Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7505, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39209885

RESUMO

The Cdc48 AAA+ ATPase is an abundant and essential enzyme that unfolds substrates in multiple protein quality control pathways. The enzyme includes two conserved AAA+ ATPase motor domains, D1 and D2, that assemble as hexameric rings with D1 stacked above D2. Here, we report an ensemble of native structures of Cdc48 affinity purified from budding yeast lysate in complex with the adaptor Shp1 in the act of unfolding substrate. Our analysis reveals a continuum of structural snapshots that spans the entire translocation cycle. These data uncover elements of Shp1-Cdc48 interactions and support a 'hand-over-hand' mechanism in which the sequential movement of individual subunits is closely coordinated. D1 hydrolyzes ATP and disengages from substrate prior to D2, while D2 rebinds ATP and re-engages with substrate prior to D1, thereby explaining the dominant role played by the D2 motor in substrate translocation/unfolding.


Assuntos
Desdobramento de Proteína , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteína com Valosina , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/química , Modelos Moleculares , Ligação Proteica , Hidrólise , Peptídeos e Proteínas de Sinalização Intracelular
2.
Subcell Biochem ; 104: 485-501, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963497

RESUMO

Valosin-containing protein (VCP), also known as p97, is an evolutionarily conserved AAA+ ATPase essential for cellular homeostasis. Cooperating with different sets of cofactors, VCP is involved in multiple cellular processes through either the ubiquitin-proteasome system (UPS) or the autophagy/lysosomal route. Pathogenic mutations frequently found at the interface between the NTD domain and D1 ATPase domain have been shown to cause malfunction of VCP, leading to degenerative disorders including the inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD), amyotrophic lateral sclerosis (ALS), and cancers. Therefore, VCP has been considered as a potential therapeutic target for neurodegeneration and cancer. Most of previous studies found VCP predominantly exists and functions as a hexamer, which unfolds and extracts ubiquitinated substrates from protein complexes for degradation. However, recent studies have characterized a new VCP dodecameric state and revealed a controlling mechanism of VCP oligomeric states mediated by the D2 domain nucleotide occupancy. Here, we summarize our recent knowledge on VCP oligomerization, regulation, and potential implications of VCP in cellular function and pathogenic progression.


Assuntos
Proteína com Valosina , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/química , Humanos , Multimerização Proteica , Animais , Mutação , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/química , Osteíte Deformante/genética , Osteíte Deformante/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Miosite de Corpos de Inclusão/genética , Miosite de Corpos de Inclusão/metabolismo , Distrofia Muscular do Cíngulo dos Membros
3.
Proc Natl Acad Sci U S A ; 121(24): e2316892121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38833472

RESUMO

The loss of function of AAA (ATPases associated with diverse cellular activities) mechanoenzymes has been linked to diseases, and small molecules that activate these proteins can be powerful tools to probe mechanisms and test therapeutic hypotheses. Unlike chemical inhibitors that can bind a single conformational state to block enzyme function, activator binding must be permissive to different conformational states needed for mechanochemistry. However, we do not know how AAA proteins can be activated by small molecules. Here, we focus on valosin-containing protein (VCP)/p97, an AAA unfoldase whose loss of function has been linked to protein aggregation-based disorders, to identify druggable sites for chemical activators. We identified VCP ATPase Activator 1 (VAA1), a compound that dose-dependently stimulates VCP ATPase activity up to ~threefold. Our cryo-EM studies resulted in structures (ranging from ~2.9 to 3.7 Å-resolution) of VCP in apo and ADP-bound states and revealed that VAA1 binds an allosteric pocket near the C-terminus in both states. Engineered mutations in the VAA1-binding site confer resistance to VAA1, and furthermore, modulate VCP activity. Mutation of a phenylalanine residue in the VCP C-terminal tail that can occupy the VAA1 binding site also stimulates ATPase activity, suggesting that VAA1 acts by mimicking this interaction. Together, our findings uncover a druggable allosteric site and a mechanism of enzyme regulation that can be tuned through small molecule mimicry.


