Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.371
Filtrar
1.
FASEB J ; 38(14): e23832, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39046354

RESUMO

This study aims to investigate the hypothesis that Yes-associated protein (YAP) significantly regulates antioxidant potential and anti-apoptosis in UVB-induced cataract by exploring the underlying molecular mechanisms. To investigate the association between YAP and cataract, various experimental techniques were employed, including cell viability assessment, Annexin V FITC/PI assay, measurement of ROS production, RT-PCR, Western blot assay, and Immunoprecipitation. UVB exposure on human lens epithelium cells (HLECs) reduced total and nuclear YAP protein expression, increased cleaved/pro-caspase 3 ratios, decreased cell viability, and elevated ROS levels compared to controls. Similar Western blot results were observed in in vivo experiments involving UVB-treated mice. YAP knockdown in vitro demonstrated a decrease in the protein expression of FOXM1, Nrf2, and HO-1, which correlated with the mRNA expression, accompanied by an increase in cell apoptosis, caspase 3 activation, and the release of ROS. Conversely, YAP overexpression mitigated these effects induced by UVB irradiation. Immunoprecipitation revealed a FOXM1-YAP interaction. Notably, inhibiting FOXM1 decreased Nrf2 and HO-1, activating caspase 3. Additionally, administering the ROS inhibitor N-acetyl-L-cysteine (NAC) effectively mitigated the apoptotic effects induced by oxidative stress from UVB irradiation, rescuing the protein expression levels of YAP, FOXM1, Nrf2, and HO-1. The initial findings of our study demonstrate the existence of a feedback loop involving YAP, FOXM1, Nrf2, and ROS that significantly influences the cell apoptosis in HLECs under UVB-induced oxidative stress.


Assuntos
Apoptose , Catarata , Proteína Forkhead Box M1 , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Raios Ultravioleta , Proteínas de Sinalização YAP , Apoptose/efeitos da radiação , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Raios Ultravioleta/efeitos adversos , Humanos , Animais , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Camundongos , Catarata/etiologia , Catarata/metabolismo , Catarata/patologia , Proteínas de Sinalização YAP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Cristalino/metabolismo , Cristalino/efeitos da radiação , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Espécies Reativas de Oxigênio/metabolismo , Masculino , Transdução de Sinais , Camundongos Endogâmicos C57BL
2.
J Transl Med ; 22(1): 639, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978058

RESUMO

BACKGROUND: Breast cancer is one of the most common malignant tumors in women. Cell division cycle associated 5 (CDCA5), a master regulator of sister chromatid cohesion, was reported to be upregulated in several types of cancer. Here, the function and regulation mechanism of CDCA5 in breast cancer were explored. METHODS: CDCA5 expression was identified through immunohistochemistry staining in breast cancer specimens. The correlation between CDCA5 expression with clinicopathological features and prognosis of breast cancer patients was analyzed using a tissue microarray. CDCA5 function in breast cancer was explored in CDCA5-overexpressed/knockdown cells and mice models. Co-IP, ChIP and dual-luciferase reporter assay assays were performed to clarify underlying molecular mechanisms. RESULTS: We found that CDCA5 was expressed at a higher level in breast cancer tissues and cell lines, and overexpression of CDCA5 was significantly associated with poor prognosis of patients with breast cancer. Moreover, CDCA5 knockdown significantly suppressed the proliferation and migration, while promoted apoptosis in vitro. Mechanistically, we revealed that CDCA5 played an important role in promoting the binding of E2F transcription factor 1 (E2F1) to the forkhead box M1 (FOXM1) promoter. Furthermore, the data of in vitro and in vivo revealed that depletion of FOXM1 alleviated the effect of CDCA5 overexpression on breast cancer. Additionally, we revealed that the Wnt/ß-catenin signaling pathway was required for CDCA5 induced progression of breast cancer. CONCLUSIONS: We suggested that CDCA5 promoted progression of breast cancer via CDCA5/FOXM1/Wnt axis, CDCA5 might serve as a novel therapeutic target for breast cancer treatment.


Assuntos
Neoplasias da Mama , Proteínas de Ciclo Celular , Proliferação de Células , Progressão da Doença , Fator de Transcrição E2F1 , Proteína Forkhead Box M1 , Regulação Neoplásica da Expressão Gênica , Ligação Proteica , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Feminino , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Pessoa de Meia-Idade , Apoptose , Prognóstico , Camundongos Nus , Movimento Celular , Regiões Promotoras Genéticas/genética , Camundongos Endogâmicos BALB C , Camundongos , Técnicas de Silenciamento de Genes , Proteínas Adaptadoras de Transdução de Sinal
3.
Cell Biol Toxicol ; 40(1): 58, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060874

