Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.504
Filtrar
1.
PLoS Negl Trop Dis ; 18(5): e0012227, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38814992

RESUMO

BACKGROUND: Photobiomodulation has exhibited promise in mitigating the local effects induced by Bothrops snakebite envenoming; however, the mechanisms underlying this protection are not yet fully understood. Herein, the effectiveness of photobiomodulation effects on regenerative response of C2C12 myoblast cells following exposure to Bothrops jararacussu venom (BjsuV), as well as the mechanisms involved was investigated. METHODOLOGY/PRINCIPAL FINDINGS: C2C12 myoblast cells were exposed to BjsuV (12.5 µg/mL) and irradiated once for 10 seconds with laser light of 660 nm (14.08 mW; 0.04 cm2; 352 mW/cm2) or 780 nm (17.6 mW; 0.04 cm2; 440 mW/ cm2) to provide energy densities of 3.52 and 4.4 J/cm2, and total energies of 0.1408 and 0.176 J, respectively. Cell migration was assessed through a wound-healing assay. The expression of MAPK p38-α, NF-Кß, Myf5, Pax-7, MyoD, and myogenin proteins were assessed by western blotting analysis. In addition, interleukin IL1-ß, IL-6, TNF-alfa and IL-10 levels were measured in the supernatant by ELISA. The PBM applied to C2C12 cells exposed to BjsuV promoted cell migration, increase the expression of myogenic factors (Pax7, MyF5, MyoD and myogenin), reduced the levels of proinflammatory cytokines, IL1-ß, IL-6, TNF-alfa, and increased the levels of anti-inflammatory cytokine IL-10. In addition, PBM downregulates the expression of NF-kB, and had no effect on p38 MAKP. CONCLUSION/SIGNIFICANCE: These data demonstrated that protection of the muscle cell by PBM seems to be related to the increase of myogenic factors as well as the modulation of inflammatory mediators. PBM therapy may offer a new therapeutic strategy to address the local effects of snakebite envenoming by promoting muscle regeneration and reducing the inflammatory process.


Assuntos
Bothrops , Venenos de Crotalídeos , Citocinas , Terapia com Luz de Baixa Intensidade , Mioblastos , Miogenina , Animais , Mioblastos/efeitos dos fármacos , Mioblastos/efeitos da radiação , Mioblastos/metabolismo , Camundongos , Terapia com Luz de Baixa Intensidade/métodos , Citocinas/metabolismo , Linhagem Celular , Venenos de Crotalídeos/toxicidade , Miogenina/metabolismo , Miogenina/genética , Fator de Transcrição PAX7/metabolismo , Fator de Transcrição PAX7/genética , NF-kappa B/metabolismo , Proteína MyoD/metabolismo , Proteína MyoD/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Fator Regulador Miogênico 5/metabolismo , Fator Regulador Miogênico 5/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Mordeduras de Serpentes/radioterapia , Serpentes Peçonhentas
2.
Anim Biotechnol ; 35(1): 2351973, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38753962

RESUMO

Vitamin A is an essential nutrient in animals, playing important roles in animal health. In the pig industry, proper supplementation of vitamin A in the feed can improve pork production performance, while deficiency or excessive intake can lead to growth retardation or disease. However, the specific molecular mechanisms through which vitamin A operates on pig skeletal muscle growth as well as muscle stem cell function remain unexplored. Therefore, in this study, we isolated the pig primary skeletal muscle stem cells (pMuSCs) and treated with retinoic acid (RA), the natural metabolite of vitamin A, and then examined the myogenic capacity of pMuSCs via immunostaining, real-time PCR, CCK8 and western-blot analysis. Unexpectedly, the RA caused a significant decrease in the proliferation and differentiation of pMuSCs. Mechanistically, the RA addition induced the activation of retinoic acid receptor gamma (RARγ), which inhibited the myogenesis through the blockage of protein translation of the master myogenic regulator myogenic differentiation 1 gene (MYOD). Specifically, RARγ inactivate AKT kinase (AKT) signalling and lead to dephosphorylation of eukaryotic translation initiation factor 4E binding protein 1 (eIF4EBP1), which in turn repress the eukaryotic translation initiation factor 4E (eIF4E) complex and block mRNA translation of MYOD. Inhibition of AKT could rescue the myogenic defects of RA-treated pMuSCs. Our findings revealed that retinoid acid signalling inhibits the skeletal muscle stem cell proliferation and differentiation in pigs. Therefore, the vitamin A supplement in the feedstuff should be cautiously optimized to avoid the potential adverse consequences on muscle development associated with the excessive levels of retinoic acid.


