PS1-KO and PS2-KO cells. Interestingly, pharmacological inhibition of N-glycosylation resulted in intracellular cholesterol accumulation prominently in lysosomes and decreased NPC1, thereby resembling the changes in PS1-KO and PS2-KO cells. In turn, treatment of PS1-KO and PS2-KO mouse embryonic fibroblasts (MEFs) with the chaperone inducer arimoclomol partially normalized NPC1 expression and rescued lysosomal cholesterol accumulation. Additionally, the intracellular cholesterol accumulation in PS1-KO and PS2-KO MEFs was prevented by overexpression of NPC1. Collectively, these data indicate that a loss of PS function results in impaired protein N-glycosylation, which eventually causes decreased expression of NPC1 and intracellular cholesterol accumulation. This mechanism could contribute to the neurodegeneration observed in PS KO mice and potentially to the pathogenesis of AD.


Assuntos
Colesterol , Fibroblastos , Lisossomos , Proteína C1 de Niemann-Pick , Presenilina-1 , Presenilina-2 , Animais , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Colesterol/metabolismo , Fibroblastos/metabolismo , Glicosilação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisossomos/metabolismo , Camundongos Knockout , Neurônios/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/metabolismo , Presenilina-2/genética
5.
J Lipid Res ; 65(6): 100556, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719150

RESUMO

Niemann-Pick type C1 (NPC1) disease is a rare neurodegenerative cholesterol and sphingolipid storage disorder primarily due to mutations in the cholesterol-trafficking protein NPC1. In addition to catabolic-derived sphingolipids, NPC1 dysfunction also leads to an increase in de novo sphingolipid biosynthesis, yet little is known about the cellular mechanism involved. Although deletion of NPC1 or inhibition of the NPC1 sterol binding domain enhanced de novo sphingolipid biosynthesis, surprisingly levels of the ORMDLs, the regulatory subunits of serine palmitoyltransferase (SPT), the rate-limiting step in sphingolipid biosynthesis, were also greatly increased. Nevertheless, less ORMDL was bound in the SPT-ORMDL complex despite elevated ceramide levels. Instead, ORMDL colocalized with p62, the selective autophagy receptor, and accumulated in stalled autophagosomes due to defective autophagy in NPC1 disease cells. Restoration of autophagic flux with N-acetyl-L-leucine in NPC1 deleted cells decreased ORMDL accumulation in autophagosomes and reduced de novo sphingolipid biosynthesis and their accumulation. This study revealed a previously unknown link between de novo sphingolipid biosynthesis, ORMDL, and autophagic defects present in NCP1 disease. In addition, we provide further evidence and mechanistic insight for the beneficial role of N-acetyl-L-leucine treatment for NPC1 disease which is presently awaiting approval from the Food and Drug Administration and the European Medicines Agency.


Assuntos
Autofagia , Doença de Niemann-Pick Tipo C , Esfingolipídeos , Esfingolipídeos/metabolismo , Esfingolipídeos/biossíntese , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Doença de Niemann-Pick Tipo C/genética , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Animais , Proteína C1 de Niemann-Pick , Serina C-Palmitoiltransferase/metabolismo , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/antagonistas & inibidores
6.
Diabetes Metab Res Rev ; 40(4): e3793, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38661109

