Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791230

RESUMO

The human microbiome exists throughout the body, and it is essential for maintaining various physiological processes, including immunity, and dysbiotic events, which are associated with autoimmunity. Peptidylarginine deiminase (PAD) enzymes can citrullinate self-proteins related to rheumatoid arthritis (RA) that induce the production of anti-citrullinated protein antibodies (ACPAs) and lead to inflammation and joint damage. The present investigation was carried out to demonstrate the expression of homologs of PADs or arginine deiminases (ADs) and citrullinated proteins in members of the human microbiota. To achieve the objective, we used 17 microbial strains and specific polyclonal antibodies (pAbs) of the synthetic peptide derived from residues 100-200 of human PAD2 (anti-PAD2 pAb), and the recombinant fragment of amino acids 326 and 611 of human PAD4 (anti-PAD4 pAb), a human anti-citrulline pAb, and affinity ACPAs of an RA patient. Western blot (WB), enzyme-linked immunosorbent assay (ELISA), elution, and a test with Griess reagent were used. This is a cross-sectional case-control study on patients diagnosed with RA and control subjects. Inferential statistics were applied using the non-parametric Kruskal-Wallis test and Mann-Whitney U test generated in the SPSS program. Some members of phyla Firmicutes and Proteobacteria harbor homologs of PADs/ADs and citrullinated antigens that are reactive to the ACPAs of RA patients. Microbial citrullinome and homolog enzymes of PADs/ADs are extensive in the human microbiome and are involved in the production of ACPAs. Our findings suggest a molecular link between microorganisms of a dysbiotic microbiota and RA pathogenesis.


Assuntos
Anticorpos Antiproteína Citrulinada , Artrite Reumatoide , Citrulinação , Microbiota , Desiminases de Arginina em Proteínas , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticorpos Antiproteína Citrulinada/imunologia , Anticorpos Antiproteína Citrulinada/metabolismo , Artrite Reumatoide/imunologia , Artrite Reumatoide/microbiologia , Estudos de Casos e Controles , Citrulina/metabolismo , Estudos Transversais , Hidrolases/metabolismo , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Desiminases de Arginina em Proteínas/genética
2.
J Immunol ; 213(1): 75-85, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758115

RESUMO

In chronic obstructive pulmonary disease (COPD), inflammation gives rise to protease-mediated degradation of the key extracellular matrix protein, elastin, which causes irreversible loss of pulmonary function. Intervention against proteolysis has met with limited success in COPD, due in part to our incomplete understanding of the mechanisms that underlie disease pathogenesis. Peptidyl arginine deiminase (PAD) enzymes are a known modifier of proteolytic susceptibility, but their involvement in COPD in the lungs of affected individuals is underexplored. In this study, we showed that enzyme isotypes PAD2 and PAD4 are present in primary granules of neutrophils and that cells from people with COPD release increased levels of PADs when compared with neutrophils of healthy control subjects. By examining bronchoalveolar lavage and lung tissue samples of patients with COPD or matched smoking and nonsmoking counterparts with normal lung function, we reveal that COPD presents with markedly increased airway concentrations of PADs. Ex vivo, we established citrullinated elastin in the peripheral airways of people with COPD, and in vitro, elastin citrullination significantly enhanced its proteolytic degradation by serine and matrix metalloproteinases, including neutrophil elastase and matrix metalloprotease-12, respectively. These results provide a mechanism by which neutrophil-released PADs affect lung function decline, indicating promise for the future development of PAD-based therapeutics for preserving lung function in patients with COPD.


Assuntos
Elastina , Neutrófilos , Proteína-Arginina Desiminase do Tipo 2 , Proteína-Arginina Desiminase do Tipo 4 , Proteólise , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Neutrófilos/imunologia , Elastina/metabolismo , Feminino , Masculino , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Pessoa de Meia-Idade , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Enfisema Pulmonar/imunologia , Idoso , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Citrulinação , Desiminases de Arginina em Proteínas/metabolismo , Elastase de Leucócito/metabolismo , Pulmão/imunologia , Pulmão/patologia
3.
Biomed Pharmacother ; 174: 116551, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636399