Assuntos
Diferenciação Celular , Desenvolvimento Muscular , Proteína MyoD , Transdução de Sinais , Tretinoína , Animais , Tretinoína/farmacologia , Suínos , Desenvolvimento Muscular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína MyoD/genética , Proteína MyoD/metabolismo , Diferenciação Celular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Receptores do Ácido Retinoico/metabolismo , Receptores do Ácido Retinoico/genética , Proliferação de Células/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Células Cultivadas
3.
Gene ; 921: 148523, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38703863

RESUMO

The Pacific white shrimp Litopenaeus vannamei is a representative species of decapod crustacean and an economically important marine aquaculture species worldwide. However, research on the genes involved in muscle growth and development in shrimp is still lacking. MyoD is recognized as a crucial regulator of myogenesis and plays an essential role in muscle growth and differentiation in various animals. Nonetheless, little information is available concerning the function of this gene among crustaceans. In this study, we identified a sequence of the MyoD gene (LvMyoD) with a conserved bHLH domain in the L. vannamei genome. Phylogenetic analysis revealed that both the overall protein sequence and specific functional sites of LvMyoD are highly conserved with those of other crustacean species and that they are evolutionarily closely related to vertebrate MyoD and Myf5. LvMyoD expression is initially high during early muscle development in shrimp and gradually decreases after 40 days post-larval development. In adults, the muscle-specific expression of LvMyoD was confirmed through RT-qPCR analysis. Knockdown of LvMyoD inhibited the growth of the shrimp in body length and weight. Histological observation and transcriptome sequencing of muscle samples after RNA interference (RNAi) revealed nuclear agglutination and looseness in muscle fibers. Additionally, we observed significant effects on the expression of genes involved in heat shock proteins, myosins, actins, protein synthesis, and glucose metabolism. These findings suggest that LvMyoD plays a critical role in regulating muscle protein synthesis and muscle cell differentiation. Overall, this study highlights the involvement of LvMyoD in myogenesis and muscle growth, suggesting that it is a potentially important regulatory target for shrimp breeding efforts.


Assuntos
Proteína MyoD , Penaeidae , Filogenia , Animais , Penaeidae/genética , Penaeidae/crescimento & desenvolvimento , Penaeidae/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Desenvolvimento Muscular/genética , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sequência de Aminoácidos
4.
Cell Cycle ; 23(5): 573-587, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38701194

RESUMO

Myogenic differentiation (MyoD) 1, which is known as a pivotal transcription factor during myogenesis, has been proven dysregulated in several cancers. However, litter is known about the precise role and downstream genes of MyoD1 in gastric cancer (GC) cells. Here, we report that MyoD1 is lowly expressed in primary GC tissues and cells. In our experiments, overexpression of MyoD1 inhibited cell proliferation. Downstream genes of MyoD1 regulation were investigated using RNA-Seq. As a result, 138 up-regulated genes and 20 down-regulated genes and 27 up-regulated lncRNAs and 20 down-regulated lncRNAs were identified in MyoD1 overexpressed MKN-45 cells, which participated in epithelial cell signaling in Helicobacter pylori infection, glycosaminoglycan biosynthesis (keratan sulfate), notch signaling pathway, and others. Among these genes, BIK was directly regulated by MyoD1 in GC cells and inhibited cancer cell proliferation. The BIK knockdown rescued the effects of MyoD1 overexpression on GC cells. In conclusion, MyoD1 inhibited cell proliferation via 158 genes and 47 lncRNAs downstream directly or indirectly that participated in multiple signaling pathways in GC, and among these, MyoD1 promotes BIK transcription by binding to its promoter, then promotes BIK-Bcl2-caspase 3 axis and regulates GC cell apoptosis.


Assuntos
Apoptose , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteína MyoD , RNA Longo não Codificante , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Humanos , Apoptose/genética , Proteína MyoD/metabolismo , Proteína MyoD/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética , Transcrição Gênica/genética
5.
J Med Food ; 27(6): 521-532, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38651680

RESUMO

To probe the functions of Aster glehni (AG) extract containing various caffeoylquinic acids on dyslipidemia, obesity, and skeletal muscle-related diseases focused on the roles of skeletal muscle, we measured the levels of biomarkers involved in oxidative phosphorylation and type change of skeletal muscle in C2C12 cells and skeletal muscle tissues from apolipoprotein E knockout (ApoE KO) mice. After AG extract treatment in cell and animal experiments, western blotting, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA) were used to estimate the levels of proteins that participated in skeletal muscle type change and oxidative phosphorylation. AG extract elevated protein expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), phosphorylated 5'-AMP-activated protein kinase (p-AMPK), peroxisome proliferator-activated receptor beta/delta (PPARß/δ), myoblast determination protein 1 (MyoD), and myoglobin in skeletal muscle tissues. Furthermore, it elevated the ATP concentration. However, protein expression of myostatin was decreased by AG treatment. In C2C12 cells, increments of MyoD, myoglobin, myosin, ATP-producing pathway, and differentiation degree by AG were dependent on PPARß/δ and caffeoylquinic acids. AG extract can contribute to the amelioration of skeletal muscle inactivity and sarcopenia through myogenesis in skeletal muscle tissues from ApoE KO mice, and function of AG extract may be dependent on PPARß/δ, and the main functional constituents of AG are trans-5-O-caffeoylquinic acid and 3,5-O-dicaffeoylquinic acid. In addition, in skeletal muscle, AG has potent efficacies against dyslipidemia and obesity through the increase of the type 1 muscle fiber content to produce more ATP by oxidative phosphorylation in skeletal muscle tissues from ApoE KO mice.