RESUMO

OBJECTIVE: Multiple myeloma (MM) is a deadly plasma cell malignancy with elusive pathogenesis. N6-methyladenosine (m6A) is critically engaged in hematological malignancies. The function of KIAA1429, the largest component of methyltransferases, is unknown. This study delved into the mechanism of KIAA1429 in MM, hoping to offer novel targets for MM therapy. METHODS: Bone marrow samples were attained from 55 MM patients and 15 controls. KIAA1429, YTHDF1, and FOXM1 mRNA levels were detected and their correlation was analyzed. Cell viability, proliferation, cell cycle, and apoptosis were testified. Glycolysis-enhancing genes (HK2, ENO1, and LDHA), lactate production, and glucose uptake were evaluated. The interaction between FOXM1 mRNA and YTHDF1, m6A-modified FOXM1 level, and FOXM1 stability were assayed. A transplantation tumor model was built to confirm the mechanism of KIAA1429. RESULTS: KIAA1429 was at high levels in MM patients and MM cells and linked to poor prognoses. KIAA1429 knockdown restrained MM cell viability, and proliferation, arrested G0/G1 phase, and increased apoptosis. KIAA1429 mRNA in plasma cells from MM patients was positively linked with to glycolysis-enhancing genes. The levels of glycolysis-enhancing genes, glucose uptake, and lactate production were repressed after KIAA1429 knockdown, along with reduced FOXM1 levels and stability. YTHDF1 recognized KIAA1429-methylated FOXM1 mRNA and raised FOXM1 stability. Knockdown of YTHDF1 curbed aerobic glycolysis and malignant behaviors in MM cells, which was nullified by FOXM1 overexpression. KIAA1429 knockdown also inhibited tumor growth in animal experiments. CONCLUSION: KIAA1429 knockdown reduces FOXM1 expression through YTHDF1-mediated m6A modification, thus inhibiting MM aerobic glycolysis and tumorigenesis.


Assuntos
Carcinogênese , Proliferação de Células , Proteína Forkhead Box M1 , Glicólise , Mieloma Múltiplo , Proteínas de Ligação a RNA , Humanos , Glicólise/genética , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Linhagem Celular Tumoral , Animais , Proliferação de Células/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Masculino , Feminino , Camundongos , Adenosina/análogos & derivados , Adenosina/metabolismo , Apoptose/genética , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Camundongos Nus , Camundongos Endogâmicos BALB C
4.
Cancer Med ; 13(13): e7420, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967523

RESUMO

INTRODUCTION: Lung adenocarcinoma (LUAD) is the most common malignant tumor in respiratory system. Methyltransferase-like 1 (METTL1) is a driver of m7G modification in mRNA. This study aimed to demonstrate the role of METTL1 in the proliferation, invasion and Gefitinib-resistance of LUAD. METHODS: Public datasets were downloaded from the Gene Expression Profiling Interactive Analysis (GEPIA) and GSE31210 datasets. Malignant tumor phenotypes were tested in vitro and in vivo through biological function assays and nude mouse with xenograft tumors. RNA immunoprecipitation assays were conducted to determine the interaction between METTL1 protein and FOXM1 mRNA. Public transcriptional database, Chromatin immunoprecipitation and luciferase report assays were conducted to detect the downstream target of a transcriptional factor FOXM1. Half maximal inhibitory concentration (IC50) was calculated to evaluate the sensitivity to Gefitinib in LUAD cells. RESULTS: The results showed that METTL1 was upregulated in LUAD, and the high expression of METTL1 was associated with unfavorable prognosis. Through the m7G-dependent manner, METTL1 improved the RNA stability of FOXM1, leading to the up-regulation of FOXM1. FOXM1 transcriptionally suppressed PTPN13 expression. The METTL1/FOXM1/PTPN13 axis reduced the sensitivity of LUAD cells to Gefitinib. Taken together, our data suggested that METTL1 plays oncogenic role in LUAD through inducing the m7G modification of FOXM1, therefore METTL1 probably is a new potential therapeutic target to counteract Gefitinib resistance in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Resistencia a Medicamentos Antineoplásicos , Proteína Forkhead Box M1 , Gefitinibe , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Metiltransferases , Camundongos Nus , Humanos , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Animais , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética , Linhagem Celular Tumoral , Proliferação de Células , Ensaios Antitumorais Modelo de Xenoenxerto , Progressão da Doença , Feminino , Camundongos Endogâmicos BALB C , Prognóstico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
5.
Endocrinology ; 165(9)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058910