RESUMO

BACKGROUND: Bicarbonate has recently been identified as a crucial factor affecting peptidylarginine deiminase (PAD) activity; however, the mechanism underlying its role in rheumatoid arthritis (RA) remains unclear. Iguratimod (IGU), a small-molecule disease-modifying anti-rheumatic drug, requires further investigation. This study aimed to explore the mechanism by which bicarbonate affects citrullination and inflammation in RA and identify new targets for IGU. METHODS: We enrolled 20 patients with RA in the study. Sodium bicarbonate cotransporter 2 (NBCe2) was detected in the peripheral blood neutrophils and peripheral blood mononuclear cells (PBMCs) of these patients. The effects of varying concentrations of IGU, methotrexate (MTX), dexamethasone (DXM), and S0859 (an NBCe2 inhibitor) on NBCe2, PAD2, PAD4, and citrullinated histone H3 (cit-H3) levels in, migration ability of, and cytokine production from neutrophils and PBMCs were examined. RESULTS: Our findings showed that in patients with RA, citrullinated protein production by peripheral blood neutrophils instead of PBMCs, which showed higher NBCe2 expression levels, increased with an increase in the bicarbonate concentration. In addition, tumor necrosis factor-alpha (TNF-α) promoted NBCe2 expression in neutrophils from patients with RA. Furthermore, we revealed that the inhibitory effects of IGU on neutrophil NBCe2 and cit-H3 levels, degrees of inhibition of neutrophil and PBMC migration, and suppression of interleukin 6, TNF-α, and metalloproteinase-9 secretion from neutrophil-like differentiated HL-60 cells did not substantially differ from those of MTX, DXM, and S0859 at specific doses. CONCLUSIONS: Bicarbonate promotes protein citrullination and inflammation in RA via NBCe2, and IGU can downregulate NBCe2.


Assuntos
Artrite Reumatoide , Cromonas , Citrulinação , Sulfonamidas , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Movimento Celular/efeitos dos fármacos , Cromonas/farmacologia , Citrulinação/efeitos dos fármacos , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Sulfonamidas/farmacologia
4.
Neuroreport ; 35(3): 185-190, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38305106

RESUMO

The deamination of arginine and its conversion to citrulline is a modification observed in positively charged proteins such as histones or myelin basic protein (MBP). This reaction is catalyzed by peptidyl arginine deiminase (PAD), whose abnormal activation is associated with autoimmune diseases like rheumatoid arthritis and multiple sclerosis. However, the mechanisms that trigger PAD activation and the pathophysiological processes involved in hypercitrullination remain unknown. In this study, we investigated the interaction between PAD and various charged isomers of MBP, each differing in the degree of post-translational modification. Immunoprecipitation experiments were conducted to examine the binding between PAD and the different charge isomers of MBP. Our findings revealed that the phosphorylated forms of MBP (C3 and C4) exhibited a higher affinity for PAD compared to the unmodified (C1) and fully citrullinated forms (C8). Additionally, we observed that only in the presence of the unmodified C1 isomer did PAD undergo autocitrullination, which was inhibited by the endogenous guanidine-containing component, creatine. In the presence of other isomers, PAD did not undergo autocitrullination. Furthermore, we found that the unmodified isomer of MBP-C1 contains methylated arginines, which were not affected by the pre-treatment with PAD. Based on our findings, we propose that the increased phosphorylation of central threonines in the original MBP may trigger PAD activation, leading to increased citrullination of the protein and subsequent disorganization of the myelin sheath. These insights contribute to a better understanding of the underlying mechanisms in autoimmune diseases associated with hypercitrullination, potentially opening new avenues for therapeutic interventions.


Assuntos
Doenças Autoimunes , Proteína Básica da Mielina , Proteína-Arginina Desiminase do Tipo 2 , Humanos , Arginina/metabolismo , Doenças Autoimunes/metabolismo , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Proteína-Arginina Desiminase do Tipo 2/metabolismo
5.
Neurobiol Dis ; 192: 106414, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253209

RESUMO

Alteration in protein citrullination (PC), a common posttranslational modification (PTM), contributes to pathogenesis in various inflammatory disorders. We previously reported that PC and protein arginine deiminase 2 (PAD2), the predominant enzyme isoform that catalyzes this PTM in the central nervous system (CNS), are altered in mouse models of amyotrophic lateral sclerosis (ALS). We now demonstrate that PAD2 expression and PC are altered in human postmortem ALS spinal cord and motor cortex compared to controls, increasing in astrocytes while trending lower in neurons. Furthermore, PC is enriched in protein aggregates that contain the myelin proteins PLP and MBP in ALS. These results confirm our findings in ALS mouse models and suggest that altered PAD2 and PC contribute to neurodegeneration in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Citrulinação , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Gliose/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Proteínas da Mielina/metabolismo , Bainha de Mielina/patologia , Agregados Proteicos , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Proteínas/metabolismo , Medula Espinal/patologia
6.
Reprod Biol Endocrinol ; 20(1): 150, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224627