Assuntos
Camundongos Knockout , Desenvolvimento Muscular , Músculo Esquelético , PPAR delta , PPAR beta , Extratos Vegetais , Ácido Quínico , Animais , Camundongos , Ácido Quínico/análogos & derivados , Ácido Quínico/farmacologia , Extratos Vegetais/farmacologia , PPAR beta/metabolismo , PPAR beta/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , PPAR delta/metabolismo , PPAR delta/genética , Masculino , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Humanos , Proteína MyoD/metabolismo , Proteína MyoD/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por AMP/metabolismo
6.
Sci Rep ; 14(1): 8500, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605102

RESUMO

Intrauterine growth restriction (IUGR) occurs both in humans and domestic species. It has a particularly high incidence in pigs, and is a leading cause of neonatal morbidity and mortality as well as impaired postnatal growth. A key feature of IUGR is impaired muscle development, resulting in decreased meat quality. Understanding the developmental origins of IUGR, particularly at the molecular level, is important for developing effective strategies to mitigate its economic impact on the pig industry and animal welfare. The aim of this study was to characterise transcriptional profiles in the muscle of growth restricted pig foetuses at different gestational days (GD; gestational length ~ 115 days), focusing on selected genes (related to development, tissue injury and metabolism) that were previously identified as dysregulated in muscle of GD90 fetuses. Muscle samples were collected from the lightest foetus (L) and the sex-matched foetus with weight closest to the litter average (AW) from each of 22 Landrace x Large White litters corresponding to GD45 (n = 6), GD60 (n = 8) or GD90 (n = 8), followed by analyses, using RT-PCR and protein immunohistochemistry, of selected gene targets. Expression of the developmental genes, MYOD, RET and ACTN3 were markedly lower, whereas MSTN expression was higher, in the muscle of L relative to AW littermates beginning on GD45. Levels of all tissue injury-associated transcripts analysed (F5, PLG, KNG1, SELL, CCL16) were increased in L muscle on GD60 and, most prominently, on GD90. Among genes involved in metabolic regulation, KLB was expressed at higher levels in L than AW littermates beginning on GD60, whereas both IGFBP1 and AHSG were higher in L littermates on GD90 but only in males. Furthermore, the expression of genes specifically involved in lipid, hexose sugar or iron metabolism increased or, in the case of UCP3, decreased in L littermates on GD60 (UCP3, APOB, ALDOB) or GD90 (PNPLA3, TF), albeit in the case of ALDOB this only involved females. In conclusion, marked dysregulation of genes with critical roles in development in L foetuses can be observed from GD45, whereas for a majority of transcripts associated with tissue injury and metabolism differences between L and AW foetuses were apparent by GD60 or only at GD90, thus identifying different developmental windows for different types of adaptive responses to IUGR in the muscle of porcine foetuses.


Assuntos
Desenvolvimento Fetal , Retardo do Crescimento Fetal , Músculo Esquelético , Suínos , Humanos , Animais , Masculino , Feminino , Suínos/genética , Suínos/fisiologia , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Músculo Esquelético/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Fetal/genética , Transcriptoma , Idade Gestacional , Reação em Cadeia da Polimerase em Tempo Real , Imuno-Histoquímica , Feto/metabolismo , Genes Controladores do Desenvolvimento , Proteína MyoD/genética , Proteína MyoD/metabolismo , Actinina/genética , Actinina/metabolismo
7.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673893