RESUMO

AIMS: The aims of the present study were to assess the effects of lipid-lowering drugs [HMG-CoA reductase inhibitors, proprotein convertase subtilisin/kexin type 9 inhibitors, and Niemann-Pick C1-Like 1 (NPC1L1) inhibitors] on novel subtypes of adult-onset diabetes through a Mendelian randomisation study. MATERIALS AND METHODS: We first inferred causal associations between lipid-related traits [including high-density lipoprotein cholesterol, low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), apolipoproteins A-I, and apolipoproteins B] and novel subtypes of adult-onset diabetes. The expression quantitative trait loci of drug target genes for three classes of lipid-lowering drugs, as well as genetic variants within or nearby drug target genes associated with LDL-C, were then utilised as proxies for the exposure of lipid-lowering drugs. Mendelian randomisation analysis was performed using summary data from genome-wide association studies of LDL-C, severe autoimmune diabetes, severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD), and mild age-related diabetes. RESULTS: There was an association between HMGCR-mediated LDL-C and the risk of SIRD [odds ratio (OR) = 0.305, 95% confidence interval (CI) = 0.129-0.723; p = 0.007], and there was an association of PCSK9-mediated LDL-C with the risk of SIDD (OR = 0.253, 95% CI = 0.120-0.532; p < 0.001) and MOD (OR = 0.345, 95% CI = 0.171-0.696; p = 0.003). Moreover, NPC1L1-mediated LDL-C (OR = 0.109, 95% CI = 0.019-0.613; p = 0.012) and the increased expression of NPC1L1 gene in blood (OR = 0.727, 95% CI = 0.541-0.977; p = 0.034) both showed a significant association with SIRD. These results were further confirmed by sensitivity analyses. CONCLUSIONS: In summary, the different lipid-lowering medications have a specific effect on the increased risk of different novel subtypes of adult-onset diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Dislipidemias , Inibidores de Hidroximetilglutaril-CoA Redutases , Hipolipemiantes , Inibidores de PCSK9 , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Proteína C1 de Niemann-Pick/antagonistas & inibidores , Inibidores de PCSK9/efeitos adversos , Hipolipemiantes/efeitos adversos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Dislipidemias/tratamento farmacológico , Medição de Risco , Locos de Características Quantitativas , Razão de Chances
7.
ACS Infect Dis ; 10(5): 1590-1601, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38684073

RESUMO

Ebola virus (EBOV) is an enveloped virus that must fuse with the host cell membrane in order to release its genome and initiate infection. This process requires the action of the EBOV envelope glycoprotein (GP), encoded by the virus, which resides in the viral envelope and consists of a receptor binding subunit, GP1, and a membrane fusion subunit, GP2. Despite extensive research, a mechanistic understanding of the viral fusion process is incomplete. To investigate GP-membrane association, a key step in the fusion process, we used two approaches: high-throughput measurements of single-particle diffusion and single-molecule measurements with optical tweezers. Using these methods, we show that the presence of the endosomal Niemann-Pick C1 (NPC1) receptor is not required for primed GP-membrane binding. In addition, we demonstrate this binding is very strong, likely attributed to the interaction between the GP fusion loop and the membrane's hydrophobic core. Our results also align with previously reported findings, emphasizing the significance of acidic pH in the protein-membrane interaction. Beyond Ebola virus research, our approach provides a powerful toolkit for studying other protein-membrane interactions, opening new avenues for a better understanding of protein-mediated membrane fusion events.


Assuntos
Ebolavirus , Proteínas do Envelope Viral , Ebolavirus/metabolismo , Ebolavirus/fisiologia , Ebolavirus/genética , Ebolavirus/química , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Humanos , Ligação Proteica , Internalização do Vírus , Proteína C1 de Niemann-Pick/metabolismo , Membrana Celular/metabolismo , Membrana Celular/virologia , Doença pelo Vírus Ebola/virologia , Concentração de Íons de Hidrogênio
8.
Redox Biol ; 72: 103150, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599016

RESUMO

Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by impaired motor coordination due to neurological defects and cerebellar dysfunction caused by the accumulation of cholesterol in endolysosomes. Besides the increase in lysosomal cholesterol, mitochondria are also enriched in cholesterol, which leads to decreased membrane fluidity, impaired mitochondrial function and loss of GSH, and has been shown to contribute to the progression of NPC disease. S-Adenosyl-l-methionine (SAM) regulates membrane physical properties through the generation of phosphatidylcholine (PC) from phosphatidylethanolamine (PE) methylation and functions as a GSH precursor by providing cysteine in the transsulfuration pathway. However, the role of SAM in NPC disease has not been investigated. Here we report that Npc1-/- mice exhibit decreased brain SAM levels but unchanged S-adenosyl-l-homocysteine content and lower expression of Mat2a. Brain mitochondria from Npc1-/- mice display decreased mitochondrial GSH levels and liquid chromatography-high resolution mass spectrometry analysis reveal a lower PC/PE ratio in mitochondria, contributing to increased mitochondrial membrane order. In vivo treatment of Npc1-/- mice with SAM restores SAM levels in mitochondria, resulting in increased PC/PE ratio, mitochondrial membrane fluidity and subsequent replenishment of mitochondrial GSH levels. In vivo SAM treatment improves the decline of locomotor activity, increases Purkinje cell survival in the cerebellum and extends the average and maximal life spam of Npc1-/- mice. These findings identify SAM as a potential therapeutic approach for the treatment of NPC disease.