RESUMO

BACKGROUND: Peptidylarginine deiminase enzymes (PADs) convert arginine residues to citrulline in a process called citrullination or deimination. Recently, two PADs, PAD2 and PAD4, have been linked to hormone signaling in vitro and the goal of this study was to test for links between PAD2/PAD4 and hormone signaling in vivo. METHODS: Preliminary analysis of Padi2 and Padi4 single knockout (SKO) mice did not find any overt reproductive defects and we predicted that this was likely due to genetic compensation. To test this hypothesis, we created a Padi2/Padi4 double knockout (DKO) mouse model and tested these mice along with wild-type FVB/NJ (WT) and both strains of SKO mice for a range of reproductive defects. RESULTS: Controlled breeding trials found that male DKO mice appeared to take longer to have their first litter than WT controls. This tendency was maintained when these mice were mated to either DKO or WT females. Additionally, unsexed 2-day old DKO pups and male DKO weanlings both weighed significantly less than their WT counterparts, took significantly longer than WT males to reach puberty, and had consistently lower serum testosterone levels. Furthermore, 90-day old adult DKO males had smaller testes than WT males with increased rates of germ cell apoptosis. CONCLUSIONS: The Padi2/Padi4 DKO mouse model provides a new tool for investigating PAD function and outcomes from our studies provide the first in vivo evidence linking PADs with hormone signaling.


Assuntos
Citrulina , Infertilidade , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Animais , Arginina , Modelos Animais de Doenças , Feminino , Gonadotropinas , Hidrolases/genética , Infertilidade/genética , Masculino , Camundongos , Camundongos Knockout , Proteína-Arginina Desiminase do Tipo 2/genética , Desiminases de Arginina em Proteínas/genética , Testosterona
7.
Cells ; 11(16)2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-36010543

RESUMO

Histone citrullination is a relatively poorly studied epigenetic modification that involves the irreversible conversion of arginine residues into citrulline. It is conferred by a small family of enzymes known as protein arginine deiminases (PADIs). PADI function supports the pluripotent state of embryonic stem cells, but in other contexts, also promotes efficient cellular differentiation. In the current study, we sought to gain deeper insights into the possible roles of PADIs in mouse trophoblast stem cells (TSCs). We show that Padi2 and Padi3 are the most highly expressed PADI family members in TSCs and are rapidly down-regulated upon differentiation. Padi2/3 double knockout (DKO) TSCs express lower levels of stem cell transcription factors CDX2 and SOX2 and are prone to differentiate into extremely large trophoblast giant cells, an effect that may be mediated by centrosome duplication defects. Interestingly, Padi2/3 DKO TSCs display alterations to their epigenomic landscape, with fewer H3K9me3-marked chromocentric foci and globally reduced 5-methylcytosine levels. DNA methylation profiling identifies that this effect is specifically evident at CpG islands of critical trophoblast genes, such as Gata3, Peg3, Socs3 and Hand1. As a consequence of the hypomethylated state, these factors are up-regulated in Padi2/3 DKO TSCs, driving their premature differentiation. Our data uncover a critical epigenetic role for PADI2/3 in safeguarding the stem cell state of TSCs by modulating the DNA methylation landscape to restrict precocious trophoblast differentiation.


