Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
Clin Transl Sci ; 17(7): e13857, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949195

RESUMO

Activation of receptor-interacting protein kinase 1 (RIPK1), a broadly expressed serine/threonine protein kinase, by pro-inflammatory cytokines and pathogens can result in apoptosis, necroptosis, or inflammation. RIPK1 inhibition has been shown to reduce inflammation and cell damage in preclinical studies and may have therapeutic potential for degenerative and inflammatory diseases. SIR2446 is a potent and selective novel small molecule RIPK1 kinase inhibitor. This phase I, randomized, double-blind, placebo-controlled study in Australia (ACTRN12621001621808) evaluated the safety (primary objective), pharmacokinetics, and pharmacodynamics of single (3-600 mg) and multiple (5-400 mg for 10 days) ascending oral doses of SIR2446M (SIR2446 magnesium salt form) in healthy adults from Nov 24, 2021, until May 01, 2023. All treatment-emergent adverse events (TEAEs) were mild/moderate. The most reported TEAEs were vascular access site pain, headache, and rash morbilliform. SIR2446M plasma half-lives ranged from 11 to 19 h and there were no major deviations from dose proportionality for maximum concentration and area under the curve across doses. Renal excretion of unchanged SIR2446 was minimal. No marked accumulation was observed (mean accumulation ratio, 1.2-1.6) after multiple daily doses. A high-fat meal mildly reduced the exposure but was not considered clinically significant. SIR2446M had a rapid and sustained inhibitory effect on the activity of RIPK1, with an overall 90% target engagement at repeated doses ranging from 30 to 400 mg in peripheral blood mononuclear cells ex vivo stimulated to undergo necroptosis. The favorable safety, pharmacokinetic, and pharmacodynamic profile of SIR2446M in healthy participants supports its further clinical development in patients with degenerative and inflammatory diseases.


Assuntos
Voluntários Saudáveis , Proteína Serina-Treonina Quinases de Interação com Receptores , Humanos , Adulto , Masculino , Método Duplo-Cego , Feminino , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Pessoa de Meia-Idade , Adulto Jovem , Relação Dose-Resposta a Droga , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Administração Oral , Adolescente , Esquema de Medicação
2.
Lupus Sci Med ; 11(1)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906550

RESUMO

OBJECTIVE: Systemic lupus erythematosus (SLE) is a type of autoimmune disease that involves multiple organs involved as well as cytokine dysregulation. The treatment of SLE is still challenging due to the side effects of the different drugs used. Receptor-interacting protein kinase 1 (RIPK1) is a kinase involved in T cell homeostasis and autoinflammation. Although clinical trials have shown that RIPK1 inhibition exhibits significant efficacy in different autoimmune diseases, its role in SLE remains unclear. METHODS: MRL/lpr lupus-prone mice received RIPK1 inhibitor ZJU37 or vehicle intraperitoneally for 10 weeks. A BM12-induced chronic graft-versus-host-disease (cGVHD) lupus-like model was introduced in RIPK1 D138N mice or C57BL/6 mice. Nephritis, serum autoantibody levels, dysregulation of adaptive immune response and cytokines were compared in treated and untreated mice. RESULTS: ZJU37 alleviated the clinical features of the MRL/lpr mice including nephritis and anti-dsDNA antibody production. In addition, ZJU37 treatment reduced the proportion of double-negative T cells in the spleen and the cytokines of TNFα, IFN-γ, IL-6, IL-17 and IL-1ß in the serum. Moreover, RIPK1 D138N mice were able to prevent the cGVHD lupus-like model from SLE attack, manifesting as anti-dsDNA antibody production, the proliferation of germinal centre B cells, plasma cells, and T follicular helper cells as well as IgG and C3 deposits in kidneys. CONCLUSION: RIPK1 inhibition has a protective effect in the mouse model of SLE and can potentially become a new therapeutic target for SLE in humans.