RESUMO

During embryogenesis, basic fibroblast growth factor (bFGF) is released from neural tube and myotome to promote myogenic fate in the somite, and is routinely used for the culture of adult skeletal muscle (SKM) stem cells (MuSC, called satellite cells). However, the mechanism employed by bFGF to promote SKM lineage and MuSC proliferation has not been analyzed in detail. Furthermore, the question of if the post-translational modification (PTM) of bFGF is important to its stemness-promoting effect has not been answered. In this study, GST-bFGF was expressed and purified from E.coli, which lacks the PTM system in eukaryotes. We found that both GST-bFGF and commercially available bFGF activated the Akt-Erk pathway and had strong cell proliferation effect on C2C12 myoblasts and MuSC. GST-bFGF reversibly compromised the myogenesis of C2C12 myoblasts and MuSC, and it increased the expression of Myf5, Pax3/7, and Cyclin D1 but strongly repressed that of MyoD, suggesting the maintenance of myogenic stemness amid repressed MyoD expression. The proliferation effect of GST-bFGF was conserved in C2C12 over-expressed with MyoD (C2C12-tTA-MyoD), implying its independence of the down-regulation of MyoD. In addition, the repressive effect of GST-bFGF on myogenic differentiation was almost totally rescued by the over-expression of MyoD. Together, these evidences suggest that (1) GST-bFGF and bFGF have similar effects on myogenic cell proliferation and differentiation, and (2) GST-bFGF can promote MuSC stemness and proliferation by differentially regulating MRFs and Pax3/7, (3) MyoD repression by GST-bFGF is reversible and independent of the proliferation effect, and (4) GST-bFGF can be a good substitute for bFGF in sustaining MuSC stemness and proliferation.


Assuntos
Proliferação de Células , Fator 2 de Crescimento de Fibroblastos , Desenvolvimento Muscular , Proteína MyoD , Mioblastos , Desenvolvimento Muscular/genética , Animais , Camundongos , Proteína MyoD/metabolismo , Proteína MyoD/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/genética , Mioblastos/metabolismo , Mioblastos/citologia , Linhagem Celular , Fator de Transcrição PAX7/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX3/metabolismo , Fator de Transcrição PAX3/genética , Fator Regulador Miogênico 5/metabolismo , Fator Regulador Miogênico 5/genética , Ciclina D1/metabolismo , Ciclina D1/genética , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/citologia , Diferenciação Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia
8.
Nutrients ; 16(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276564

RESUMO

Epicatechin is a polyphenol compound that promotes skeletal muscle differentiation and counteracts the pathways that participate in the degradation of proteins. Several studies present contradictory results of treatment protocols and therapeutic effects. Therefore, the objective of this systematic review was to investigate the current literature showing the molecular mechanism and clinical protocol of epicatechin in muscle atrophy in humans, animals, and myoblast cell-line. The search was conducted in Embase, PubMed/MEDLINE, Cochrane Library, and Web of Science. The qualitative analysis demonstrated that there is a commonness of epicatechin inhibitory action in myostatin expression and atrogenes MAFbx, FOXO, and MuRF1. Epicatechin showed positive effects on follistatin and on the stimulation of factors related to the myogenic actions (MyoD, Myf5, and myogenin). Furthermore, the literature also showed that epicatechin can interfere with mitochondrias' biosynthesis in muscle fibers, stimulation of the signaling pathways of AKT/mTOR protein production, and amelioration of skeletal musculature performance, particularly when combined with physical exercise. Epicatechin can, for these reasons, exhibit clinical applicability due to the beneficial results under conditions that negatively affect the skeletal musculature. However, there is no protocol standardization or enough clinical evidence to draw more specific conclusions on its therapeutic implementation.


Assuntos
Catequina , Animais , Humanos , Catequina/farmacologia , Catequina/uso terapêutico , Catequina/metabolismo , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Proteína MyoD/metabolismo , Serina-Treonina Quinases TOR/metabolismo
9.
Exp Physiol ; 108(12): 1531-1547, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37864311

RESUMO

NEW FINDINGS: What is the central question of this study? Does the hormone Klotho affect the myogenic response of muscle cells to mechanical loading or exercise? What is the main finding and its importance? Klotho prevents direct, mechanical activation of genes that regulate muscle differentiation, including genes that encode the myogenic regulatory factor myogenin and proteins in the canonical Wnt signalling pathway. Similarly, elevated levels of klotho expression in vivo prevent the exercise-induced increase in myogenin-expressing cells and reduce exercise-induced activation of the Wnt pathway. These findings demonstrate a new mechanism through which the responses of muscle to the mechanical environment are regulated. ABSTRACT: Muscle growth is influenced by changes in the mechanical environment that affect the expression of genes that regulate myogenesis. We tested whether the hormone Klotho could influence the response of muscle to mechanical loading. Applying mechanical loads to myoblasts in vitro increased RNA encoding transcription factors that are expressed in activated myoblasts (Myod) and in myogenic cells that have initiated terminal differentiation (Myog). However, application of Klotho to myoblasts prevented the loading-induced activation of Myog without affecting loading-induced activation of Myod. This indicates that elevated Klotho inhibits mechanically-induced differentiation of myogenic cells. Elevated Klotho also reduced the transcription of genes encoding proteins involved in the canonical Wnt pathway or their target genes (Wnt9a, Wnt10a, Ccnd1). Because the canonical Wnt pathway promotes differentiation of myogenic cells, these findings indicate that Klotho inhibits the differentiation of myogenic cells experiencing mechanical loading. We then tested whether these effects of Klotho occurred in muscles of mice experiencing high-intensity interval training (HIIT) by comparing wild-type mice and klotho transgenic mice. The expression of a klotho transgene combined with HIIT synergized to tremendously elevate numbers of Pax7+ satellite cells and activated MyoD+ cells. However, transgene expression prevented the increase in myogenin+ cells caused by HIIT in wild-type mice. Furthermore, transgene expression diminished the HIIT-induced activation of the canonical Wnt pathway in Pax7+ satellite cells. Collectively, these findings show that Klotho inhibits loading- or exercise-induced activation of muscle differentiation and indicate a new mechanism through which the responses of muscle to the mechanical environment are regulated.