Assuntos
Epigenômica , Células-Tronco Embrionárias Murinas , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Proteína-Arginina Desiminase do Tipo 3/metabolismo , Trofoblastos , Animais , Diferenciação Celular/genética , Camundongos , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Trofoblastos/metabolismo
8.
Biochemistry ; 61(13): 1286-1297, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35737372

RESUMO

Peptidylarginine deiminase 2 (PAD2) is a Ca2+-dependent enzyme that catalyzes the conversion of protein arginine residues to citrulline. This kind of structural modification in histone molecules may affect gene regulation, leading to effects that may trigger several diseases, including breast cancer, which makes PAD2 an attractive target for anticancer drug development. To design new effective inhibitors to control activation of PAD2, improving our understanding of the molecular mechanisms of PAD2 using up-to-date computational techniques is essential. We have designed five different PAD2-substrate complex systems based on varying protonation states of the active site residues. To search the conformational space broadly, multiple independent molecular dynamics simulations of the complexes have been performed. In total, 50 replica simulations have been performed, each of 1 µs, yielding a total simulation time of 50 µs. Our findings identify that the protonation states of Cys647, Asp473, and His471 are critical for the binding and localization of the N-α-benzoyl-l-arginine ethyl ester substrate within the active site. A novel mechanism for enzyme activation is proposed according to near attack conformers. This represents an important step in understanding the mechanism of citrullination and developing PAD2-inhibiting drugs for the treatment of breast cancer.


Assuntos
Neoplasias da Mama , Simulação de Dinâmica Molecular , Proteína-Arginina Desiminase do Tipo 2 , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Citrulinação , Feminino , Humanos , Proteína-Arginina Desiminase do Tipo 2/química , Proteína-Arginina Desiminase do Tipo 2/metabolismo
9.
Cell Mol Life Sci ; 79(3): 155, 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35218410

RESUMO

Cellular senescence is closely related to tissue aging including bone. Bone homeostasis is maintained by the tight balance between bone-forming osteoblasts and bone-resorbing osteoclasts, but it undergoes deregulation with age, causing age-associated osteoporosis, a main cause of which is osteoblast dysfunction. Oxidative stress caused by the accumulation of reactive oxygen species (ROS) in bone tissues with aging can accelerate osteoblast senescence and dysfunction. However, the regulatory mechanism that controls the ROS-induced senescence of osteoblasts is poorly understood. Here, we identified Peptidyl arginine deiminase 2 (PADI2), a post-translational modifying enzyme, as a regulator of ROS-accelerated senescence of osteoblasts via RNA-sequencing and further functional validations. PADI2 downregulation by treatment with H2O2 or its siRNA promoted cellular senescence and suppressed osteoblast differentiation. CCL2, 5, and 7 known as the elements of the senescence-associated secretory phenotype (SASP) which is a secretome including proinflammatory cytokines and chemokines emitted by senescent cells and a representative feature of senescence, were upregulated by H2O2 treatment or Padi2 knockdown. Furthermore, blocking these SASP factors with neutralizing antibodies or siRNAs alleviated the senescence and dysfunction of osteoblasts induced by H2O2 treatment or Padi2 knockdown. The elevated production of these SASP factors was mediated by the activation of NFκB signaling pathway. The inhibition of NFκB using the pharmacological inhibitor or siRNA effectively relieved H2O2 treatment- or Padi2 knockdown-induced senescence and osteoblast dysfunction. Together, our study for the first time uncover the role of PADI2 in ROS-accelerated cellular senescence of osteoblasts and provide new mechanistic and therapeutic insights into excessive ROS-promoted cellular senescence and aging-related bone diseases.


Assuntos
Senescência Celular/efeitos dos fármacos , Quimiocinas CC/metabolismo , Peróxido de Hidrogênio/farmacologia , NF-kappa B/metabolismo , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Quimiocina CCL2/antagonistas & inibidores , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL5/antagonistas & inibidores , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Quimiocina CCL7/antagonistas & inibidores , Quimiocina CCL7/genética , Quimiocina CCL7/metabolismo , Quimiocinas CC/antagonistas & inibidores , Quimiocinas CC/genética , Dano ao DNA/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Proteína-Arginina Desiminase do Tipo 2/antagonistas & inibidores , Proteína-Arginina Desiminase do Tipo 2/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
J Immunother Cancer ; 10(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35140112