Assuntos
Citocinas , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro , Lúpus Eritematoso Sistêmico , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Camundongos , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/imunologia , Citocinas/metabolismo , Feminino , Anticorpos Antinucleares/sangue , Nefrite Lúpica/tratamento farmacológico , Nefrite Lúpica/imunologia , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Baço/imunologia , Baço/efeitos dos fármacos
4.
Nature ; 628(8009): 835-843, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600381

RESUMO

Severe influenza A virus (IAV) infections can result in hyper-inflammation, lung injury and acute respiratory distress syndrome1-5 (ARDS), for which there are no effective pharmacological therapies. Necroptosis is an attractive entry point for therapeutic intervention in ARDS and related inflammatory conditions because it drives pathogenic lung inflammation and lethality during severe IAV infection6-8 and can potentially be targeted by receptor interacting protein kinase 3 (RIPK3) inhibitors. Here we show that a newly developed RIPK3 inhibitor, UH15-38, potently and selectively blocked IAV-triggered necroptosis in alveolar epithelial cells in vivo. UH15-38 ameliorated lung inflammation and prevented mortality following infection with laboratory-adapted and pandemic strains of IAV, without compromising antiviral adaptive immune responses or impeding viral clearance. UH15-38 displayed robust therapeutic efficacy even when administered late in the course of infection, suggesting that RIPK3 blockade may provide clinical benefit in patients with IAV-driven ARDS and other hyper-inflammatory pathologies.


Assuntos
Lesão Pulmonar , Necroptose , Infecções por Orthomyxoviridae , Inibidores de Proteínas Quinases , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Feminino , Humanos , Masculino , Camundongos , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/virologia , Células Epiteliais Alveolares/metabolismo , Vírus da Influenza A/classificação , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Lesão Pulmonar/complicações , Lesão Pulmonar/patologia , Lesão Pulmonar/prevenção & controle , Lesão Pulmonar/virologia , Camundongos Endogâmicos C57BL , Necroptose/efeitos dos fármacos , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/virologia , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/prevenção & controle , Síndrome do Desconforto Respiratório/virologia
5.
Bioorg Med Chem ; 100: 117611, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309200

RESUMO

Systemic inflammatory response syndrome (SIRS), an exaggerated defense response of the organism to a noxious stressor, involves a massive inflammatory cascade that ultimately leads to reversible or irreversible end-organ dysfunction and even death. Suppressing RIPK1, a key protein in necroptosis pathway, has been proven to be an effective therapeutic strategy for inflammation and SIRS. In this study, a series of novel biaryl benzoxazepinone RIPK1 inhibitors were designed and synthesized by introducing different aryl substituents at the C7 position of benzoxazepinone. As a result, p-cyanophenyl substituted analog 19 exhibited the most potent in vitro anti-necroptotic effect in HT-29 cells (EC50 = 1.7 nM) and superior protection against temperature loss and death in mice in the TZ-induced SIRS model compared to GSK'772. What's more, in vivo analysis of the levels of inflammatory factors in mice also revealed that compound 19 had better anti-inflammatory activity than GSK'772.


Assuntos
Inflamação , Proteína Serina-Treonina Quinases de Interação com Receptores , Síndrome de Resposta Inflamatória Sistêmica , Animais , Humanos , Camundongos , Apoptose , Células HT29 , Inflamação/metabolismo , Necrose , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/induzido quimicamente , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Azepinas/química , Azepinas/farmacologia
6.
Eur J Med Chem ; 265: 116123, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38199165

RESUMO

Within the field of medical science, there is a great deal of interest in investigating cell death pathways in the hopes of discovering new drugs. Over the past two decades, pharmacological research has focused on necroptosis, a cell death process that has just been discovered. Receptor-interacting protein kinase 1 (RIPK1), an essential regulator in the cell death receptor signalling pathway, has been shown to be involved in the regulation of important events, including necrosis, inflammation, and apoptosis. Therefore, researching necroptosis inhibitors offers novel ways to treat a variety of disorders that are not well-treated by the therapeutic medications now on the market. The research and medicinal potential of RIPK1 inhibitors, a promising class of drugs, are thoroughly examined in this study. The journey from the discovery of Necrostatin-1 (Nec-1) to the recent advancements in RIPK1 inhibitors is marked by significant progress, highlighting the integration of traditional medicinal chemistry approaches with modern technologies like high-throughput screening and DNA-encoded library technology. This review presents a thorough exploration of the development and therapeutic potential of RIPK1 inhibitors, a promising class of compounds. Simultaneously, this review highlights the complex roles of RIPK1 in various pathological conditions and discusses potential inhibitors discovered through diverse pathways, emphasizing their efficacy against multiple disease models, providing significant guidance for the expansion of knowledge about RIPK1 and its inhibitors to develop more selective, potent, and safe therapeutic agents.