Assuntos
Músculos , Células Satélites de Músculo Esquelético , Animais , Camundongos , Diferenciação Celular , Hormônios/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Músculos/metabolismo , Proteína MyoD/metabolismo , Miogenina/metabolismo , Células Satélites de Músculo Esquelético/metabolismo
10.
Cells ; 12(17)2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37681900

RESUMO

Sarcopenia has a high prevalence among the aging population. Sarcopenia is of tremendous socioeconomic importance because it can lead to falls and hospitalization, subsequently increasing healthcare costs while limiting quality of life. In sarcopenic muscle fibers, the E3 ubiquitin ligase F-Box Protein 32 (Fbxo32) is expressed at substantially higher levels, driving ubiquitin-proteasomal muscle protein degradation. As one of the key regulators of muscular equilibrium, the transcription factor Forkhead Box O3 (FOXO3) can increase the expression of Fbxo32, making it a possible target for the regulation of this detrimental pathway. To test this hypothesis, murine C2C12 myoblasts were transduced with AAVs carrying a plasmid for four specific siRNAs against Foxo3. Successfully transduced myoblasts were selected via FACS cell sorting to establish single clone cell lines. Sorted myoblasts were further differentiated into myotubes and stained for myosin heavy chain (MHC) by immunofluorescence. The resulting area was calculated. Myotube contractions were induced by electrical stimulation and quantified. We found an increased Foxo3 expression in satellite cells in human skeletal muscle and an age-related increase in Foxo3 expression in older mice in silico. We established an in vitro AAV-mediated FOXO3 knockdown on protein level. Surprisingly, the myotubes with FOXO3 knockdown displayed a smaller myotube size and a lower number of nuclei per myotube compared to the control myotubes (AAV-transduced with a functionless control plasmid). During differentiation, a lower level of FOXO3 reduced the expression Fbxo32 within the first three days. Moreover, the expression of Myod1 and Myog via ATM and Tp53 was reduced. Functionally, the Foxo3 knockdown myotubes showed a higher contraction duration and time to peak. Early Foxo3 knockdown seems to terminate the initiation of differentiation due to lack of Myod1 expression, and mediates the inhibition of Myog. Subsequently, the myotube size is reduced and the excitability to electrical stimulation is altered.


Assuntos
Proteína Forkhead Box O3 , Proteína MyoD , Miogenina , Qualidade de Vida , Sarcopenia , Idoso , Animais , Humanos , Camundongos , Proteína Forkhead Box O3/genética , Fibras Musculares Esqueléticas , Músculo Esquelético , Mioblastos , Miogenina/metabolismo , Proteína MyoD/metabolismo
11.
J Cell Physiol ; 238(11): 2638-2650, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37683043

RESUMO

Skeletal muscle regeneration is a crucial physiological process that occurs in response to injury or disease. As an important transcriptome surveillance system that regulates tissue development, the role of nonsense-mediated mRNA decay (NMD) in muscle regeneration remains unclear. Here, we found that NMD inhibits myoblast differentiation by targeting the phosphoinositide-3-kinase regulatory subunit 5 gene, which leads to the suppression of the transcriptional activity of myogenic differentiation (MyoD), a key regulator of myoblast differentiation. This disruption of MyoD transcriptional activity subsequently affects the expression levels of myogenin and myosin heavy chain, crucial markers of myoblast differentiation. Additionally, through up-frameshift protein 1 knockdown experiments, we observed that inhibiting NMD can accelerate muscle regeneration in vivo. These findings highlight the potential of NMD as a novel therapeutic target for the treatment of muscle-related injuries and diseases.