Assuntos
Encéfalo , Glutationa , Fluidez de Membrana , Membranas Mitocondriais , Doença de Niemann-Pick Tipo C , S-Adenosilmetionina , Animais , Camundongos , S-Adenosilmetionina/metabolismo , Membranas Mitocondriais/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Glutationa/metabolismo , Encéfalo/metabolismo , Mitocôndrias/metabolismo , Proteína C1 de Niemann-Pick , Modelos Animais de Doenças , Camundongos Knockout , Fosfatidilcolinas/metabolismo
9.
Proc Natl Acad Sci U S A ; 121(15): e2315575121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568972

RESUMO

The membrane protein Niemann-Pick type C1 (NPC1, named NCR1 in yeast) is central to sterol homeostasis in eukaryotes. Saccharomyces cerevisiae NCR1 is localized to the vacuolar membrane, where it is suggested to carry sterols across the protective glycocalyx and deposit them into the vacuolar membrane. However, documentation of a vacuolar glycocalyx in fungi is lacking, and the mechanism for sterol translocation has remained unclear. Here, we provide evidence supporting the presence of a glycocalyx in isolated S. cerevisiae vacuoles and report four cryo-EM structures of NCR1 in two distinct conformations, named tense and relaxed. These two conformations illustrate the movement of sterols through a tunnel formed by the luminal domains, thus bypassing the barrier presented by the glycocalyx. Based on these structures and on comparison with other members of the Resistance-Nodulation-Division (RND) superfamily, we propose a transport model that links changes in the luminal domains with a cycle of protonation and deprotonation within the transmembrane region of the protein. Our model suggests that NPC proteins work by a generalized RND mechanism where the proton motive force drives conformational changes in the transmembrane domains that are allosterically coupled to luminal/extracellular domains to promote sterol transport.


Assuntos
Saccharomyces cerevisiae , Esteróis , Esteróis/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Glicoproteínas de Membrana/metabolismo
10.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673803

RESUMO

Niemann-Pick disease type C1 (NPC1) is a lysosomal disorder due to impaired intracellular cholesterol transport out of the endolysosomal compartment.. Marked heterogeneity has been observed in individuals with the same NPC1 genotype, thus suggesting a significant effect of modifier genes. Prior work demonstrated that decreased SOAT1 activity decreased disease severity in an NPC1 mouse model. Thus, we hypothesized that a polymorphism associated with decreased SOAT1 expression might influence the NPC1 phenotype. Phenotyping and genomic sequencing of 117 individuals with NPC1 was performed as part of a Natural History trial. Phenotyping included determination of disease severity and disease burden. Significant clinical heterogeneity is present in individuals homozygous for the NPC1I1061T variant and in siblings. Analysis of the SOAT1 polymorphism, rs1044925 (A>C), showed a significant association of the C-allele with earlier age of neurological onset. The C-allele may be associated with a higher Annualized Severity Index Score as well as increased frequency of liver disease and seizures. A polymorphism associated with decreased expression of SOAT1 appears to be a genetic modifier of the NPC1 phenotype. This finding is consistent with prior data showing decreased phenotypic severity in Npc1-/-:Soat1-/- mice and supports efforts to investigate the potential of SOAT1 inhibitors as a potential therapy for NPC1.