Assuntos
Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores , Humanos , Apoptose , Desenvolvimento de Medicamentos , Necroptose/efeitos dos fármacos , Necrose/induzido quimicamente , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
7.
Clin Transl Sci ; 16(10): 1997-2009, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37596814

RESUMO

Receptor-interacting protein 1 (RIP1) is a key regulator of multiple signaling pathways that mediate inflammatory responses and cell death. RIP1 kinase activity mediates apoptosis and necroptosis induced by tumor necrosis factor (TNF)-α, Toll-like receptors, and ischemic tissue damage. RIP1 has been implicated in several human pathologies and consequently, RIP1 inhibition may represent a therapeutic approach for diseases dependent on RIP1-mediated inflammation and cell death. GDC-8264 is a potent, selective, and reversible small molecule inhibitor of RIP1 kinase activity. This phase I, randomized, placebo-controlled, double-blinded trial examined safety, pharmacokinetics (PKs), and pharmacodynamics (PDs) of single- (5-225 mg) and multiple- (50 and 100 mg once daily, up to 14 days) ascending oral doses of GDC-8264 in healthy volunteers, and also tested the effect of food on the PKs of GDC-8264. All adverse events in GDC-8264-treated subjects in both stages were mild. GDC-8264 exhibited dose-proportional increases in systemic exposure; the mean terminal half-life ranged from 10-13 h, with limited accumulation on multiple dosing (accumulation ratio [AR] ~ 1.4); GDC-8264 had minimal renal excretion at all doses. A high-fat meal had no significant effect on the PKs of GDC-8264. In an ex vivo stimulation assay of whole blood, GDC-8264 rapidly and completely inhibited release of CCL4, a downstream marker of RIP1 pathway activation, indicating a potent pharmacological effect. Based on PK-PD modeling, the GDC-8264 half-maximal inhibitory concentration for the inhibition of CCL4 release was estimated to be 0.58 ng/mL. The favorable safety, PKs, and PDs of GDC-8264 support its further development for treatment of RIP1-driven diseases.


Assuntos
Proteína Serina-Treonina Quinases de Interação com Receptores , Transdução de Sinais , Humanos , Relação Dose-Resposta a Droga , Método Duplo-Cego , Voluntários Saudáveis , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores
8.
Cell Death Dis ; 14(8): 555, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620300

RESUMO

Necroptosis, a programmed cell death with necrotic-like morphology, has been recognized as an important driver in various inflammatory diseases. Inhibition of necroptosis has shown potential promise in the therapy of multiple human diseases. However, very few necroptosis inhibitors are available for clinical use as yet. Here, we identified an FDA-approved anti-cancer drug, Vemurafenib, as a potent inhibitor of necroptosis. Through direct binding, Vemurafenib blocked the kinase activity of receptor-interacting protein kinases 1 (RIPK1), impeded the downstream signaling and necrosome complex assembly, and inhibited necroptosis. Compared with Necrostain-1, Vemurafenib stabilized RIPK1 in an inactive DLG-out conformation by occupying a distinct allosteric hydrophobic pocket. Furthermore, pretreatment with Vemurafenib provided strong protection against necroptosis-associated diseases in vivo. Altogether, our results demonstrate that Vemurafenib is an effective RIPK1 antagonist and provide rationale and preclinical evidence for the potential application of approved drug in necroptosis-related diseases.


Assuntos
Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores , Vemurafenib , Humanos , Necrose , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Vemurafenib/farmacologia
9.
Bioorg Med Chem ; 91: 117385, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364415

RESUMO

Receptor-interacting protein kinase 1 (RIPK1)-mediated necroptosis is believed to have a significant role in contributing to inflammatory diseases. Inhibiting RIPK1 has shown promise in effectively alleviating the inflammation process. In our current study, we employed scaffold hopping to develop a series of novel benzoxazepinone derivatives. Among these derivatives, compound o1 displayed the most potent antinecroptosis activity (EC50=16.17±1.878nM) in cellular assays and exhibited the strongest binding affinity to the target site. Molecular docking analyses further elucidated the mechanism of action of o1, revealing its ability to fully occupy the protein pocket and form hydrogen bonds with the amino acid residue Asp156. Our findings highlight that o1 specifically inhibits necroptosis, rather than apoptosis, by impeding the RIPK1/Receptor-interacting protein kinase 3 (RIPK3)/mixed-lineage kinase domain-like (MLKL) pathway's phosphorylation, triggered by TNFα, Smac mimetic, and z-VAD (TSZ). Additionally, o1 demonstrated dose-dependent improvements in the survival rate of mice with Systemic Inflammatory Response Syndrome (SIRS), surpassing the protective effect observed with GSK'772.