RESUMO

Cushing disease is a life-threatening disorder caused by autonomous secretion of ACTH from pituitary neuroendocrine tumors (PitNETs). Few drugs are indicated for inoperative Cushing disease, in particular that due to aggressive PitNETs. To explore agents that regulate ACTH-secreting PitNETs, we conducted high-throughput screening (HTS) using AtT-20, a murine pituitary tumor cell line characterized by ACTH secretion. For the HTS, we constructed a live cell-based ACTH reporter assay for high-throughput evaluation of ACTH changes. This assay was based on HEK293T cells overexpressing components of the ACTH receptor and a fluorescent cAMP biosensor, with high-throughput acquisition of fluorescence images. We treated AtT-20 cells with compounds and assessed ACTH concentrations in the conditioned media using the reporter assay. Of 2480 screened bioactive compounds, over 50% inhibition of ACTH secreted from AtT-20 cells was seen with 84 compounds at 10 µM and 20 compounds at 1 µM. Among these hit compounds, we focused on thiostrepton (TS) and determined its antitumor effects in both in vitro and in vivo xenograft models of Cushing disease. Transcriptome and flow cytometry analyses revealed that TS administration induced AtT-20 cell cycle arrest at the G2/M phase, which was mediated by FOXM1-independent mechanisms including downregulation of cyclins. Simultaneous TS administration with a cyclin-dependent kinase 4/6 inhibitor that affected the cell cycle at the G0/1 phase showed cooperative antitumor effects. Thus, TS is a promising therapeutic agent for Cushing disease. Our list of hit compounds and new mechanistic insights into TS effects serve as a valuable foundation for future research.


Assuntos
Hormônio Adrenocorticotrópico , Ensaios de Triagem em Larga Escala , Hipersecreção Hipofisária de ACTH , Tioestreptona , Animais , Humanos , Ensaios de Triagem em Larga Escala/métodos , Camundongos , Hipersecreção Hipofisária de ACTH/tratamento farmacológico , Hormônio Adrenocorticotrópico/metabolismo , Tioestreptona/farmacologia , Tioestreptona/uso terapêutico , Linhagem Celular Tumoral , Ciclo Celular/efeitos dos fármacos , Células HEK293 , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética
7.
Hum Genet ; 143(8): 939-953, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969938

RESUMO

Unilateral moyamoya disease (MMD) represents a distinct subtype characterised by occlusive changes in the circle of Willis and abnormal vascular network formation. However, the aetiology and pathogenesis of unilateral MMD remain unclear. In this study, genetic screening of a family with unilateral MMD using whole-genome sequencing helped identify the c.1205 C > A variant of FOXM1, which encodes the transcription factor FOXM1 and plays a crucial role in angiogenesis and cell proliferation, as a susceptibility gene mutation. We demonstrated that this mutation significantly attenuated the proangiogenic effects of FOXM1 in human brain endothelial cells, leading to reduced proliferation, migration, and tube formation. Furthermore, FOXM1 c.1205 C > A results in increased apoptosis of human brain endothelial cells, mediated by the downregulation of the transcription of the apoptosis-inhibiting protein BCL2. These results suggest a potential role for the FOXM1 c.1205 C > A mutation in the pathogenesis of unilateral MMD and may contribute to the understanding and treatment of this condition.


Assuntos
Angiogênese , Encéfalo , Proliferação de Células , Células Endoteliais , Proteína Forkhead Box M1 , Doença de Moyamoya , Mutação , Adulto , Feminino , Humanos , Masculino , Angiogênese/fisiopatologia , Apoptose/genética , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/irrigação sanguínea , Movimento Celular/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Predisposição Genética para Doença , Doença de Moyamoya/genética , Doença de Moyamoya/patologia , Linhagem , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
8.
Am J Physiol Gastrointest Liver Physiol ; 327(2): G284-G294, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38953837

RESUMO

Metabolic reprogramming is recognized as a hallmark of cancer, enabling cancer cells to acquire essential biomolecules for cell growth, often characterized by upregulated glycolysis and/or fatty acid synthesis-related genes. The transcription factor forkhead box M1 (FOXM1) has been implicated in various cancers, contributing significantly to their development, including colorectal cancer (CRC), a major global health concern. Despite FOXM1's established role in cancer, its specific involvement in the Warburg effect and fatty acid biosynthesis in CRC remains unclear. We analyzed The Cancer Genome Atlas (TCGA) Colonic Adenocarcinoma and Rectal Adenocarcinoma (COADREAD) datasets to derive the correlation of the expression levels between FOXM1 and multiple genes and the survival prognosis based on FOXM1 expression. Using two human CRC cell lines, HT29 and HCT116, we conducted RNAi or plasmid transfection procedures, followed by a series of assays, including RNA extraction, quantitative real-time polymerase chain reaction, Western blot analysis, cell metabolic assay, glucose uptake assay, Oil Red O staining, cell viability assay, and immunofluorescence analysis. Higher expression levels of FOXM1 correlated with a poorer survival prognosis, and the expression of FOXM1 was positively correlated with glycolysis-related genes SLC2A1 and LDHA, de novo lipogenesis-related genes ACACA and FASN, and MYC. FOXM1 appeared to modulate AKT/mammalian target of rapamycin (mTOR) signaling, the expression of c-Myc, proteins related to glycolysis and fatty acid biosynthesis, and glucose uptake, as well as extracellular acidification rate in HT29 and HCT116 cells. In summary, FOXM1 plays a regulatory role in glycolysis, fatty acid biosynthesis, and cellular energy consumption, thereby influencing CRC cell growth and patient prognosis.NEW & NOTEWORTHY Transcription factor forkhead box M1 (FOXM1) regulates glycolysis, fatty acid biosynthesis, and cellular energy consumption, which, together, controls cell growth and patient prognosis in colorectal cancer (CRC).