Assuntos
Doença de Niemann-Pick Tipo C , Esterol O-Aciltransferase , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Humanos , Masculino , Feminino , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo , Proteína C1 de Niemann-Pick , Criança , Polimorfismo de Nucleotídeo Único , Animais , Camundongos , Fenótipo , Adolescente , Pré-Escolar , Genes Modificadores , Adulto , Alelos , Índice de Gravidade de Doença , Genótipo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Adulto Jovem
11.
J Proteome Res ; 23(8): 3174-3187, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38686625

RESUMO

NPC intracellular cholesterol transporter 1 (NPC1) is a multipass, transmembrane glycoprotein mostly recognized for its key role in facilitating cholesterol efflux. Mutations in the NPC1 gene result in Niemann-Pick disease, type C (NPC), a fatal, lysosomal storage disease. Due to the progressively expanding implications of NPC1-related disorders, we investigated endogenous NPC1 protein-protein interactions in the mouse cortex and human-derived iPSCs neuronal models of the disease through coimmunoprecipitation-coupled with LC-MS based proteomics. The current study investigated protein-protein interactions specific to the wild-type and the most prevalent NPC1 mutation (NPC1I1061T) while filtering out any protein interactor identified in the Npc1-/- mouse model. Additionally, the results were matched across the two species to map the parallel interactome of wild-type and mutant NPC1I1061T. Most of the identified wild-type NPC1 interactors were related to cytoskeleton organization, synaptic vesicle activity, and translation. We found many putative NPC1 interactors not previously reported, including two SCAR/WAVE complex proteins that regulate ARP 2/3 complex actin nucleation and multiple membrane proteins important for neuronal activity at synapse. Moreover, we identified proteins important in trafficking specific to wild-type and mutant NPC1I1061T. Together, the findings are essential for a comprehensive understanding of NPC1 biological functions in addition to its classical role in sterol efflux.


Assuntos
Córtex Cerebral , Proteína C1 de Niemann-Pick , Mapas de Interação de Proteínas , Animais , Córtex Cerebral/metabolismo , Camundongos , Humanos , Proteômica/métodos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/genética , Mutação , Camundongos Knockout , Colesterol/metabolismo , Neurônios/metabolismo
12.
Am J Med Genet A ; 194(8): e63595, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38549495

RESUMO

Niemann-Pick disease type C (NPC) is one of the lysosomal storage disorders. It is caused by biallelic pathogenic variants in NPC1 or NPC2, which results in a defective cholesterol trafficking inside the late endosome and lysosome. There is a high clinical variability in the age of presentation and the phenotype of this disorder making the diagnosis challenging. Here, we report a patient with an infantile onset global developmental delay, microcephaly and dysmorphic features, homozygous for c.3560C>T (p.A1187V) variant in NPC1. His plasma oxysterol levels were normal on two occasions. His lyso-sphingomyelin-509 (lyso-SM 509) and urinary bile acid levels were normal. Based on the phenotype and biochemical features, the diagnosis of NPC was excluded in this patient. We emphasize the importance of functional characterization in the classification of novel variants to prevent a misdiagnosis. Matching the phenotype and biochemical evidence with the molecular genomic tests is crucial for the confirmation of genetic diagnoses.


Assuntos
Sequenciamento do Exoma , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C , Fenótipo , Humanos , Proteína C1 de Niemann-Pick/genética , Masculino , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/diagnóstico , Doença de Niemann-Pick Tipo C/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação/genética , Lactente
13.
Theranostics ; 14(5): 2058-2074, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505613