Assuntos
Necroptose , Inibidores de Proteínas Quinases , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Camundongos , Apoptose , Simulação de Acoplamento Molecular , Fosforilação , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Necroptose/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
10.
Biomed Pharmacother ; 162: 114638, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37011486

RESUMO

Psoriasis is a common chronic inflammatory skin disease. RIPK1 plays an important role in inflammatory diseases. At present, the clinical efficacy of the RIPK1 inhibitor is limited and the regulatory mechanism is unclear in the treatment of psoriasis. Therefore, our team developed a new RIPK1 inhibitor, NHWD-1062, which showed a slightly lower IC50 in U937 cells than that of GSK'772 (a RIPK1 inhibitor in clinical trials) (11 nM vs. 14 nM), indicating that the new RIPK1 inhibitor was no less inhibitory than GSK'772. In this study, we evaluated the therapeutic effects of NHWD-1062 using an IMQ-induced mouse model of psoriasis and explored the precise regulatory mechanism involved. We found that gavage of NHWD-1062 significantly ameliorated the inflammatory response and inhibited the abnormal proliferation of the epidermis in IMQ-induced psoriatic mice. We then elucidated the mechanism of NHWD-1062, which was that suppressed the proliferation and inflammation of keratinocytes in vitro and in vivo through the RIPK1/NF-κB/TLR1 axis. Dual-luciferase reporter assay indicated that P65 can directly target the TLR1 promoter region and activate TLR1 expression, leading to inflammation. In summary, our study demonstrates that NHWD-1062 alleviates psoriasis-like inflammation by inhibiting the activation of the RIPK1/NF-κB/TLR1 axis, which has not been previously reported and further provides evidence for the clinical translation of NHWD-1062 in the treatment of psoriasis.


Assuntos
Psoríase , Proteína Serina-Treonina Quinases de Interação com Receptores , Dermatopatias , Animais , Camundongos , Proliferação de Células , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Queratinócitos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Psoríase/tratamento farmacológico , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Pele/metabolismo , Dermatopatias/metabolismo , Receptor 1 Toll-Like/metabolismo
11.
Bioorg Chem ; 131: 106339, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599218

RESUMO

Necroptosis is confirmed as a precisely programmed cell death that is activated in caspase-deficient conditions. Receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed-lineage kinase domain-like pseudokinase (MLKL) are the key regulators involved in the signaling pathway. However, accumulating evidence suggests that RIPK1 also works in apoptosis and inflammation pathways independent of necroptosis. Differently, RIPK3 signals necroptosis independent of RIPK1. Thus, identification of specific RIPK3 inhibitors is of great importance for the drug development associated with necroptosis. The benzothiazole carboxamide is a privileged scaffold as RIPK3 inhibitors developed by our group recently. In this study, we work on the phenyl group in-between of benzothiazole and carboxamide to profile the chemical space. Finally, a chlorinated derivative XY-1-127 was found to specifically inhibit necroptosis rather than apoptosis with an EC50 value of 676.8 nM and target RIPK3 with a Kd of 420 nM rather than RIPK1 (Kd = 4300 nM). It was also confirmed to block the formation of necrosome by inhibiting RIPK3 phosphorylation at 1 µM in necroptosis cells. This work discovers the chemical space insights on the phenyl group of the substituted benzothiazole RIPK3 inhibitors and provides a new lead compound for further development.


Assuntos
Apoptose , Benzotiazóis , Necroptose , Inibidores de Proteínas Quinases , Proteína Serina-Treonina Quinases de Interação com Receptores , Humanos , Apoptose/efeitos dos fármacos , Benzotiazóis/química , Benzotiazóis/farmacologia , Inflamação/metabolismo , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Necroptose/efeitos dos fármacos
12.
J Med Chem ; 65(22): 14971-14999, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36346971

RESUMO

As a serine/threonine protein kinase, receptor-interacting protein 1 (RIP1) plays an important role in regulating the pathways in programmed cell death. Multifaceted human diseases (e.g., autoimmune diseases, inflammatory diseases, neurodegenerative diseases, and tumors) are closely related to RIP1 kinase. Therefore, small-molecule RIP1 inhibitors with precise targeting and good penetrability have recently been used in potentially therapeutic methods, attracting extensive researcher interest. GSK2982772, developed by GlaxoSmithKline (GSK), became the world's first RIP1 inhibitor approved for clinical research in 2014. Nine clinical trials assessing GSK2982772 have been performed. The most recent direction in RIP1 inhibitor development has been focused on RIP1 small-molecule inhibitors with higher potency, selectivity, and metabolic stability. In this Perspective, considering the structure, biological functions, and disease relevance of RIP1, we summarize the recent research progress in RIP1 small-molecule inhibitor development based on different binding modalities and discuss prospective strategies for designing additional RIP1 therapeutic agents.