Assuntos
Mioblastos , Degradação do RNAm Mediada por Códon sem Sentido , Animais , Masculino , Camundongos , Diferenciação Celular/genética , Linhagem Celular , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Músculos , Mioblastos/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Miogenina/genética , Miogenina/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido/genética
12.
Epigenetics ; 18(1): 2237789, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37506369

RESUMO

Long non-coding RNAs (lncRNAs) are involved in the process of muscle cell differentiation and play an important role. Previous studies have shown that lncRNA-MEG3 promotes the differentiation of porcine skeletal muscle satellite cells (PSCs), but the regulatory mechanism of MEG3 interaction with target protein has not been well studied. We demonstrated that MEG3 can bind dihydrolipoamide succinyltransferase (DLST) by RNA pull down and RIP-qPCR. Subsequently, knockdown and overexpression experiments showed that DLST promotes PSCs differentiation. Rescue experiments showed that the expression of DLST protein was significantly increased with MEG3 overexpression and decreased with MEG3 knockdown, while its mRNA expression was not changed. Furthermore, we have successfully predicted and validated that the transcription factor myogenic differentiation (MYOD) binds to the MEG3 core promoter though utilizing chromatin immunoprecipitation (CHIP) and luciferase reporter assays. The results indicated that MYOD acts as a transcription factor of MEG3 to promote MEG3 transcription. Knockdown of MEG3 in vivo indicated that MEG3 is involved in skeletal muscle regeneration. It is concluded that MYOD acts as a transcription factor to induce MEG3 expression. MEG3 acts as a molecular scaffold to bind and promote DLST protein expression. This paper provides a new molecular mechanism for MEG3 to promote the differentiation of PSCs.


Assuntos
Proteína MyoD , RNA Longo não Codificante , Células Satélites de Músculo Esquelético , Animais , Diferenciação Celular/genética , Metilação de DNA , Proteína MyoD/genética , Proteína MyoD/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Suínos , Fatores de Transcrição/genética
13.
Methods Mol Biol ; 2640: 259-276, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995601

RESUMO

The bHLH transcription factor MyoD is a master regulator of myogenic differentiation, and its sustained expression in fibroblasts suffices to differentiate them into muscle cells. MyoD expression oscillates in activated muscle stem cells of developing, postnatal and adult muscle under various conditions: when the stem cells are dispersed in culture, when they remain associated with single muscle fibers, or when they reside in muscle biopsies. The oscillatory period is around 3 h and thus much shorter than the cell cycle or circadian rhythm. Unstable MyoD oscillations and long periods of sustained MyoD expression are observed when stem cells undergo myogenic differentiation. The oscillatory expression of MyoD is driven by the oscillatory expression of the bHLH transcription factor Hes1 that periodically represses MyoD. Ablation of the Hes1 oscillator interferes with stable MyoD oscillations and leads to prolonged periods of sustained MyoD expression. This interferes with the maintenance of activated muscle stem cells and impairs muscle growth and repair. Thus, oscillations of MyoD and Hes1 control the balance between the proliferation and differentiation of muscle stem cells. Here, we describe time-lapse imaging methods using luciferase reporters, which can monitor dynamic MyoD gene expression in myogenic cells.


Assuntos
Fibras Musculares Esqueléticas , Proteína MyoD , Proteína MyoD/genética , Proteína MyoD/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Células-Tronco , Diferenciação Celular , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Músculo Esquelético/metabolismo
14.
J Biol Chem ; 299(3): 102978, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739949

RESUMO

The mitochondrial phospholipid cardiolipin (CL) is critical for numerous essential biological processes, including mitochondrial dynamics and energy metabolism. Mutations in the CL remodeling enzyme TAFAZZIN cause Barth syndrome, a life-threatening genetic disorder that results in severe physiological defects, including cardiomyopathy, skeletal myopathy, and neutropenia. To study the molecular mechanisms whereby CL deficiency leads to skeletal myopathy, we carried out transcriptomic analysis of the TAFAZZIN-knockout (TAZ-KO) mouse myoblast C2C12 cell line. Our data indicated that cardiac and muscle development pathways are highly decreased in TAZ-KO cells, consistent with a previous report of defective myogenesis in this cell line. Interestingly, the muscle transcription factor myoblast determination protein 1 (MyoD1) is significantly repressed in TAZ-KO cells and TAZ-KO mouse hearts. Exogenous expression of MyoD1 rescued the myogenesis defects previously observed in TAZ-KO cells. Our data suggest that MyoD1 repression is caused by upregulation of the MyoD1 negative regulator, homeobox protein Mohawk, and decreased Wnt signaling. Our findings reveal, for the first time, that CL metabolism regulates muscle differentiation through MyoD1 and identify the mechanism whereby MyoD1 is repressed in CL-deficient cells.