Assuntos
Neoplasias Colorretais , Proteína Forkhead Box M1 , Humanos , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células HT29 , Células HCT116 , Glicólise , Regulação Neoplásica da Expressão Gênica , Efeito Warburg em Oncologia , Transdução de Sinais , Proliferação de Células , Reprogramação Celular/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reprogramação Metabólica
9.
Cell Death Dis ; 15(7): 508, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019868

RESUMO

Epidermal stem cells orchestrate epidermal renewal and timely wound repair through a tight regulation of self-renewal, proliferation, and differentiation. In culture, human epidermal stem cells generate a clonal type referred to as holoclone, which give rise to transient amplifying progenitors (meroclone and paraclone-forming cells) eventually generating terminally differentiated cells. Leveraging single-cell transcriptomic data, we explored the FOXM1-dependent biochemical signals controlling self-renewal and differentiation in epidermal stem cells aimed at improving regenerative medicine applications. We report that the expression of H1 linker histone subtypes decrease during serial cultivation. At clonal level we observed that H1B is the most expressed isoform, particularly in epidermal stem cells, as compared to transient amplifying progenitors. Indeed, its expression decreases in primary epithelial culture where stem cells are exhausted due to FOXM1 downregulation. Conversely, H1B expression increases when the stem cells compartment is sustained by enforced FOXM1 expression, both in primary epithelial cultures derived from healthy donors and JEB patient. Moreover, we demonstrated that FOXM1 binds the promotorial region of H1B, hence regulates its expression. We also show that H1B is bound to the promotorial region of differentiation-related genes and negatively regulates their expression in epidermal stem cells. We propose a novel mechanism wherein the H1B acts downstream of FOXM1, contributing to the fine interplay between self-renewal and differentiation in human epidermal stem cells. These findings further define the networks that sustain self-renewal along the previously identified YAP-FOXM1 axis.


Assuntos
Diferenciação Celular , Células Epidérmicas , Proteína Forkhead Box M1 , Histonas , Células-Tronco , Humanos , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Células Epidérmicas/metabolismo , Células Epidérmicas/citologia , Histonas/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proliferação de Células , Epiderme/metabolismo , Células Cultivadas
10.
BMC Cancer ; 24(1): 848, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020302

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) play vital regulatory functions in non-small cell lung cancer (NSCLC). Cisplatin (DDP) resistance has significantly decreased the effectiveness of DDP-based chemotherapy in NSCLC patients. This study aimed to investigate the effects of SH3PXD2A antisense RNA 1 (SH3PXD2A-AS1) on DDP resistance in NSCLC. METHODS: Proliferation and apoptosis of DDP-resistant NSCLC cells were detected using cell counting kit-8 and flow cytometry assays. The interaction between SH3PXD2A-AS1 and sirtuin 7 (SIRT7) was assessed using co-immunoprecipitation (Co-IP), RNA pull-down, RNA immunoprecipitation (RIP), RNA fluorescence in situ hybridization, and immunofluorescence assays, while succinylation (SUCC) of Forkhead Box M1 (FOXM1) was analyzed by IP and Western blot assays. The role of SH3PXD2A-AS1 in vivo was explored using a xenografted tumor model. RESULTS: Expression of SH3PXD2A-AS1 was found elevated in DDP-resistant NSCLC cells, while it's knocking down translated into suppression of cell viability and promotion of apoptosis. Moreover, silencing of SH3PXD2A-AS1 resulted in decreased FOXM1 protein level and enhanced FOXM1-SUCC protein level. The SIRT7 was found to interact with FOXM1, translating into inhibition of FOXM1 SUCC at the K259 site in human embryonic kidney (HEK)-293T cells. Overexpressing of SIRT7 reversed the increase of FOXM1-SUCC protein level and apoptosis, and the decrease of cell viability induced by silencing of SH3PXD2A-AS1. In tumor-bearing mice, SH3PXD2A-AS1 inhibition suppressed tumor growth and the protein levels of Ki67, SIRT7, and FOXM1. CONCLUSION: SH3PXD2A-AS1 promoted DDP resistance in NSCLC cells by regulating FOXM1 SUCC via SIRT7, offering a promising therapeutic approach for NSCLC.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Proteína Forkhead Box M1 , Neoplasias Pulmonares , RNA Longo não Codificante , Sirtuínas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Animais , Camundongos , Sirtuínas/metabolismo , Sirtuínas/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
11.
J Am Heart Assoc ; 13(13): e033155, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38934864