Assuntos
Descoberta de Drogas , Proteína Serina-Treonina Quinases de Interação com Receptores , Humanos , Apoptose , Química Farmacêutica , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores
13.
Clin Transl Sci ; 15(8): 2010-2023, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35649245

RESUMO

RIPK1 is a master regulator of inflammatory signaling and cell death and increased RIPK1 activity is observed in human diseases, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). RIPK1 inhibition has been shown to protect against cell death in a range of preclinical cellular and animal models of diseases. SAR443060 (previously DNL747) is a selective, orally bioavailable, central nervous system (CNS)-penetrant, small-molecule, reversible inhibitor of RIPK1. In three early-stage clinical trials in healthy subjects and patients with AD or ALS (NCT03757325 and NCT03757351), SAR443060 distributed into the cerebrospinal fluid (CSF) after oral administration and demonstrated robust peripheral target engagement as measured by a reduction in phosphorylation of RIPK1 at serine 166 (pRIPK1) in human peripheral blood mononuclear cells compared to baseline. RIPK1 inhibition was generally safe and well-tolerated in healthy volunteers and patients with AD or ALS. Taken together, the distribution into the CSF after oral administration, the peripheral proof-of-mechanism, and the safety profile of RIPK1 inhibition to date, suggest that therapeutic modulation of RIPK1 in the CNS is possible, conferring potential therapeutic promise for AD and ALS, as well as other neurodegenerative conditions. However, SAR443060 development was discontinued due to long-term nonclinical toxicology findings, although these nonclinical toxicology signals were not observed in the short duration dosing in any of the three early-stage clinical trials. The dose-limiting toxicities observed for SAR443060 preclinically have not been reported for other RIPK1-inhibitors, suggesting that these toxicities are compound-specific (related to SAR443060) rather than RIPK1 pathway-specific.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Proteína Serina-Treonina Quinases de Interação com Receptores , Doença de Alzheimer/tratamento farmacológico , Esclerose Lateral Amiotrófica/tratamento farmacológico , Método Duplo-Cego , Voluntários Saudáveis , Humanos , Leucócitos Mononucleares , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores
14.
Biosci Rep ; 42(3)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35302166

RESUMO

Adipose-derived stem cells (ADSCs) showed decreased cell viability and increased cell death under oxygen-glucose deprivation (OGD). Meanwhile, vital necroptotic proteins, including receptor-interacting protein kinase (RIP) 3 (RIP3) and mixed lineage kinase domain-like pseudokinase (MLKL), were expressed in the early stage. The present study aims to explore the effect of necroptosis inhibition on ADSCs. ADSCs were obtained from normal human subcutaneous fat and verified by multidirectional differentiation and flow cytometry. By applying cell counting kit-8 (CCK-8), calcein/propidium iodide (PI) staining and immunostaining, we determined the OGD treatment time of 4 h, a timepoint when the cells showed a significant decrease in viability and increased protein expression of RIP3, phosphorylated RIP3 (pRIP3) and phosphorylated MLKL (pMLKL). After pretreatment with the inhibitor of RIP3, necroptotic protein expression decreased under OGD conditions, and cell necrosis decreased. Transwell assays proved that cell migration ability was retained. Furthermore, the expression of the adipogenic transcription factor peroxisome proliferator-activated receptor γ (PPARγ) and quantitative analysis of Oil Red O staining increased in the inhibitor group. The expression of vascular endothelial growth factor-A (VEGFA) and fibroblast growth factor 2 (FGF2) and the migration test suggest that OGD increases the secretion of vascular factors, promotes the migration of human umbilical vein endothelial cells (HUVECs), and forms unstable neovascularization. ELISA revealed that inhibition of RIP3 increased the secretion of the anti-inflammatory factor, interleukin (IL)-10 (IL-10) and reduced the expression of the proinflammatory factor IL-1ß. Inhibition of RIP3 can reduce the death of ADSCs, retain their migration ability and adipogenic differentiation potential, reduce unstable neovascularization and inhibit the inflammatory response.