RESUMO

Rationale: NPC1 is a protein localized on the lysosome membrane regulating intracellular cholesterol transportation and maintaining normal lysosome function. GWAS studies have found that NPC1 variants in T2D was a pancreatic islet expression quantitative trait locus, suggesting a potential role of NPC1 in T2D islet pathophysiology. Methods: Two-week-old Npc1-/- mice and wild type littermates were employed to examine pancreatic ß cell morphology and functional changes induced by loss of Npc1. Single cell RNA sequencing was conducted on primary islets. Npc1-/- Min6 cell line was generated using CRISPR/Cas9 gene editing. Seahorse XF24 was used to analyze primary islet and Min6 cell mitochondria respiration. Ultra-high-resolution cell imaging with Lattice SIM2 and electron microscope imaging were used to observe mitochondria and lysosome in primary islet ß and Min6 cells. Mitophagy Dye and mt-Keima were used to measure ß cell mitophagy. Results: In Npc1-/- mice, we found that ß cell survival and pancreatic ß cell mass expansion as well as islet glucose induced insulin secretion in 2-week-old mice were reduced. Npc1 loss retarded postnatal ß cell differentiation and growth as well as impaired mitochondria oxidative phosphorylation (OXPHOS) function to increase mitochondrial superoxide production, which might be attributed to impaired autophagy flux particularly mitochondria autophagy (mitophagy) induced by dysfunctional lysosome in Npc1 null ß cells. Conclusion: Our study revealed that NPC1 played an important role in maintaining normal lysosome function and mitochondria turnover, which ensured establishment of sufficient mitochondria OXPHOS for islet ß cells differentiation and maturation.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Camundongos , Diferenciação Celular , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Mitocôndrias/metabolismo , Proteína C1 de Niemann-Pick/metabolismo
14.
FEBS Lett ; 598(4): 477-484, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38302739

RESUMO

Niemann-Pick type C disease (NPCD) is a rare neurodegenerative disorder most commonly caused by mutations in the lysosomal protein Niemann-Pick C1 (NPC1), which is implicated in cholesterol export. Mitochondrial insufficiency forms a significant feature of the pathology of this disease, yet studies attempting to address this are rare. The working hypothesis is that mitochondria become overloaded with cholesterol which renders them dysfunctional. We examined two potential protein targets-translocator protein (TSPO) and steroidogenic acute regulatory protein D1 (StARD1)-which are implicated in cholesterol transport to mitochondria, in addition to glucocerbrosidase 2 (GBA2), the target of miglustat, which is currently the only approved treatment for NPCD. However, inhibiting these proteins did not correct the mitochondrial defect in NPC1-deficient cells.


Assuntos
Doenças Mitocondriais , Doença de Niemann-Pick Tipo C , Fosfoproteínas , Humanos , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Colesterol/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Receptores de GABA/metabolismo
15.
Nat Commun ; 15(1): 162, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167417

RESUMO

SARS-CoV-2 and filovirus enter cells via the cell surface angiotensin-converting enzyme 2 (ACE2) or the late-endosome Niemann-Pick C1 (NPC1) as a receptor. Here, we screened 974 natural compounds and identified Tubeimosides I, II, and III as pan-coronavirus and filovirus entry inhibitors that target NPC1. Using in-silico, biochemical, and genomic approaches, we provide evidence that NPC1 also binds SARS-CoV-2 spike (S) protein on the receptor-binding domain (RBD), which is blocked by Tubeimosides. Importantly, NPC1 strongly promotes productive SARS-CoV-2 entry, which we propose is due to its influence on fusion in late endosomes. The Tubeimosides' antiviral activity and NPC1 function are further confirmed by infection with SARS-CoV-2 variants of concern (VOC), SARS-CoV, and MERS-CoV. Thus, NPC1 is a critical entry co-factor for highly pathogenic human coronaviruses (HCoVs) in the late endosomes, and Tubeimosides hold promise as a new countermeasure for these HCoVs and filoviruses.


Assuntos
Ebolavirus , Receptores Virais , Humanos , Ligação Proteica , Receptores Virais/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Ebolavirus/fisiologia , Internalização do Vírus , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
16.
BMC Infect Dis ; 24(1): 145, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291356

RESUMO

BACKGROUND: Niemann-Pick Disease type C is a fatal autosomal recessive lipid storage disorder caused by NPC1 or NPC2 gene mutations and characterized by progressive, disabling neurological deterioration and hepatosplenomegaly. Herein, we identified a novel compound heterozygous mutations of the NPC1 gene in a Chinese pedigree. CASE PRESENTATION: This paper describes an 11-year-old boy with aggravated walking instability and slurring of speech who presented as Niemann-Pick Disease type C. He had the maternally inherited c.3452 C > T (p. Ala1151Val) mutation and the paternally inherited c.3557G > A (p. Arg1186His) mutation using next-generation sequencing. The c.3452 C > T (p. Ala1151Val) mutation has not previously been reported. CONCLUSIONS: This study predicted that the c.3452 C > T (p. Ala1151Val) mutation is pathogenic. This data enriches the NPC1 gene variation spectrum and provides a basis for familial genetic counseling and prenatal diagnosis.