RESUMO

BACKGROUND: Current protocols generate highly pure human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in vitro that recapitulate characteristics of mature in vivo cardiomyocytes. Yet, a risk of arrhythmias exists when hiPSC-CMs are injected into large animal models. Thus, understanding hiPSC-CM maturational mechanisms is crucial for clinical translation. Forkhead box (FOX) transcription factors regulate postnatal cardiomyocyte maturation through a balance between FOXO and FOXM1. We also previously demonstrated that p53 activation enhances hiPSC-CM maturation. Here, we investigate whether p53 activation modulates the FOXO/FOXM1 balance to promote hiPSC-CM maturation in 3-dimensional suspension culture. METHODS AND RESULTS: Three-dimensional cultures of hiPSC-CMs were treated with Nutlin-3a (p53 activator, 10 µM), LOM612 (FOXO relocator, 5 µM), AS1842856 (FOXO inhibitor, 1 µM), or RCM-1 (FOXM1 inhibitor, 1 µM), starting 2 days after onset of beating, with dimethyl sulfoxide (0.2% vehicle) as control. P53 activation promoted hiPSC-CM metabolic and electrophysiological maturation alongside FOXO upregulation and FOXM1 downregulation, in n=3 to 6 per group for all assays. FOXO inhibition significantly decreased expression of cardiac-specific markers such as TNNT2. In contrast, FOXO activation or FOXM1 inhibition promoted maturational characteristics such as increased contractility, oxygen consumption, and voltage peak maximum upstroke velocity, in n=3 to 6 per group for all assays. Further, by single-cell RNA sequencing of n=2 LOM612-treated cells compared with dimethyl sulfoxide, LOM612-mediated FOXO activation promoted expression of cardiac maturational pathways. CONCLUSIONS: We show that p53 activation promotes FOXO and suppresses FOXM1 during 3-dimensional hiPSC-CM maturation. These results expand our understanding of hiPSC-CM maturational mechanisms in a clinically-relevant 3-dimensional culture system.


Assuntos
Diferenciação Celular , Proteína Forkhead Box M1 , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Proteína Supressora de Tumor p53 , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Técnicas de Cultura de Células em Três Dimensões/métodos , Células Cultivadas , Transdução de Sinais , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética
12.
Cell Signal ; 121: 111265, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38897527

RESUMO

Despite significant advances in assisted reproductive technology (ART), recurrent implantation failure (RIF) still occurs in some patients. Poor endometrial receptivity and abnormal human endometrial stromal cell (HESC) proliferation and decidualization have been identified as the major causes. Ubiquitin-specific protease 22 (USP22) has been reported to participate in the decidualization of endometrial stromal cells in mice. However, the role of USP22 in HESC function and RIF development remains unknown. In this study, clinical endometrial tissue samples were gathered to investigate the involvement of USP22 in RIF, and HESCs were utilized to examine the molecular mechanisms of USP22 and Forkhead box M1 (FoxM1). The findings indicated a high expression of USP22 in the secretory phase of the endometrium. Knockdown of USP22 led to a notable reduction in the proliferation and decidualization of HESCs, along with a decrease in FoxM1 expression, while overexpression of USP22 yielded opposite results. Furthermore, USP22 was found to deubiquitinate FoxM1 in HESCs. Moreover, both USP22 and FoxM1 were downregulated in the endometria of patients with RIF. In conclusion, these results suggest that USP22 may have a significant impact on HESCs proliferation and decidualization through its interaction with FoxM1, potentially contributing to the underlying mechanisms of RIF pathogenesis.


Assuntos
Proliferação de Células , Endométrio , Proteína Forkhead Box M1 , Células Estromais , Ubiquitina Tiolesterase , Ubiquitinação , Humanos , Proteína Forkhead Box M1/metabolismo , Feminino , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Células Estromais/metabolismo , Endométrio/metabolismo , Endométrio/citologia , Adulto , Decídua/metabolismo , Decídua/citologia , Implantação do Embrião
13.
Med Oncol ; 41(8): 188, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918225

RESUMO

FOXM1, a proto-oncogenic transcription factor, plays a critical role in cancer development and treatment resistance in cancers, particularly in breast cancer. Thus, this study aimed to identify potential FOXM1 inhibitors through computational screening of drug databases, followed by in vitro validation of their inhibitory activity against breast cancer cells. In silico studies involved pharmacophore modeling using the FOXM1 inhibitor, FDI-6, followed by virtual screening of DrugBank and Selleckchem databases. The selected drugs were prepared for molecular docking, and the crystal structure of FOXM1 was pre-processed for docking simulations. In vitro studies included MTT assays to assess cytotoxicity, and Western blot analysis to evaluate protein expression levels. Our study identified Pantoprazole and Rabeprazole as potential FOXM1 inhibitors through in silico screening and molecular docking. Molecular dynamics simulations confirmed stable interactions of these drugs with FOXM1. In vitro experiments showed both Pantoprazole and Rabeprazole exhibited strong FOXM1 inhibition at effective concentrations and that showed inhibition of cell proliferation. Rabeprazole showed the inhibitor activity at 10 µM in BT-20 and MCF-7 cell lines. Pantoprazole exhibited FOXM1 inhibition at 30 µM and in BT-20 cells and at 70 µM in MCF-7 cells, respectively. Our current study provides the first evidence that Rabeprazole and Pantoprazole can bind to FOXM1 and inhibit its activity and downstream signaling, including eEF2K and pEF2, in breast cancer cells. These findings indicate that rabeprazole and pantoprazole inhibit FOXM1 and breast cancer cell proliferation, and they can be used for FOXM1-targeted therapy in breast or other cancers driven by FOXM1.