Assuntos
Glucose , Células-Tronco , Fator A de Crescimento do Endotélio Vascular , Adipogenia , Tecido Adiposo/citologia , Apoptose , Fator 2 de Crescimento de Fibroblastos , Glucose/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação , Oxigênio/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Células-Tronco/citologia
15.
Cell Death Dis ; 13(2): 188, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217652

RESUMO

Receptor-interacting protein kinase 3 (RIPK3) functions as a central regulator of necroptosis, mediating signaling transduction to activate pseudokinase mixed lineage kinase domain-like protein (MLKL) phosphorylation. Increasing evidences show that RIPK3 contributes to the pathologies of inflammatory diseases including multiple sclerosis, infection and colitis. Here, we identified a novel small molecular compound Salt-inducible Kinases (SIKs) inhibitor HG-9-91-01 inhibiting necroptosis by targeting RIPK3 kinase activity. We found that SIKs inhibitor HG-9-91-01 could block TNF- or Toll-like receptors (TLRs)-mediated necroptosis independent of SIKs. We revealed that HG-9-91-01 dramatically decreased cellular activation of RIPK3 and MLKL. Meanwhile, HG-9-91-01 inhibited the association of RIPK3 with MLKL and oligomerization of downstream MLKL. Interestingly, we found that HG-9-91-01 also trigger RIPK3-RIPK1-caspase 1-caspase 8-dependent apoptosis, which activated cleavage of GSDME leading to its dependent pyroptosis. Mechanistic studies revealed that SIKs inhibitor HG-9-91-01 directly inhibited RIPK3 kinase activity to block necroptosis and interacted with RIPK3 and recruited RIPK1 to activate caspases leading to cleave GSDME. Importantly, mice pretreated with HG-9-91-01 showed resistance to TNF-induced systemic inflammatory response syndrome. Consistently, HG-9-91-01 treatment protected mice against Staphylococcus aureus-mediated lung damage through targeting RIPK3 kinase activity. Overall, our results revealed that SIKs inhibitor HG-9-91-01 is a novel inhibitor of RIPK3 kinase and a potential therapeutic target for the treatment of necroptosis-mediated inflammatory diseases.


Assuntos
Necroptose , Compostos de Fenilureia , Pirimidinas , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Apoptose , Camundongos , Compostos de Fenilureia/farmacologia , Pirimidinas/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
16.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35054920

RESUMO

Ischemic brain injury is a widespread pathological condition, the main components of which are a deficiency of oxygen and energy substrates. In recent years, a number of new forms of cell death, including necroptosis, have been described. In necroptosis, a cascade of interactions between the kinases RIPK1 and RIPK3 and the MLKL protein leads to the formation of a specialized death complex called the necrosome, which triggers MLKL-mediated destruction of the cell membrane and necroptotic cell death. Necroptosis probably plays an important role in the development of ischemia/reperfusion injury and can be considered as a potential target for finding methods to correct the disruption of neural networks in ischemic damage. In the present study, we demonstrated that blockade of RIPK1 kinase by Necrostatin-1 preserved the viability of cells in primary hippocampal cultures in an in vitro model of glucose deprivation. The effect of RIPK1 blockade on the bioelectrical and metabolic calcium activity of neuron-glial networks in vitro using calcium imaging and multi-electrode arrays was assessed for the first time. RIPK1 blockade was shown to partially preserve both calcium and bioelectric activity of neuron-glial networks under ischemic factors. However, it should be noted that RIPK1 blockade does not preserve the network parameters of the collective calcium dynamics of neuron-glial networks, despite the maintenance of network bioelectrical activity (the number of bursts and the number of spikes in the bursts). To confirm the data obtained in vitro, we studied the effect of RIPK1 blockade on the resistance of small laboratory animals to in vivo modeling of hypoxia and cerebral ischemia. The use of Necrostatin-1 increases the survival rate of C57BL mice in modeling both acute hypobaric hypoxia and ischemic brain damage.