Assuntos
Proteína com Valosina , Proteína com Valosina/metabolismo , Proteína com Valosina/química , Proteína com Valosina/genética , Regulação Alostérica , Humanos , Ligação Proteica , Mimetismo Molecular , Microscopia Crioeletrônica , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/química , Sítios de Ligação , Sítio Alostérico , Modelos Moleculares , Conformação Proteica
4.
J Biol Chem ; 300(5): 107230, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537699

RESUMO

Arsenite-induced stress granule (SG) formation can be cleared by the ubiquitin-proteasome system aided by the ATP-dependent unfoldase p97. ZFAND1 participates in this pathway by recruiting p97 to trigger SG clearance. ZFAND1 contains two An1-type zinc finger domains (ZF1 and ZF2), followed by a ubiquitin-like domain (UBL); but their structures are not experimentally determined. To shed light on the structural basis of the ZFAND1-p97 interaction, we determined the atomic structures of the individual domains of ZFAND1 by solution-state NMR spectroscopy and X-ray crystallography. We further characterized the interaction between ZFAND1 and p97 by methyl NMR spectroscopy and cryo-EM. 15N spin relaxation dynamics analysis indicated independent domain motions for ZF1, ZF2, and UBL. The crystal structure and NMR structure of UBL showed a conserved ß-grasp fold homologous to ubiquitin and other UBLs. Nevertheless, the UBL of ZFAND1 contains an additional N-terminal helix that adopts different conformations in the crystalline and solution states. ZFAND1 uses the C-terminal UBL to bind to p97, evidenced by the pronounced line-broadening of the UBL domain during the p97 titration monitored by methyl NMR spectroscopy. ZFAND1 binding induces pronounced conformational heterogeneity in the N-terminal domain of p97, leading to a partial loss of the cryo-EM density of the N-terminal domain of p97. In conclusion, this work paved the way for a better understanding of the interplay between p97 and ZFAND1 in the context of SG clearance.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Modelos Moleculares , Grânulos de Estresse , Proteína com Valosina , Humanos , Arsenitos/metabolismo , Arsenitos/química , Cristalografia por Raios X , Ligação Proteica , Domínios Proteicos , Grânulos de Estresse/metabolismo , Ubiquitina/metabolismo , Proteína com Valosina/metabolismo , Proteína com Valosina/química , Proteína com Valosina/genética , Dedos de Zinco , Dobramento de Proteína , Imageamento por Ressonância Magnética , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
5.
STAR Protoc ; 4(4): 102659, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37889757

RESUMO

A critical step in the removal of polyubiquitinated proteins from macromolecular complexes and membranes for subsequent proteasomal degradation is the unfolding of an ubiquitin moiety by the cofactor Ufd1/Npl4 (UN) and its insertion into the Cdc48 ATPase for mechanical translocation. Here, we present a stepwise protocol for the assembly and purification of Lys48-linked ubiquitin chains that are fluorophore labeled at specific ubiquitin moieties and allow monitoring polyubiquitin engagement by the Cdc48-UN complex in a FRET-based assay. For complete details on the use and execution of this protocol, please refer to Williams et al. (2023).1.


Assuntos
Poliubiquitina , Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína com Valosina/química , Proteína com Valosina/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Ubiquitina/metabolismo
6.
J Biol Chem ; 299(11): 105182, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37611827

RESUMO

p97/valosin-containing protein is an essential eukaryotic AAA+ ATPase with diverse functions including protein homeostasis, membrane remodeling, and chromatin regulation. Dysregulation of p97 function causes severe neurodegenerative disease and is associated with cancer, making this protein a significant therapeutic target. p97 extracts polypeptide substrates from macromolecular assemblies by hydrolysis-driven translocation through its central pore. Growing evidence indicates that this activity is highly coordinated by "adapter" partner proteins, of which more than 30 have been identified and are commonly described to facilitate translocation through substrate recruitment or modification. In so doing, these adapters enable critical p97-dependent functions such as extraction of misfolded proteins from the endoplasmic reticulum or mitochondria, and are likely the reason for the extreme functional diversity of p97 relative to other AAA+ translocases. Here, we review the known functions of adapter proteins and highlight recent structural and biochemical advances that have begun to reveal the diverse molecular bases for adapter-mediated regulation of p97 function. These studies suggest that the range of mechanisms by which p97 activity is controlled is vastly underexplored with significant advances possible for understanding p97 regulation by the most known adapters.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Modelos Moleculares , Proteína com Valosina , Humanos , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína com Valosina/química , Proteína com Valosina/metabolismo , Dobramento de Proteína , Domínios Proteicos , Estrutura Quaternária de Proteína
7.
BMC Mol Cell Biol ; 23(1): 39, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088301