Assuntos
Neoplasias da Mama , Proliferação de Células , Reposicionamento de Medicamentos , Proteína Forkhead Box M1 , Simulação de Acoplamento Molecular , Rabeprazol , Humanos , Proteína Forkhead Box M1/antagonistas & inibidores , Proteína Forkhead Box M1/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Rabeprazol/farmacologia , Células MCF-7 , Proliferação de Células/efeitos dos fármacos , Simulação de Dinâmica Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Pantoprazol/farmacologia , Linhagem Celular Tumoral , Piridinas , Tiofenos
14.
Cell Signal ; 121: 111259, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38871040

RESUMO

Recurrent miscarriage (RM) is a distressing pregnancy complication with an unknown etiology. Increasing evidence indicates the relevance of dysregulation of human trophoblast stem cells (hTSCs), which may play a role in the development of RM. However, the potential molecular regulatory mechanism underlying the initiation and maintenance of hTSCs is yet to be fully elucidated. In this study, we performed data analysis and identified Forkhead box M1 (FOXM1) as a potential factor associated with RM. FOXM1 is a typical transcription factor known for its involvement in various pathophysiological processes, while the precise function of FOXM1 functions in hTSCs and RM remains incompletely understood. Utilizing RNA-seq, CUT&Tag, ChIP-qPCR, and sodium bisulfite conversion methods for methylation analysis, we elucidate the underlying regulatory mechanisms of FOXM1 in hTSCs and its implications in RM. Our findings demonstrate the relative high expression of FOXM1 in proliferating cytotrophoblasts (CTBs) compared to differentiated extravillous cytotrophoblasts (EVTs) and syncytiotrophoblasts (STBs). Besides, we provide evidence supporting a significant correlation between FOXM1 downregulation and the incidence of RM. Furthermore, we demonstrate the significant role of FOXM1 in regulating hTSCs proliferation and cell cycle through the transcriptional regulation of CDKN3, CCNB2, CCNA2, MAD2L1 and CDC25C. Notably, we observed a correlation between the downregulation of FOXM1 in RM and hypermethylation in its promoter region. Collectively, these results provide insights into the impact of FOXM1 on trophoblast regulation and offer a novel perspective on RM.


Assuntos
Aborto Habitual , Proliferação de Células , Metilação de DNA , Proteína Forkhead Box M1 , Células-Tronco , Trofoblastos , Humanos , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Trofoblastos/metabolismo , Trofoblastos/citologia , Feminino , Aborto Habitual/genética , Aborto Habitual/metabolismo , Aborto Habitual/patologia , Gravidez , Células-Tronco/metabolismo , Células-Tronco/citologia , Adulto , Regiões Promotoras Genéticas
15.
JCI Insight ; 9(15)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916959

RESUMO

Acute kidney injury (AKI) strongly upregulates the transcription factor Foxm1 in the proximal tubule in vivo, and Foxm1 drives epithelial proliferation in vitro. Here, we report that deletion of Foxm1 either with a nephron-specific Cre driver or by inducible global deletion reduced proximal tubule proliferation after ischemic injury in vivo. Foxm1 deletion led to increased AKI to chronic kidney disease transition, with enhanced fibrosis and ongoing tubule injury 6 weeks after injury. We report ERK mediated FOXM1 induction downstream of the EGFR in primary proximal tubule cells. We defined FOXM1 genomic binding sites by cleavage under targets and release using nuclease (CUT&RUN) and compared the genes located near FOXM1 binding sites with genes downregulated in primary proximal tubule cells after FOXM1 knockdown. The aligned data sets revealed the cell cycle regulator cyclin F (CCNF) as a putative FOXM1 target. We identified 2 cis regulatory elements that bound FOXM1 and regulated CCNF expression, demonstrating that Ccnf is strongly induced after kidney injury and that Foxm1 deletion abrogates Ccnf expression in vivo and in vitro. Knockdown of CCNF also reduced proximal tubule proliferation in vitro. These studies identify an ERK/FOXM1/CCNF signaling pathway that regulates injury-induced proximal tubule cell proliferation.