Assuntos
Hipóxia/genética , Hipóxia/metabolismo , Isquemia/metabolismo , Necroptose/genética , Neurônios/metabolismo , Neuroproteção/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imunofenotipagem , Isquemia/diagnóstico , Isquemia/etiologia , Isquemia/mortalidade , Imageamento por Ressonância Magnética , Camundongos , Prognóstico , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Taxa de Sobrevida
17.
Pediatr Res ; 91(1): 73-82, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33731807

RESUMO

BACKGROUND: Dramatic intestinal epithelial cell death leading to barrier dysfunction is one of the mechanism of neonatal necrotizing enterocolitis (NEC), in which Toll-like receptor 4 (TLR4) plays a pivotal role. This study explored the role of necroptosis, a drastic way of cell death in NEC. METHODS: The expression of necroptotic proteins was tested in NEC intestinal tissue and compared with controls. NEC was induced in neonatal wild-type mice and a necroptosis inhibitor was given to investigate whether NEC could be relieved. The general condition, macroscopic scoring, and histological evaluations were performed. The expression of tight junction proteins, inflammatory cytokines, and necroptosis-related proteins was measured, and barrier function was examined. Then, NEC was induced in TLR4-knockout pups to confirm the role of TLR4 in necroptosis. RESULTS: Necroptotic proteins were significantly upregulated in both NEC patient and animal models, together with the expression of TLR4. NEC could be relieved and inflammatory infiltration was decreased by necrostatin-1s. TLR4-knockout mice showed milder tissue degradation and less necroptosis after NEC induction. CONCLUSIONS: Necroptosis is an essential pathological process of NEC. TLR4 may be one stimulator of necroptosis in NEC. Inhibiting the intestinal cell necroptosis might be a useful strategy in the treatment of NEC. IMPACT: Necroptosis is a key pathological process in NEC, which appears to involve TLR4. Anti-necroptosis treatment is a promising strategy that could significantly relieve the symptoms of NEC.


Assuntos
Enterocolite Necrosante/patologia , Necroptose/fisiologia , Receptor 4 Toll-Like/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Apoptose/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptor 4 Toll-Like/genética , Regulação para Cima
18.
J Stroke Cerebrovasc Dis ; 31(1): 106213, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34837868

RESUMO

BACKGROUND: Recent studies have reported that receptor-interacting protein kinase 3 (RIPK3)-dependent necroptosis is related to the pathological process of intracerebral hemorrhage (ICH). Some studies support the view that inhibiting necroptosis is a key mechanism preventing inflammation. Inflammation is a crucial factor contributing to neurological injuries and unfavorable outcomes after ICH. The aim of this study was to clarify the association between necroptosis and monocyte chemoattractant protein-1 (MCP-1)-mediated inflammation and identify a new target for the treatment of ICH. METHODS: An ICH model was established in C57BL/6 mice by injecting collagenase IV into the right basal ganglia. The RIPK3 inhibitor GSK872 was administered through intraventricular injection. Then, we assessed brain edema and neurobehavioral function. Western blotting was employed to detect changes in RIPK3, phospho-mixed lineage kinase domain-like protein (p-MLKL), MCP-1, phospho-c-Jun N-terminal kinase (p-JNK) and interleukin 6 (IL-6) levels in the brain tissue. The localization of RIPK3 and MCP-1 was observed using immunofluorescence staining. Co-immunoprecipitation was performed to determine the interaction between RIPK3 and MCP-1. RESULTS: Compared with the sham group, the levels of RIPK3, p-MLKL, MCP-1, p-JNK and IL-6 were increased post-ICH. GSK872 pretreatment significantly reduced RIPK3, p-MLKL, MCP-1, p-JNK and IL-6 expression, accompanied by mitigated cerebral edema and neurobehavioral defects. RIPK3 and MCP-1 colocalized in the perinuclear region after ICH. We detected the formation of the RIPK3-MCP-1 complex in ICH brain tissue. CONCLUSIONS: There exerted an association between RIPK3 and MCP-1. The inhibition of RIPK3 alleviated MCP-1-mediated inflammation following ICH.


Assuntos
Hemorragia Cerebral/complicações , Quimiocina CCL2 , Inflamação , Necroptose/efeitos dos fármacos , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Animais , Edema Encefálico/etiologia , Interleucina-6 , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
19.
Eur J Med Chem ; 228: 114036, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34906762