RESUMO

BACKGROUND: The AAA + ATPase p97 is an essential unfoldase/segragase involved in a multitude of cellular processes. It functions as a molecular machine critical for protein homeostasis, homotypic membrane fusion events and organelle biogenesis during mitosis in which it acts in concert with cofactors p47 and p37. Cofactors assist p97 in extracting and unfolding protein substrates through ATP hydrolysis. In contrast to other p97's cofactors, p37 uniquely increases the ATPase activity of p97. Disease-causing mutations in p97, including mutations that cause neurodegenerative diseases, increase cofactor association with its N-domain, ATPase activity and improper substrate processing. Upregulation of p97 has also been observed in various cancers. This study aims towards the characterization of the protein-protein interaction between p97 and p37 at the atomic level. We defined the interacting residues in p97 and p37. The knowledge will facilitate the design of unique small molecules inhibiting this interaction with insights into cancer therapy and drug design. RESULTS: The homology model of human p37 UBX domain was built from the X-ray crystal structure of p47 C-terminus from rat (PDB code:1S3S, G) as a template and assessed by model validation analysis. According to the HDOCK, HAWKDOCK, MM-GBSA binding free energy calculations and Arpeggio, we found that there are several hydrophobic and two hydrogen-bonding interactions between p37 UBX and p97 N-D1 domain. Residues of p37 UBX predicted to be involved in the interactions with p97 N-D1 domain interface are highly conserved among UBX cofactors. CONCLUSION: This study provides a reliable structural insight into the p37-p97 complex binding sites at the atomic level though molecular docking coupled with molecular dynamics simulation. This can guide the rational design of small molecule drugs for inhibiting mutant p97 activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Adenosina Trifosfatases , Simulação de Dinâmica Molecular , Proteína com Valosina/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Humanos , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Ratos , Proteína com Valosina/metabolismo
8.
Trends Cell Biol ; 32(4): 278-280, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35058103

RESUMO

The protein unfoldase Cdc48/p97 targets a wide variety of cellular substrates, but the molecular basis of substrate turnover remains incompletely understood. Two recent reports, by Ji et al. and van den Boom et al., provide detailed insights into the unfolding process and reveal pronounced flexibility of substrate handling by Cdc48/p97.


Assuntos
Proteínas de Ciclo Celular , Proteínas , Proteínas de Ciclo Celular/metabolismo , Humanos , Dobramento de Proteína , Proteínas/metabolismo , Proteína com Valosina/química , Proteína com Valosina/metabolismo
9.
Nat Chem ; 13(12): 1192-1199, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34795436

RESUMO

The precise assembly and engineering of molecular machines capable of handling biomolecules play crucial roles in most single-molecule methods. In this work we use components from all three domains of life to fabricate an integrated multiprotein complex that controls the unfolding and threading of individual proteins across a nanopore. This 900 kDa multicomponent device was made in two steps. First, we designed a stable and low-noise ß-barrel nanopore sensor by linking the transmembrane region of bacterial protective antigen to a mammalian proteasome activator. An archaeal 20S proteasome was then built into the artificial nanopore to control the unfolding and linearized transport of proteins across the nanopore. This multicomponent molecular machine opens the door to two approaches in single-molecule protein analysis, in which selected substrate proteins are unfolded, fed to into the proteasomal chamber and then addressed either as fragmented peptides or intact polypeptides.