Assuntos
Injúria Renal Aguda , Proliferação de Células , Células Epiteliais , Proteína Forkhead Box M1 , Túbulos Renais Proximais , Animais , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Camundongos , Proliferação de Células/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/genética , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Masculino , Ciclinas/metabolismo , Ciclinas/genética , Camundongos Knockout , Modelos Animais de Doenças , Regulação da Expressão Gênica
16.
Appl Immunohistochem Mol Morphol ; 32(6): 292-304, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38863278

RESUMO

OBJECTIVES: To find predictive biomarkers for recurrence and progression of meningioma. BACKGROUND: Despite great advances in meningioma treatment, the prognosis remained unfavorable due to the high recurrence rate. METHODS: In this study, we evaluated the immunohistochemical expression of FOXM1, MMP-9, and Ki67 in 50 cases of intracranial meningioma to detect its potential role in meningioma progression, recurrence, and patients' survival. RESULTS: Strong FOXM1 expression was detected in 20% of the cases and was significantly associated with meningioma grade ( P = 0.002) and peritumoral brain edema (PTBE; P <0.001). Strong MMP-9 expression was noted in 32% of the cases and was significantly associated with meningioma grade and PTBE ( P <0.001, P <0.001, respectively). High Ki67 was noted in 50% and significantly associated with tumor grade and PTBE ( P <0.001, P = 0.002, respectively). The follow-up period revealed that meningiomas with strong FOXM1, strong MMP-9, and high Ki67 expression were associated with tumor recurrence, shorter OS, and recurrence-free survival. Furthermore, up-regulation of FOXM1 and MMP-9 expression had a significant relation with poor clinical response to the therapy ( P = 0.010, P = 0. 001, respectively). However, high Ki67 cases were more sensitive to clinical therapy ( P = 0.005). CONCLUSION: Strong FOXM1, strong MMP-9, and high Ki67 in meningiomas indicate highly aggressive tumors with a shortened survival rate, dismal outcome, and high risk of recurrence after the standard protocol of therapy.


Assuntos
Proteína Forkhead Box M1 , Imuno-Histoquímica , Metaloproteinase 9 da Matriz , Meningioma , Humanos , Proteína Forkhead Box M1/metabolismo , Meningioma/metabolismo , Meningioma/patologia , Meningioma/mortalidade , Feminino , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Adulto , Idoso , Gradação de Tumores , Biomarcadores Tumorais/metabolismo , Antígeno Ki-67/metabolismo , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/mortalidade , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/metabolismo , Regulação Neoplásica da Expressão Gênica
17.
Cancer Lett ; 596: 217004, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38838765

RESUMO

Long non-coding RNA (lncRNA) is closely related to a variety of human cancers, which may provide huge potential biomarkers for cancer diagnosis and treatment. However, the aberrant expression of most lncRNAs in colorectal cancer (CRC) remains elusive. This study aims to explore the clinical significance and potential mechanism of lncRNA ABHD11 antisense RNA 1 (ABHD11-AS1) in the colorectal cancer. Here, we demonstrated that lncRNA ABHD11-AS1 is high-expressed in colorectal cancer (CRC) patients, and strongly related with poor prognosis. Functionally, ABHD11-AS1 suppresses ferroptosis and promotes proliferation and migration in CRC both in vitro and in vivo. Mechanically, lncRNA ABHD11-AS1 interacted with insulin-like growing factor 2 mRNA-binding protein 2 (IGF2BP2) to enhance FOXM1 stability, forming an ABHD11-AS1/FOXM1 positive feedback loop. E3 ligase tripartite motif containing 21 (TRIM21) promotes the degradation of IGF2BP2 via the K48-ubiquitin-lysosome pathway and ABHD11-AS1 promotes the interaction between IGF2BP2 and TRIM21 as scaffold platform. Furthermore, N6 -adenosine-methyltransferase-like 3 (METTL3) upregulated the stabilization of ABHD11-AS1 through the m6A reader IGF2BP2. Our study highlights ABHD11-AS1 as a significant regulator in CRC and it may become a potential target in future CRC treatment.


Assuntos
Neoplasias Colorretais , Ferroptose , Proteína Forkhead Box M1 , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante , Proteínas de Ligação a RNA , Ribonucleoproteínas , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Ferroptose/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proliferação de Células , Animais , Camundongos , Retroalimentação Fisiológica , Progressão da Doença , Linhagem Celular Tumoral , Masculino , Movimento Celular/genética , Feminino , Camundongos Nus , Prognóstico , Adenosina/análogos & derivados , Serina Proteases
18.
Pathol Res Pract ; 258: 155348, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761648