RESUMO

BACKGROUND: The enzymatic conversion of arginine to citrulline is involved in gene and protein regulation and in alerting the immune system to stressed cells, including tumor cells. Nucleophosmin (NPM) is a nuclear protein that plays key roles in cellular metabolism including ribosome biogenesis, mRNA processing and chromatin remodeling and is regulated by citrullination. In this study, we explored if the same citrullinated arginines within NPM are involved in gene regulation and immune activation. METHODS: HLA-DP4 and HLA-DR4 transgenic mice were immunized with 22 citrullinated NPM overlapping peptides and immune responses to the peptides were assessed by ex vivo ELISpot assays. Antitumor immunity of NPM targeted vaccination was assessed by challenging transgenic mice with B16F1 HHDII/iDP4, B16F1 HHDII/PAD2KOcDP4, B16F1 HHDII and Lewis lung carcinoma cells/cDP4 cells subcutaneously. Peripheral blood mononuclear cells isolated from healthy donors were stimulated with NPM266-285cit peptides with/without CD45RO+memory cell depletion to assess if the responses in human were naïve or memory. RESULTS: In contrast to NPM regulation, which is mediated by peptidylarginine deiminase (PAD4) citrullination of arginine at position 197, only citrullinated NPM266-285 peptide induced a citrulline-specific CD4 T cell response in transgenic mice models expressing human HLA-DP4 or HLA-DR4. Vaccinations with the NPM266-285cit peptide stimulated antitumor responses that resulted in dramatic tumor therapy, greatly improved survival, and protected against rechallenge without further vaccination. The antitumor response was lost if MHCII expression on the tumor cells was knocked out demonstrating direct presentation of the NPM266-285cit epitope in tumors. This antitumor response was lost in B16 tumors lacking PAD2 enzyme indicating NPM266cit is citrullinated by PAD2 in this model. Assessment of the T cell repertoire in healthy individuals and patients with lung cancer also showed CD4 T cells that respond to NPM266-285cit. The proliferative CD4 responses displayed a Th1 profile as they were accompanied with increased IFNγ and granzyme B expression. Depletion of CD45RO+ memory cells prior to stimulation suggested that responses originated from a naïve population in healthy donors. CONCLUSION: This study indicates PAD2 can citrullinate the nuclear antigen NPM at position 277 which can be targeted by CD4 T cells for antitumor therapy. This is distinct from PAD4 citrullination of arginine 197 within NPM which results in its transport from the nucleoli to the nucleoplasm.


Assuntos
Citrulinação/imunologia , Imunoterapia/métodos , Nucleofosmina/imunologia , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Transgênicos , Transfecção
11.
J Immunol Res ; 2022: 5258221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35083342

RESUMO

The peptidylarginine deiminases (PADs) and the citrullinated proteins that they generate have key roles in innate immunity and rheumatoid arthritis, an inflammatory arthritis with antibodies that target citrullinated proteins. However, the importance of PADs, particularly PAD2, in the adaptive immune response, both normal and pathogenic, is newly emerging. In this study, we evaluated a requirement for PAD2 in the antibody response in collagen-induced arthritis (CIA), a T and B cell-driven murine model of rheumatoid arthritis, and in the protective antibody response to murine influenza infection. Using PAD2-/- and PAD2+/+ mice on the DBA/1J background, we found that PAD2 is required for maximal anti-collagen antibody levels, but not collagen-specific plasma cell numbers, T cell activation or polarization, or arthritis severity in CIA. Also, we found that PAD2 is required not just for normal levels of persistent hemagglutination inhibiting antibodies but also for full protection from lethal influenza rechallenge. Together, these data provide evidence for a novel modest requirement for PAD2 in a normal antiviral antibody response and in an abnormal autoantibody response in inflammatory arthritis.


Assuntos
Artrite Reumatoide/imunologia , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Imunidade Adaptativa , Animais , Anticorpos Antiproteína Citrulinada/metabolismo , Formação de Anticorpos , Antivirais , Artrite Experimental/imunologia , Autoanticorpos/sangue , Citrulinação , Humanos , Hidrolases , Imunidade Inata , Camundongos , Camundongos Endogâmicos DBA , Proteína-Arginina Desiminase do Tipo 2/genética
12.
Front Immunol ; 12: 716250, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737738