Assuntos
Síndrome de Barth , Cardiolipinas , Proteína MyoD , Animais , Camundongos , Aciltransferases/genética , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Cardiolipinas/genética , Cardiolipinas/metabolismo , Camundongos Knockout , Músculos/metabolismo , Fatores de Transcrição/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo
15.
Int J Legal Med ; 137(3): 875-886, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36797435

RESUMO

From the perspective of forensic wound age estimation, experiments related to skeletal muscle regeneration after injury have rarely been reported. Here, we examined the time-dependent expression patterns of multiple biomarkers associated with satellite cell fate, including the transcription factor paired box 7 (Pax7), myoblast determination protein (MyoD), myogenin, and insulin-like growth factor (IGF-1), using immunohistochemistry, western blotting, and quantitative real-time PCR in contused skeletal muscle. An animal model of skeletal muscle contusion was established in 30 Sprague-Dawley male rats, and another five rats were employed as non-contused controls. Morphometrically, the data obtained from the numbers of Pax7 + , MyoD + , and myogenin + cells were highly correlated with the wound age. Pax7, MyoD, myogenin, and IGF-1 expression patterns were upregulated after injury at both the mRNA and protein levels. Pax7, MyoD, and myogenin protein expression levels confirmed the results of the morphometrical analysis. Additionally, the relative quantity of IGF-1 protein > 0.92 suggested a wound age of 3 to 7 days. The relative quantity of Pax7 mRNA > 2.44 also suggested a wound age of 3 to 7 days. Relative quantities of Myod1, Myog, and Igf1 mRNA expression > 2.78, > 7.80, or > 3.13, respectively, indicated a wound age of approximately 3 days. In conclusion, the expression levels of Pax7, MyoD, myogenin, and IGF-1 were upregulated in a time-dependent manner during skeletal muscle wound healing, suggesting the potential for using them as candidate biomarkers for wound age estimation in skeletal muscle.


Assuntos
Contusões , Células Satélites de Músculo Esquelético , Ratos , Animais , Masculino , Miogenina/genética , Miogenina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Ratos Sprague-Dawley , Músculo Esquelético/metabolismo , Contusões/metabolismo , Biomarcadores/metabolismo , RNA Mensageiro/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo
16.
Gene ; 849: 146907, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174904

RESUMO

The flavanol (-)-epicatechin has exercise-mimetic properties. Besides, several miRNAs play a role in modulating the adaptation of the muscle to different training protocols. However, notwithstanding all information, few studies aimed to determine if (-)-epicatechin can modify the expression of miRNAs related to skeletal muscle development and regeneration. Mice were treated for fifteen days by oral gavage with the flavanol (-)-epicatechin. After treatment, the quadriceps of the mice was dissected, and total RNA was extracted. The expression level of miR-133, -204, -206, -223, -486, and -491 was analyzed by qRT-PCR. We also used bioinformatic analysis to predict the participation of these miRNAs in different skeletal muscle signal transduction pathways. Additionally, we analyzed the level of the myogenic proteins MyoD and myogenin by Western blot and measured the cross-sectional area of muscle fibers stained with E&H. (-)-Epicatechin upregulated the expression of miR-133, -204, -206, -223, and -491 significantly, which was associated with an increase in the level of the myogenic proteins MyoD and Myogenin and an augment in the fiber size. The bioinformatics analysis showed that the studied miRNAs might participate in different signal transduction pathways related to muscle development and adaptation. Our results showed that (-)-epicatechin upregulated miRNAs that participate in skeletal exercise muscle adaptation, induced muscle hypertrophy, and increased the level of myogenic proteins MyoD and MyoG.


Assuntos
Catequina , MicroRNAs , Camundongos , Animais , Miogenina/genética , Miogenina/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Catequina/farmacologia , Músculo Esquelético/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular
17.
Commun Biol ; 5(1): 1201, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352000

RESUMO

Muscle stem cells (MuSCs) are essential for skeletal muscle development and regeneration, ensuring muscle integrity and normal function. The myogenic proliferation and differentiation of MuSCs are orchestrated by a cascade of transcription factors. In this study, we elucidate the specific role of transcription factor 12 (Tcf12) in muscle development and regeneration based on loss-of-function studies. Muscle-specific deletion of Tcf12 cause muscle weight loss owing to the reduction of myofiber size during development. Inducible deletion of Tcf12 specifically in adult MuSCs delayed muscle regeneration. The examination of MuSCs reveal that Tcf12 deletion resulted in cell-autonomous defects during myogenesis and Tcf12 is necessary for proper myogenic gene expression. Mechanistically, TCF12 and MYOD work together to stabilise chromatin conformation and sustain muscle cell fate commitment-related gene and chromatin architectural factor expressions. Altogether, our findings identify Tcf12 as a crucial regulator of MuSCs chromatin remodelling that regulates muscle cell determination and participates in skeletal muscle development and regeneration.