Assuntos
Antígenos de Bactérias/química , Toxinas Bacterianas/química , Nanoporos , Complexo de Endopeptidases do Proteassoma/química , Proteínas/química , Proteína com Valosina/química , Animais , Proteínas Arqueais/química , Bacillus anthracis/química , Camundongos , Simulação de Dinâmica Molecular , Engenharia de Proteínas , Desdobramento de Proteína , Thermoplasma/enzimologia
10.
Mol Cell ; 81(21): 4413-4424.e5, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34480849

RESUMO

Based on in vitro studies, it has been demonstrated that the DSIF complex, composed of SPT4 and SPT5, regulates the elongation stage of transcription catalyzed by RNA polymerase II (RNA Pol II). The precise cellular function of SPT5 is not clear, because conventional gene depletion strategies for SPT5 result in loss of cellular viability. Using an acute inducible protein depletion strategy to circumvent this issue, we report that SPT5 loss triggers the ubiquitination and proteasomal degradation of the core RNA Pol II subunit RPB1, a process that we show to be evolutionarily conserved from yeast to human cells. RPB1 degradation requires the E3 ligase Cullin 3, the unfoldase VCP/p97, and a novel form of CDK9 kinase complex. Our study demonstrates that SPT5 stabilizes RNA Pol II specifically at promoter-proximal regions, permitting RNA Pol II release from promoters into gene bodies and providing mechanistic insight into the cellular function of SPT5 in safeguarding accurate gene expression.


Assuntos
Proteínas Culina/metabolismo , Proteínas Nucleares/metabolismo , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Animais , Sobrevivência Celular , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Culina/química , Fibroblastos/metabolismo , Humanos , Ácidos Indolacéticos/química , Camundongos , Ubiquitina-Proteína Ligases Nedd4/química , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/química , Proteoma , Proteômica/métodos , Ubiquitina-Proteína Ligases/química , Proteína com Valosina/química , Proteína com Valosina/metabolismo
11.
J Biol Chem ; 297(4): 101187, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34520757

RESUMO

The human AAA+ ATPase p97, also known as valosin-containing protein, a potential target for cancer therapeutics, plays a vital role in the clearing of misfolded proteins. p97 dysfunction is also known to play a crucial role in several neurodegenerative disorders, such as MultiSystem Proteinopathy 1 (MSP-1) and Familial Amyotrophic Lateral Sclerosis (ALS). However, the structural basis of its role in such diseases remains elusive. Here, we present cryo-EM structural analyses of four disease mutants p97R155H, p97R191Q, p97A232E, p97D592N, as well as p97E470D, implicated in resistance to the drug CB-5083, a potent p97 inhibitor. Our cryo-EM structures demonstrate that these mutations affect nucleotide-driven allosteric activation across the three principal p97 domains (N, D1, and D2) by predominantly interfering with either (1) the coupling between the D1 and N-terminal domains (p97R155H and p97R191Q), (2) the interprotomer interactions (p97A232E), or (3) the coupling between D1 and D2 nucleotide domains (p97D592N, p97E470D). We also show that binding of the competitive inhibitor, CB-5083, to the D2 domain prevents conformational changes similar to those seen for mutations that affect coupling between the D1 and D2 domains. Our studies enable tracing of the path of allosteric activation across p97 and establish a common mechanistic link between active site inhibition and defects in allosteric activation by disease-causing mutations and have potential implications for the design of novel allosteric compounds that can modulate p97 function.


Assuntos
Mutação de Sentido Incorreto , Proteína com Valosina/química , Regulação Alostérica , Substituição de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Microscopia Crioeletrônica , Humanos , Domínios Proteicos , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
12.
Viruses ; 13(9)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34578461

RESUMO

Viruses are obligate intracellular parasites that are dependent on host factors for their replication. One such host protein, p97 or the valosin-containing protein (VCP), is a highly conserved AAA ATPase that facilitates replication of diverse RNA- and DNA-containing viruses. The wide range of cellular functions attributed to this ATPase is consistent with its participation in multiple steps of the virus life cycle from entry and uncoating to viral egress. Studies of VCP/p97 interactions with viruses will provide important information about host processes and cell biology, but also viral strategies that take advantage of these host functions. The critical role of p97 in viral replication might be exploited as a target for development of pan-antiviral drugs that exceed the capability of virus-specific vaccines or therapeutics.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas Nucleares/metabolismo , Proteína com Valosina/metabolismo , Viroses/virologia , Replicação Viral , Vírus/metabolismo , Adenosina Trifosfatases/química , Degradação Associada com o Retículo Endoplasmático , Genoma Viral/genética , Interações Hospedeiro-Patógeno , Humanos , Proteínas Nucleares/química , Proteína com Valosina/química , Viroses/imunologia , Internalização do Vírus
13.
Biochem J ; 478(17): 3185-3204, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34405853