RESUMO

Citrullination, the conversion of peptidyl-arginine into peptidyl-citrulline, is involved in the breakage of self-tolerance in anti-CCP-positive rheumatoid arthritis. This reaction is catalyzed by peptidyl arginine deiminases (PADs), of which PAD2 and PAD4 are thought to play key pathogenic roles. Small-molecule PAD inhibitors such as the pan-PAD inhibitor BB-Cl-amidine, the PAD2-specific inhibitor AFM-30a, and the PAD4-specific inhibitor GSK199 hold therapeutic potential and are useful tools in studies of citrullination. Using an ELISA based on the citrullination of fibrinogen, we found that AFM-30a inhibited the catalytic activity of PADs derived from live PMNs or lysed PBMCs and PMNs and of PADs in cell-free synovial fluid samples from RA patients, while GSK199 had minor effects. In combination, AFM-30a and GSK199 inhibited total intracellular citrullination and citrullination of histone H3 in PBMCs, as determined by Western blotting. They were essentially nontoxic to CD4+ T cells, CD8+ T cells, B cells, NK cells, and monocytes at concentrations ranging from 1 to 20 µM, while BB-Cl-amidine was cytotoxic at concentrations above 1 µM, as assessed by flow cytometric viability staining and by measurement of lactate dehydrogenase released from dying cells. In conclusion, AFM-30a is an efficient inhibitor of PAD2 derived from PBMCs, PMNs, or synovial fluid. AFM-30a and GSK199 can be used in combination for inhibition of PAD activity associated with PBMCs but without the cytotoxic effect of BB-Cl-amidine. This suggests that AFM-30a and GSK199 may have fewer off-target effects than BB-Cl-amidine and therefore hold greater therapeutic potential.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteína-Arginina Desiminase do Tipo 2/antagonistas & inibidores , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Artrite Reumatoide/etiologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Sobrevivência Celular/efeitos dos fármacos , Suscetibilidade a Doenças , Relação Dose-Resposta a Droga , Ativação Enzimática , Histonas/metabolismo , Humanos , Concentração Inibidora 50 , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Proteína-Arginina Desiminase do Tipo 4/metabolismo
13.
J Am Chem Soc ; 143(46): 19257-19261, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34762412

RESUMO

Mapping protein-protein interactions is crucial for understanding various signaling pathways in living cells, and developing new techniques for this purpose has attracted significant interest. Classic methods (e.g., the yeast two-hybrid) have been supplanted by more sophisticated chemical approaches that label proximal proteins (e.g., BioID, APEX). Herein we describe a proximity-based approach that uniquely labels cysteines. Our approach exploits the nicotinamide N-methyltransferase (NNMT)-catalyzed methylation of an alkyne-substituted 4-chloropyridine (SS6). Upon methylation of the pyridinium nitrogen, this latent electrophile diffuses out of the active site and labels proximal proteins on short time scales (≤5 min). We validated this approach by identifying known (and novel) interacting partners of protein arginine deiminase 2 (PAD2) and pyruvate dehydrogenase kinase 1 (PDK1). To our knowledge, this technology uniquely exploits a suicide substrate to label proximal cysteines in live cells.


Assuntos
Cisteína/metabolismo , Mapeamento de Interação de Proteínas , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Biocatálise , Linhagem Celular , Cisteína/química , Humanos , Modelos Moleculares , Estrutura Molecular , Proteína-Arginina Desiminase do Tipo 2/química , Piruvato Desidrogenase Quinase de Transferência de Acetil/química
14.
Sci Rep ; 11(1): 17300, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453079

RESUMO

The presence or absence of autoantibodies against citrullinated proteins (ACPAs) distinguishes two main groups of rheumatoid arthritis (RA) patients with different etiologies, prognoses, disease severities, and, presumably, disease pathogenesis. The heterogeneous responses of RA patients to various biologics, even among ACPA-positive patients, emphasize the need for further stratification of the patients. We used high-density protein array technology for fingerprinting of ACPA reactivity. Identification of the proteome recognized by ACPAs may be a step to stratify RA patients according to immune reactivity. Pooled plasma samples from 10 anti-CCP-negative and 15 anti-CCP-positive RA patients were assessed for ACPA content using a modified protein microarray containing 1631 different natively folded proteins citrullinated in situ by protein arginine deiminases (PADs) 2 and PAD4. IgG antibodies from anti-CCP-positive RA plasma showed high-intensity binding to 87 proteins citrullinated by PAD2 and 99 proteins citrullinated by PAD4 without binding significantly to the corresponding native proteins. Curiously, the binding of IgG antibodies in anti-CCP-negative plasma was also enhanced by PAD2- and PAD4-mediated citrullination of 29 and 26 proteins, respectively. For only four proteins, significantly more ACPA binding occurred after citrullination with PAD2 compared to citrullination with PAD4, while the opposite was true for one protein. We demonstrate that PAD2 and PAD4 are equally efficient in generating citrullinated autoantigens recognized by ACPAs. Patterns of proteins recognized by ACPAs may serve as a future diagnostic tool for further subtyping of RA patients.