RESUMO

RIPK1 plays a key role in the necroptosis pathway that regulates inflammatory signaling and cell death in various diseases, including inflammatory and neurodegenerative diseases. Herein, we report a series of potent RIPK1 inhibitors, represented by compound 70. Compound 70 efficiently blocks necroptosis induced by TNFα in both human and mouse cells (EC50 = 17-30 nM). Biophysical assay demonstrates that compound 70 potently binds to RIPK1 (Kd = 9.2 nM), but not RIPK3 (Kd > 10,000 nM). Importantly, compound 70 exhibits greatly improved metabolic stability in human and rat liver microsomes compared to compound 6 (PK68), a RIPK1 inhibitor reported in our previous work. In addition, compound 70 displays high permeability in Caco-2 cells and excellent in vitro safety profiles in hERG and CYP assays. Moreover, pre-treatment of 70 significantly ameliorates hypothermia and lethal shock in SIRS mice model. Lastly, compound 70 possesses favorable pharmacokinetic parameters with moderate clearance and good oral bioavailability in SD rat. Taken together, our work supports 70 as a potent RIPK1 inhibitor and highlights its potential as a prototypical lead for further development in necroptosis-associated inflammatory disorders.


Assuntos
Acetamidas/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Tiazóis/farmacologia , Acetamidas/síntese química , Acetamidas/química , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Ratos , Ratos Sprague-Dawley , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
20.
Zhonghua Gan Zang Bing Za Zhi ; 30(11): 1231-1236, 2022 Nov 20.
Artigo em Chinês | MEDLINE | ID: mdl-36891703

RESUMO

Objective: To evaluate the potential of receptor-interacting protein 3 (RIP3) as a therapeutic target for autoimmune hepatitis (AIH). Methods: Immunofluorescence assay was used to observe the activated expression levels of RIP3 and its downstream signal mixed lineage protein kinase domain-like protein (MLKL) in the liver tissues of patients with AIH and hepatic cyst. Concanavalin A (ConA) was injected into the tail vein to induce acute immune-mediated hepatitis in mice. Intervention was performed by intraperitoneal injection of RIP3 inhibitor GSK872 or solvent carrier. Peripheral blood and liver tissues were collected. Serum transaminases level, qPCR and flow cytometry were analyzed. The intergroup comparison was performed with an independent sample t-test. Results: The expression level of p-RIP3 (the activated forms of RIP3) and phosphorylated p-MLKL (MLKL after phosphorylation) downstream signal were significantly higher in the liver tissue of AIH patients than those of controls. Compared with the control group, the expression levels of RIP3 and MLKL mRNA were significantly increased in the liver tissue of AIH patients (relative expression levels 3.28±0.29 vs. 0.98±0.09, 4.55±0.51 vs. 1.06±0.11), and the differences were statistically significant (t=6.71 and 6.77, respectively, and P<0.01). The expression levels of RIP3 and MLKL mRNA were significantly higher in the mice liver tissue of ConA-induced immune hepatitis than those in the control group (relative expression levels 2.35±0.09 vs. 0.89±0.11,2.77±0.22 vs. 0.73±0.16,t=10.4,6.33, P<0.01). RIP3 inhibitor GSK872 had significantly attenuated ConA-induced immune liver injury and inhibited the expression of tumor necrosis factor-α, interleukin-6, interleukin-1ß and NLRP3 in liver. Compared with the control group, the proportions of CD45+F4/80+ macrophages, CD4+ IL-17+ Th17 cells, CD4+ CD25+ regulatory T (Treg) cells and CD11b+ Gr-1+ myeloid derived suppressor cells (MDSCs) were significantly increased in the liver of ConA + Vehicle group. Compared with ConA + Vehicle group, the proportion of CD45+F4/80+ macrophages and CD4+ IL-17+ Th17 cells were significantly decreased, while the proportion of CD4+ CD25+Treg cells and CD11b+ Gr-1+ MDSCs with immunomodulatory functions were significantly increased in mice liver of ConA+GSK872 group. Conclusion: AIH patients and ConA-induced immune hepatitis mice have activated RIP3 signal in liver tissues. Inhibition of RIP3 reduces the expression and proportion of proinflammatory factors and cells, and promotes the accumulation of CD4+ CD25+ Treg cells and CD11b+ Gr-1+ MDSCs with immunomodulatory functions in the liver of mice with immune hepatitis, thereby alleviating liver inflammation and injury. Therefore, the inhibition of RIP3 is expected to be a new approach for the treatment of AIH.


Assuntos
Hepatite Autoimune , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Humanos , Camundongos , Concanavalina A/metabolismo , Concanavalina A/uso terapêutico , Interleucina-17/metabolismo , Fígado/patologia , RNA Mensageiro/metabolismo , Linfócitos T Reguladores , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...