Assuntos
Cromatina , Proteína MyoD , Proteína MyoD/genética , Proteína MyoD/metabolismo , Cromatina/genética , Cromatina/metabolismo , Músculo Esquelético/metabolismo , Desenvolvimento Muscular/genética , Mioblastos
18.
Int J Mol Sci ; 23(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36362402

RESUMO

Lamina-associated polypeptide 1 (LAP1) is a ubiquitously expressed inner nuclear membrane protein encoded by TOR1AIP1, and presents as two isoforms in humans, LAP1B and LAP1C. While loss of both isoforms results in a multisystemic progeroid-like syndrome, specific loss of LAP1B causes muscular dystrophy and cardiomyopathy, suggesting that LAP1B has a critical role in striated muscle. To gain more insight into the molecular pathophysiology underlying muscular dystrophy caused by LAP1B, we established a patient-derived fibroblast line that was transdifferentiated into myogenic cells using inducible MyoD expression. Compared to the controls, we observed strongly reduced myogenic differentiation and fusion potentials. Similar defects were observed in the C2C12 murine myoblasts carrying loss-of-function LAP1A/B mutations. Using RNA sequencing, we found that, despite MyoD overexpression and efficient cell cycle exit, transcriptional reprogramming of the LAP1B-deficient cells into the myogenic lineage is impaired with delayed activation of MYOG and muscle-specific genes. Gene set enrichment analyses suggested dysregulations of protein metabolism, extracellular matrix, and chromosome organization. Finally, we found that the LAP1B-deficient cells exhibit nuclear deformations, such as an increased number of micronuclei and altered morphometric parameters. This study uncovers the phenotypic and transcriptomic changes occurring during myoconversion of patient-derived LAP1B-deficient fibroblasts and provides a useful resource to gain insights into the mechanisms implicated in LAP1B-associated nuclear envelopathies.


Assuntos
Distrofias Musculares , Membrana Nuclear , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Fibroblastos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Desenvolvimento Muscular/genética , Distrofias Musculares/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Membrana Nuclear/metabolismo , Isoformas de Proteínas/metabolismo
19.
Nucleic Acids Res ; 50(18): 10733-10755, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36200826

RESUMO

Long noncoding RNAs (lncRNAs) play important roles in the spatial and temporal regulation of muscle development and regeneration. Nevertheless, the determination of their biological functions and mechanisms underlying muscle regeneration remains challenging. Here, we identified a lncRNA named lncMREF (lncRNA muscle regeneration enhancement factor) as a conserved positive regulator of muscle regeneration among mice, pigs and humans. Functional studies demonstrated that lncMREF, which is mainly expressed in differentiated muscle satellite cells, promotes myogenic differentiation and muscle regeneration. Mechanistically, lncMREF interacts with Smarca5 to promote chromatin accessibility when muscle satellite cells are activated and start to differentiate, thereby facilitating genomic binding of p300/CBP/H3K27ac to upregulate the expression of myogenic regulators, such as MyoD and cell differentiation. Our results unravel a novel temporal-specific epigenetic regulation during muscle regeneration and reveal that lncMREF/Smarca5-mediated epigenetic programming is responsible for muscle cell differentiation, which provides new insights into the regulatory mechanism of muscle regeneration.


Assuntos
RNA Longo não Codificante , Adenosina Trifosfatases , Animais , Diferenciação Celular , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Epigênese Genética , Humanos , Camundongos , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regeneração , Suínos
20.
Res Vet Sci ; 152: 569-578, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36191510

RESUMO

This study aims to explore the functional role of Myoz2 in myoblast differentiation, and elucidate the potential factors interact with Myoz2 in promoter transcriptional regulation. The temporal-spatial expression results showed that the bovine Myoz2 gene was highest expressed in longissimus dorsi, and in individual growth stages and myoblast differentiation stages. Knockdown of Myoz2 inhibited the differentiation of myoblast, and negative effect of MyoD, MyoG, MyH and MEF2A expression on mRNA levels. Subsequently, the promoter region of bovine Myoz2 gene with 1.7 Kb sequence was extracted, and then it was set as eight series of deleted fragments, which were ligated into pGL3-basic to detect core promoter regions of Myoz2 gene in myoblasts and myotubes. Transcription factors MyoD and MyoG were identified as important cis-acting elements in the core promoter region (-159/+1). Also, it was highly conserved in different species based on dual-luciferase analysis and multiple sequence alignment analysis, respectively. Furthermore, a chromatin immunoprecipitation (ChIP) analysis combined with site-directed mutation and siRNA interference and overexpression confirmed that the combination of MyoD and MyoG occurred in region -159/+1, and played an important role in the regulation of bovine Myoz2 gene. These findings explored the regulatory network mechanism of Myoz2 gene during the development of bovine skeletal muscle.


Assuntos
Proteína MyoD , Mioblastos , Bovinos , Animais , Proteína MyoD/genética , Proteína MyoD/metabolismo , Mioblastos/fisiologia , Regiões Promotoras Genéticas , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Desenvolvimento Muscular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...