Assuntos
Anticorpos Antiproteína Citrulinada/imunologia , Artrite Reumatoide/imunologia , Autoantígenos/imunologia , Citrulina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Autoantígenos/sangue , Biomarcadores/sangue , Cromatografia Líquida de Alta Pressão , Citrulinação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Serial de Proteínas , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Espectrometria de Massas em Tandem
15.
Matrix Biol ; 102: 70-84, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34274450

RESUMO

The formation of elastic fibers is active only in the perinatal period. How elastogenesis is developmentally regulated is not fully understood. Citrullination is a unique form of post-translational modification catalyzed by peptidylarginine deiminases (PADs), including PAD1-4. Its physiological role is largely unknown. By using an unbiased proteomic approach of lung tissues, we discovered that FBLN5 and LTBP4, two key elastogenic proteins, were temporally modified in mouse and human lungs. We further demonstrated that PAD2 citrullinated FBLN5 preferentially in young lungs compared to adult lungs. Genetic ablation of PAD2 resulted in attenuated elastogenesis in vitro and age-dependent emphysema in vivo. Mechanistically, citrullination protected FBLN5 from proteolysis and subsequent inactivation of its elastogenic activity. Furthermore, citrullinated but not native FBLN5 partially rescued in vitro elastogenesis in the absence of PAD activity. Our data uncover a novel function of citrullination, namely promoting elastogenesis, and provide additional insights to how elastogenesis is regulated.


Assuntos
Citrulinação , Tecido Elástico/crescimento & desenvolvimento , Proteínas da Matriz Extracelular/metabolismo , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Humanos , Camundongos , Processamento de Proteína Pós-Traducional , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Proteômica
16.
J Immunol Res ; 2021: 6659960, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937418

RESUMO

The aberrant upregulation of protein arginine deiminase 2- (PAD2-) catalyzed citrullination is reported in various autoimmune diseases (rheumatoid arthritis and multiple sclerosis) and several cancers. Currently, there are no anti-PAD2 monoclonal antibodies (mAbs) that can inhibit the citrullination reaction. Here, an epitope 341YLNRGDRWIQDEIEFGY357 was examined as an antigenic site of PAD2. Chickens were immunized with this epitope, and the generated mAbs were screened for its reactivity against the full-length PAD2. Enzyme-linked immunosorbent assay revealed that six mAbs, which were screened from the phage display library, crossreacted with mouse PAD2. Kinetic analysis revealed that mAbs are bound to PAD2 in the nanomolar range, which indicated a strong binding. Results of the in vitro citrullination inhibition assay revealed that the half-maximal effective concentration values of mAbs for the inhibition of histone or benzoyl-L-arginine ethyl ester citrullination were in the range of 6-75 nM which supports strong inhibition capabilities. Alanine scanning of epitope revealed that the peptide fragment 344RGDRWIQDEIEF355 was responsible for generating strong antibody responses that inhibit the PAD2-catalyzed citrullination reaction. These antibodies can aid in understanding the extracellular PAD2 function and treating diseases associated with aberrant citrullination.


Assuntos
Anticorpos Monoclonais/farmacologia , Citrulinação/efeitos dos fármacos , Proteína-Arginina Desiminase do Tipo 2/antagonistas & inibidores , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Galinhas , Citrulinação/imunologia , Mapeamento de Epitopos , Epitopos/imunologia , Hemocianinas/imunologia , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Biblioteca de Peptídeos , Proteína-Arginina Desiminase do Tipo 2/metabolismo
17.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573274