Assuntos
Doença de Niemann-Pick Tipo C , Criança , Humanos , Masculino , Proteínas de Transporte/genética , Mutação , Proteína C1 de Niemann-Pick/genética , Doença de Niemann-Pick Tipo C/diagnóstico , Doença de Niemann-Pick Tipo C/genética , Diagnóstico Pré-Natal
17.
Gene ; 897: 148050, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042211

RESUMO

BACKGROUND: more and more studies have indicated that autophagy plays a crucial role in hepatocellular carcinoma (HCC) in recent years. Hence, our study aimed to establish a prognostic signature for HCC based on autophagy-related genes (ARGs) in order to predict the prognosis of HCC. METHODS: All original gene-expression data and clinical information were downloaded from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO). ARGs were obtained from the Human Autophagy Database (HADb). Univariate Cox regression analysis, Least absolute shrinkage and selection operator (LASSO) and Principal Component Analysis (PCA) analysis were performed to identify and validate the validity and reliability of our eight-gene signature, Gene Set Enrichment Analysis (GSEA) was used to perform enrichment analysis by comparing high-risk and low-risk groups in KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology) gene sets. Finally, we verified the gene (NPC1) by functional experiments in vitro and in vivo. RESULTS: 8 ARGs were identified for establishing an eight-gene signature. Then, we validated our eight-gene signature in training, internal, external, and entire testing cohorts. Besides, we also explored the relationships between the eight-gene signature and immune infiltration or immune checkpoints. We also identified NPC1 was closely related to Activated CD4 T cell and Type I IFN Response, and higher expressed level of HCC patients was more sensitive to CTLA4 and TNFRSF9 immune checkpoint inhibitors. NPC1 is highly expressed in HCC cells and tumor tissues, which promotes the proliferation, migration, and invasion of tumor cells by activating autophagy.. CONCLUSION: 8 ARGs were used to establish a gene signature to predict the prognosis of HCC. we inferred that NPC1 can promote late autophagy, it could be a future novel therapeutic target of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteína C1 de Niemann-Pick , Humanos , Autofagia , Carcinoma Hepatocelular/genética , Transformação Celular Neoplásica , Neoplasias Hepáticas/genética , Proteína C1 de Niemann-Pick/metabolismo , Prognóstico , Reprodutibilidade dos Testes
18.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166980, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38061599

RESUMO

Disruption of brain cholesterol homeostasis has been implicated in neurodegeneration. Nevertheless, the role of cholesterol in Parkinson's Disease (PD) remains unclear. We have used N2a mouse neuroblastoma cells and primary cultures of mouse neurons and 1-methyl-4-phenylpyridinium (MPP+), a known mitochondrial complex I inhibitor and the toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), known to trigger a cascade of events associated with PD neuropathological features. Simultaneously, we utilized other mitochondrial toxins, including antimycin A, oligomycin, and carbonyl cyanide chlorophenylhydrazone. MPP+ treatment resulted in elevated levels of total cholesterol and in a Niemann Pick type C1 (NPC1)-like phenotype characterized by accumulation of cholesterol in lysosomes. Interestingly, NPC1 mRNA levels were specifically reduced by MPP+. The decrease in NPC1 levels was also seen in midbrain and striatum from MPTP-treated mice and in primary cultures of neurons treated with MPP+. Together with the MPP+-dependent increase in intracellular cholesterol levels in N2a cells, we observed an increase in 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and a concomitant increase in the phosphorylated levels of mammalian target of rapamycin (mTOR). NPC1 knockout delayed cell death induced by acute mitochondrial damage, suggesting that transient cholesterol accumulation in lysosomes could be a protective mechanism against MPTP/MPP+ insult. Interestingly, we observed a negative correlation between NPC1 protein levels and disease stage, in human PD brain samples. In summary, MPP+ decreases NPC1 levels, elevates lysosomal cholesterol accumulation and alters mTOR signaling, adding to the existing notion that PD may rise from alterations in mitochondrial-lysosomal communication.