RESUMO

p97 protein is a highly conserved, abundant, functionally diverse, structurally dynamic homohexameric AAA enzyme-containing N, D1, and D2 domains. A truncated p97 protein containing the N and D1 domains and the D1-D2 linker (ND1L) exhibits 79% of wild-type (WT) ATPase activity whereas the ND1 domain alone without the linker only has 2% of WT activity. To investigate the relationship between the D1-D2 linker and the D1 domain, we produced p97 ND1L mutants and demonstrated that this 22-residue linker region is essential for D1 ATPase activity. The conserved amino acid leucine 464 (L464) is critical for regulating D1 and D2 ATPase activity by p97 cofactors p37, p47, and Npl4-Ufd1 (NU). Changing leucine to alanine, proline, or glutamate increased the maximum rate of ATP turnover (kcat) of p47-regulated ATPase activities for these mutants, but not for WT. p37 and p47 increased the kcat of the proline substituted linker, suggesting that they induced linker conformations facilitating ATP hydrolysis. NU inhibited D1 ATPase activities of WT and mutant ND1L proteins, but activated D2 ATPase activity of full-length p97. To further understand the mutant mechanism, we used single-particle cryo-EM to visualize the full-length p97L464P and revealed the conformational change of the D1-D2 linker, resulting in a movement of the helix-turn-helix motif (543-569). Taken together with the biochemical and structural results we conclude that the linker helps maintain D1 in a competent conformation and relays the communication to/from the N-domain to the D1 and D2 ATPase domains, which are ∼50 Šaway.


Assuntos
Leucina/metabolismo , Domínios Proteicos/genética , Transdução de Sinais/genética , Proteína com Valosina/química , Proteína com Valosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Ativação Enzimática/genética , Células HeLa , Sequências Hélice-Volta-Hélice/genética , Humanos , Hidrólise , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Ligação Proteica/genética , Transfecção , Proteína com Valosina/genética
14.
Nat Commun ; 12(1): 121, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33402676

RESUMO

p97, also known as valosin-containing protein (VCP) or Cdc48, plays a central role in cellular protein homeostasis. Human p97 mutations are associated with several neurodegenerative diseases. Targeting p97 and its cofactors is a strategy for cancer drug development. Despite significant structural insights into the fungal homolog Cdc48, little is known about how human p97 interacts with its cofactors. Recently, the anti-alcohol abuse drug disulfiram was found to target cancer through Npl4, a cofactor of p97, but the molecular mechanism remains elusive. Here, using single-particle cryo-electron microscopy (cryo-EM), we uncovered three Npl4 conformational states in complex with human p97 before ATP hydrolysis. The motion of Npl4 results from its zinc finger motifs interacting with the N domain of p97, which is essential for the unfolding activity of p97. In vitro and cell-based assays showed that the disulfiram derivative bis-(diethyldithiocarbamate)-copper (CuET) can bypass the copper transporter system and inhibit the function of p97 in the cytoplasm by releasing cupric ions under oxidative conditions, which disrupt the zinc finger motifs of Npl4, locking the essential conformational switch of the complex.


Assuntos
Coenzimas/química , Ditiocarb/análogos & derivados , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas Nucleares/química , Compostos Organometálicos/química , Ubiquitina/química , Proteína com Valosina/química , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Clonagem Molecular , Coenzimas/genética , Coenzimas/metabolismo , Microscopia Crioeletrônica , Dissulfiram/química , Dissulfiram/metabolismo , Ditiocarb/química , Ditiocarb/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Compostos Organometálicos/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Desdobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Ubiquitina/genética , Ubiquitina/metabolismo , Proteína com Valosina/antagonistas & inibidores , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Dedos de Zinco
15.
Sci Rep ; 10(1): 13135, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753747