RESUMO

Hepatoblastoma (HB) is the most common malignant liver tumor in childhood. Although pre-operative cisplatin (CDDP)-based chemotherapy is often used in cases of HB, about 20% of HB patients exhibit resistance to CDDP. Forkhead box protein M1 (FOXM1) and chromo-domain-helicase-DNA-binding protein 4 (CHD4) have been associated with CDDP resistance in various tumors. We here analyzed the immunohistochemical expression of FOXM1 and CHD4 in HB specimens of 33 patients (mean age: 20 months) post-chemotherapy. The differentiation of specimens was assessed using the digital pathology software QuPath®, and then the relation between the FOXM1 or CHD4 expression and the differentiation and various other clinicopathological parameters was investigated. The histological type was epithelial in 19 cases (57.6%) and mixed epithelial and mesenchymal in 14 cases (42.4%). Nine cases had only a fetal component, 1 case had only an embryonal component, 22 cases had both fetal and embryonal components, and 1 case had no viable tumor. Both the FOXM1 and CHD4 immunoexpressions were found significantly more frequently in the embryonal than fetal components (p<0.0001 and p<0.0001, respectively). Regarding chemotherapy efficacy, the alpha-fetoprotein (AFP) level after chemotherapy was correlated with both the imaging shrinkage rate (R=-0.52) and histological residual rate (the percentage of the viable tumors of HB after chemotherapy)(R=0.62). High FOXM1 score was correlated with a high-postoperative AFP value (p<0.01) and a low AFP attenuation rate (p<0.05), but the FOXM1 score was not correlated with the imaging shrinkage rate (p=0.4418) or histological residual rate (p=0.4418). High CHD4 score showed a nonsignificant trend toward correlation with high postoperative AFP value (p=0.0849) and was not significantly correlated with the other parameters. Collectively, our results showed that FOXM1 expression may be useful in evaluating the response to CDDP-based chemotherapeutic regimens. Accurate measurement of FOXM1 expression by our scoring system using QuPath® is important in cases with mixed HB components of various differentiation levels.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Proteína Forkhead Box M1 , Hepatoblastoma , Neoplasias Hepáticas , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Humanos , Proteína Forkhead Box M1/metabolismo , Hepatoblastoma/patologia , Hepatoblastoma/tratamento farmacológico , Hepatoblastoma/metabolismo , Masculino , Feminino , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Lactente , Cisplatino/uso terapêutico , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Pré-Escolar , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Antineoplásicos/uso terapêutico , Criança
19.
J Ovarian Res ; 17(1): 94, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704607

RESUMO

BACKGROUND: Genetic studies implicate the oncogenic transcription factor Forkhead Box M1 (FOXM1) as a potential therapeutic target in high-grade serous ovarian cancer (HGSOC). We evaluated the activity of different FOXM1 inhibitors in HGSOC cell models. RESULTS: We treated HGSOC and fallopian tube epithelial (FTE) cells with a panel of previously reported FOXM1 inhibitors. Based on drug potency, efficacy, and selectivity, determined through cell viability assays, we focused on two compounds, NB-73 and NB-115 (NB compounds), for further investigation. NB compounds potently and selectively inhibited FOXM1 with lesser effects on other FOX family members. NB compounds decreased FOXM1 expression via targeting the FOXM1 protein by promoting its proteasome-mediated degradation, and effectively suppressed FOXM1 gene targets at both the protein and mRNA level. At the cellular level, NB compounds promoted apoptotic cell death. Importantly, while inhibition of apoptosis using a pan-caspase inhibitor rescued HGSOC cells from NB compound-induced cell death, it did not rescue FOXM1 protein degradation, supporting that FOXM1 protein loss from NB compound treatment is specific and not a general consequence of cytotoxicity. Drug washout studies indicated that FOXM1 reduction was retained for at least 72 h post-treatment, suggesting that NB compounds exhibit long-lasting effects in HGSOC cells. NB compounds effectively suppressed both two-dimensional and three-dimensional HGSOC cell colony formation at sub-micromolar concentrations. Finally, NB compounds exhibited synergistic activity with carboplatin in HGSOC cells. CONCLUSIONS: NB compounds are potent, selective, and efficacious inhibitors of FOXM1 in HGSOC cells and are worthy of further investigation as HGSOC therapeutics.


Assuntos
Antineoplásicos , Apoptose , Proteína Forkhead Box M1 , Neoplasias Ovarianas , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/antagonistas & inibidores , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Gradação de Tumores
20.
Cell Death Dis ; 15(5): 370, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806454

RESUMO

In ovarian tumors, the omental microenvironment profoundly influences the behavior of cancer cells and sustains the acquisition of stem-like traits, with major impacts on tumor aggressiveness and relapse. Here, we leverage a patient-derived platform of organotypic cultures to study the crosstalk between the tumor microenvironment and ovarian cancer stem cells. We discovered that the pro-tumorigenic transcription factor FOXM1 is specifically induced by the microenvironment in ovarian cancer stem cells, through activation of FAK/YAP signaling. The microenvironment-induced FOXM1 sustains stemness, and its inactivation reduces cancer stem cells survival in the omental niche and enhances their response to the PARP inhibitor Olaparib. By unveiling the novel role of FOXM1 in ovarian cancer stemness, our findings highlight patient-derived organotypic co-cultures as a powerful tool to capture clinically relevant mechanisms of the microenvironment/cancer stem cells crosstalk, contributing to the identification of tumor vulnerabilities.


Assuntos
Proteína Forkhead Box M1 , Células-Tronco Neoplásicas , Neoplasias Ovarianas , Microambiente Tumoral , Humanos , Microambiente Tumoral/efeitos dos fármacos , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Feminino , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Proteínas de Sinalização YAP/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Animais , Ftalazinas/farmacologia , Piperazinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...