Assuntos
Doença de Parkinson , Animais , Humanos , Camundongos , Colesterol/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína C1 de Niemann-Pick , Fenótipo , Serina-Treonina Quinases TOR/metabolismo
19.
J Med Genet ; 61(4): 332-339, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989569

RESUMO

INTRODUCTION: NPC1 mutations are responsible for Niemann-Pick disease type C (NPC), a rare autosomal recessive neurodegenerative disease. Patients harbouring heterozygous NPC1 mutations may rarely show parkinsonism or dementia. Here, we describe for the first time a large family with an apparently autosomal dominant late-onset Alzheimer's disease (AD) harbouring a novel heterozygous NPC1 mutation. METHODS: All the five living siblings belonging to the family were evaluated. We performed clinical evaluation, neuropsychological tests, assessment of cerebrospinal fluid markers of amyloid deposition, tau pathology and neurodegeneration (ATN), structural neuroimaging and brain amyloid-positron emission tomography. Oxysterol serum levels were also tested. A wide next-generation sequencing panel of genes associated with neurodegenerative diseases and a whole exome sequencing analysis were performed. RESULTS: We detected the novel heterozygous c.3034G>T (p.Gly1012Cys) mutation in NPC1, shared by all the siblings. No other point mutations or deletions in NPC1 or NPC2 were found. In four siblings, a diagnosis of late-onset AD was defined according to clinical characterisation and ATN biomarkers (A+, T+, N+) and serum oxysterol analysis showed increased 7-ketocholesterol and cholestane-3ß,5α,6ß-triol. DISCUSSION: We describe a novel NPC1 heterozygous mutation harboured by different members of a family with autosomal dominant late-onset amnesic AD without NPC-associated features. A missense mutation in homozygous state in the same aminoacidic position has been previously reported in a patient with NPC with severe phenotype. The alteration of serum oxysterols in our family corroborates the pathogenic role of our NPC1 mutation. Our work, illustrating clinical and biochemical disease hallmarks associated with NPC1 heterozygosity in patients affected by AD, provides relevant insights into the pathogenetic mechanisms underlying this possible novel association.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Niemann-Pick Tipo C , Oxisteróis , Humanos , Doença de Alzheimer/genética , Mutação , Doença de Niemann-Pick Tipo C/diagnóstico , Doença de Niemann-Pick Tipo C/genética , Proteína C1 de Niemann-Pick/genética
20.
Anim Genet ; 55(1): 99-109, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38087834

RESUMO

Niemann-Pick disease type C1 (NPC1) is a lysosomal lipid storage disease caused by NPC1 gene mutation. Our previous study found that, compared with wild-type (Npc1+/+ ) mice, the renal volume and weight of Npc1 gene mutant (Npc1-/- ) mice were significantly reduced. We speculate that Npc1 gene mutations may affect the basic structure of the kidneys of Npc1-/- mice, and thus affect their function. Therefore, we randomly selected postnatal Day 28 (P28) and P56 Npc1+/+ and Npc1-/- mice, and observed the renal structure and pathological changes by haematoxylin-eosin staining. The level of renal fibrosis was detected by immunofluorescence histochemical techniques, and western blotting was used to detect the expression levels of apoptosis-related proteins and canonical Wnt signalling pathway related proteins. The results showed that compared with Npc1+/+ mice, the kidneys of P28 and P56 Npc1-/- mice underwent apoptosis and fibrosis; furthermore, there were obvious vacuoles in the cytoplasm of renal tubular epithelial cells of P56 Npc1-/- mice, the cell bodies were loose and foam-like, and the canonical Wnt signalling pathway was abnormally activated. These results showed that Npc1 gene mutation can cause pathological changes in the kidneys of mice. As age increased, vacuoles developed in the cytoplasm of renal tubular epithelial cells, and apoptosis of renal cells, abnormal activation of the Wnt signalling pathway, and promotion of renal fibrosis increased.


Assuntos
Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C , Animais , Camundongos , Fibrose , Rim/metabolismo , Rim/patologia , Mutação , Proteína C1 de Niemann-Pick/genética , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...