RESUMO

Valosin-containing protein (VCP)/p97/Cdc48 is an AAA + ATPase associated with many ubiquitin-dependent cellular pathways that are central to protein quality control. VCP binds various cofactors, which determine pathway selectivity and substrate processing. Here, we used co-immunoprecipitation and mass spectrometry studies coupled to in silico analyses to identify the Leishmania infantum VCP (LiVCP) interactome and to predict molecular interactions between LiVCP and its major cofactors. Our data support a largely conserved VCP protein network in Leishmania including known but also novel interaction partners. Network proteomics analysis confirmed LiVCP-cofactor interactions and provided novel insights into cofactor-specific partners and the diversity of LiVCP complexes, including the well-characterized VCP-UFD1-NPL4 complex. Gene Ontology analysis coupled with digitonin fractionation and immunofluorescence studies support cofactor subcellular compartmentalization with either cytoplasmic or organellar or vacuolar localization. Furthermore, in silico models based on 3D homology modeling and protein-protein docking indicated that the conserved binding modules of LiVCP cofactors, except for NPL4, interact with specific binding sites in the hexameric LiVCP protein, similarly to their eukaryotic orthologs. Altogether, these results allowed us to build the first VCP protein interaction network in parasitic protozoa through the identification of known and novel interacting partners potentially associated with distinct VCP complexes.


Assuntos
Simulação por Computador , Leishmania infantum/química , Complexos Multiproteicos/química , Proteínas de Protozoários/química , Proteína com Valosina/química , Leishmania infantum/metabolismo , Complexos Multiproteicos/metabolismo , Estrutura Quaternária de Proteína , Proteínas de Protozoários/metabolismo , Proteína com Valosina/metabolismo
16.
Elife ; 92020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32804080

RESUMO

The eukaryotic replisome assembles around the CMG helicase, which stably associates with DNA replication forks throughout elongation. When replication terminates, CMG is ubiquitylated on its Mcm7 subunit and disassembled by the Cdc48/p97 ATPase. Until now, the regulation that restricts CMG ubiquitylation to termination was unknown, as was the mechanism of disassembly. By reconstituting these processes with purified budding yeast proteins, we show that ubiquitylation is tightly repressed throughout elongation by the Y-shaped DNA structure of replication forks. Termination removes the repressive DNA structure, whereupon long K48-linked ubiquitin chains are conjugated to CMG-Mcm7, dependent on multiple replisome components that bind to the ubiquitin ligase SCFDia2. This mechanism pushes CMG beyond a '5-ubiquitin threshold' that is inherent to Cdc48, which specifically unfolds ubiquitylated Mcm7 and thereby disassembles CMG. These findings explain the exquisite regulation of CMG disassembly and provide a general model for the disassembly of ubiquitylated protein complexes by Cdc48.


Assuntos
DNA Helicases , Replicação do DNA , DNA , Ubiquitina , DNA/química , DNA/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Escherichia coli , Humanos , Conformação de Ácido Nucleico , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Proteína com Valosina/química , Proteína com Valosina/metabolismo
17.
FEBS Lett ; 594(5): 933-943, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31701538

RESUMO

Several pathologies have been associated with the AAA+ ATPase p97, an enzyme essential to protein homeostasis. Heterozygous polymorphisms in p97 have been shown to cause neurological disease, while elevated proteotoxic stress in tumours has made p97 an attractive cancer chemotherapy target. The cellular processes reliant on p97 are well described. High-resolution structural models of its catalytic D2 domain, however, have proved elusive, as has the mechanism by which p97 converts the energy from ATP hydrolysis into mechanical force to unfold protein substrates. Here, we describe the high-resolution structure of the p97 D2 ATPase domain. This crystal system constitutes a valuable tool for p97 inhibitor development and identifies a potentially druggable pocket in the D2 domain. In addition, its P61 symmetry suggests a mechanism for substrate unfolding by p97. DATABASE: The atomic coordinates and structure factors have been deposited in the PDB database under the accession numbers 6G2V, 6G2W, 6G2X, 6G2Y, 6G2Z and 6G30.


Assuntos
Mutação , Proteína com Valosina/química , Proteína com Valosina/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Proteína com Valosina/genética
18.
J Med Chem ; 63(5): 1892-1907, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31550150

RESUMO

The AAA+ ATPase, p97, also referred to as VCP, plays an essential role in cellular homeostasis by regulating endoplasmic reticulum-associated degradation (ERAD), mitochondrial-associated degradation (MAD), chromatin-associated degradation, autophagy, and endosomal trafficking. Mutations in p97 have been linked to a number of neurodegenerative diseases, and overexpression of wild type p97 is observed in numerous cancers. Furthermore, p97 activity has been shown to be essential for the replication of certain viruses, including poliovirus, herpes simplex virus (HSV), cytomegalovirus (CMV), and influenza. Taken together, these observations highlight the potential for targeting p97 as a therapeutic approach in neurodegeneration, cancer, and certain infectious diseases. This Perspective reviews recent advances in the discovery of small molecule inhibitors of p97, their optimization and characterization, and therapeutic potential.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteína com Valosina/antagonistas & inibidores , Proteína com Valosina/metabolismo , Viroses/metabolismo , Acetanilidas/administração & dosagem , Acetanilidas/metabolismo , Animais , Benzotiazóis/administração & dosagem , Benzotiazóis/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteína com Valosina/química , Viroses/tratamento farmacológico
19.
Biomolecules ; 9(12)2019 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-31847414

RESUMO

AAA+ ATPase p97/valosin-containing protein (VCP)/Cdc48 is a key player in various cellular stress responses in which it unfolds ubiquitinated proteins to facilitate their degradation by the proteasome. P97 works in different cellular processes using alternative sets of cofactors and is implicated in multiple degenerative diseases. Ubiquitin regulatory X domain protein 1 (UBXD1) has been linked to pathogenesis and is unique amongst p97 cofactors because it interacts with both termini of p97. Its N-domain binds to the N-domain and N/D1 interface of p97 and regulates its ATPase activity. The PUB (peptide:N-glycanase and UBA or UBX-containing proteins) domain binds the p97 C-terminus, but how it controls p97 function is still unknown. Here we present the NMR structure of UBXD1-PUB together with binding studies, mutational analysis, and a model of UBXD1-PUB in complex with the p97 C-terminus. While the binding pocket is conserved among PUB domains, UBXD1-PUB features a unique loop and turn regions suggesting a role in coordinating interaction with downstream regulators and substrate processing.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Relacionadas à Autofagia/química , Proteína com Valosina/química , Proteínas Adaptadoras de Transporte Vesicular/isolamento & purificação , Proteínas Relacionadas à Autofagia/isolamento & purificação , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Proteína com Valosina/isolamento & purificação
20.
Life Sci Alliance ; 2(6)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31740565

RESUMO

Mitofusins are dynamin-related GTPases that drive mitochondrial fusion by sequential events of oligomerization and GTP hydrolysis, followed by their ubiquitylation. Here, we show that fusion requires a trilateral salt bridge at a hinge point of the yeast mitofusin Fzo1, alternatingly forming before and after GTP hydrolysis. Mutations causative of Charcot-Marie-Tooth disease massively map to this hinge point site, underlining the disease relevance of the trilateral salt bridge. A triple charge swap rescues the activity of Fzo1, emphasizing the close coordination of the hinge residues with GTP hydrolysis. Subsequently, ubiquitylation of Fzo1 allows the AAA-ATPase ubiquitin-chaperone Cdc48 to resolve Fzo1 clusters, releasing the dynamin for the next fusion round. Furthermore, cross-complementation within the oligomer unexpectedly revealed ubiquitylated but fusion-incompetent Fzo1 intermediates. However, Cdc48 did not affect the ubiquitylated but fusion-incompetent variants, indicating that Fzo1 ubiquitylation is only controlled after membrane merging. Together, we present an integrated model on how mitochondrial outer membranes fuse, a critical process for their respiratory function but also putatively relevant for therapeutic interventions.


Assuntos
GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína com Valosina/química , Proteína com Valosina/metabolismo , Animais , Fibroblastos , Fusão de Membrana/fisiologia , Camundongos , Mitocôndrias/metabolismo , Membranas Mitocondriais/química , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Saccharomyces cerevisiae , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...