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with limited survival rate. Roles for peptidylarginine deiminases (PADs) have been studied in relation to a range of cancers with roles in epigenetic regulation (including histone modification and microRNA regulation), cancer invasion, and extracellular vesicle (EV) release. Hitherto though, knowledge on PADs in PDAC is limited. In the current study, two PDAC cell lines (Panc-1 and MiaPaCa-2) were treated with pan-PAD inhibitor Cl-amidine as well as PAD2, PAD3, and PAD4 isozyme-specific inhibitors. Effects were assessed on changes in EV signatures, including EV microRNA cargo (miR-21, miR-126, and miR-221), on changes in cellular protein expression relevant for pancreatic cancer progression and invasion (moesin), for mitochondrial housekeeping (prohibitin, PHB), and gene regulation (deiminated histone H3, citH3). The two pancreatic cancer cell lines were found to predominantly express PAD2 and PAD3, which were furthermore expressed at higher levels in Panc-1, compared with MiaPaCa-2 cells. PAD2 isozyme-specific inhibitor had the strongest effects on reducing Panc-1 cell invasion capability, which was accompanied by an increase in moesin expression, which in pancreatic cancer is found to be reduced and associated with pancreatic cancer aggressiveness. Some reduction, but not significant, was also found on PHB levels while effects on histone H3 deimination were variable. EV signatures were modulated in response to PAD inhibitor treatment, with the strongest effects observed for PAD2 inhibitor, followed by PAD3 inhibitor, showing significant reduction in pro-oncogenic EV microRNA cargo (miR-21, miR-221) and increase in anti-oncogenic microRNA cargo (miR-126). While PAD2 inhibitor, followed by PAD3 inhibitor, had most effects on reducing cancer cell invasion, elevating moesin expression, and modulating EV signatures, PAD4 inhibitor had negligible effects and pan-PAD inhibitor Cl-amidine was also less effective. Compared with MiaPaCa-2 cells, stronger modulatory effects for the PAD inhibitors were observed in Panc-1 cells, which importantly also showed strong response to PAD3 inhibitor, correlating with previous observations that Panc-1 cells display neuronal/stem-like properties. Our findings report novel PAD isozyme regulatory roles in PDAC, highlighting roles for PAD isozyme-specific treatment, depending on cancer type and cancer subtypes, including in PDAC.


Assuntos
Carcinoma Ductal Pancreático/patologia , Vesículas Extracelulares/metabolismo , Neoplasias Pancreáticas/patologia , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Proteína-Arginina Desiminase do Tipo 3/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Vesículas Extracelulares/efeitos dos fármacos , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Invasividade Neoplásica/patologia , Ornitina/análogos & derivados , Ornitina/farmacologia , Ornitina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Proibitinas , Proteína-Arginina Desiminase do Tipo 2/antagonistas & inibidores , Proteína-Arginina Desiminase do Tipo 3/antagonistas & inibidores , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Proteína-Arginina Desiminase do Tipo 4/metabolismo
18.
Int J Cancer ; 148(2): 267-276, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33459350

RESUMO

Peptidylarginine deiminases (PADs) catalyze the conversion of arginine residues to citrulline residues on target proteins in the presence of calcium ions. This elaborate type of posttranslational modification is termed citrullination. PADs may regulate gene transcriptional activity via histone citrullination. There has been an increasing appreciation for the roles of PADs in a wide variety of biological processes. In this review article, we summarize recent evidence indicating that PADs and citrullinated proteins are involved in several physiological and pathological processes related to cancer. Of particular interest is that PAD2 and PAD4 exhibit characteristic expression levels, activities and specific biological effects in diverse types of cancer. We also list several PAD inhibitors, propose the possible mechanisms underlying the biological actions of PAD-mediated protein citrullination in experimental models and discuss the potential therapeutic value of PADs and their inhibitors for disease diagnosis and treatment.


Assuntos
Neoplasias/metabolismo , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Animais , Arginina/metabolismo , Citrulina/metabolismo , Humanos , Neoplasias/enzimologia , Processamento de Proteína Pós-Traducional
19.
Angiogenesis ; 24(1): 111-127, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32955682

RESUMO

Angiogenesis plays a key role in the pathology of diseases such as cancer, diabetic retinopathy, and age-related macular degeneration. Understanding the driving forces of endothelial cell migration and organization, as well as the time frame of these processes, can elucidate mechanisms of action of important pathological pathways. Herein, we have developed an organ-specific microfluidic platform recapitulating the in vivo angiogenic microenvironment by co-culturing mouse primary brain endothelial cells with brain pericytes in a three-dimensional (3D) collagen scaffold. As a proof of concept, we show that this model can be used for studying the angiogenic process and further comparing the angiogenic properties between two different common inbred mouse strains, C57BL/6J and 129S1/SvlmJ. We further show that the newly discovered angiogenesis-regulating gene Padi2 promotes angiogenesis through Dll4/Notch1 signaling by an on-chip mechanistic study. Analysis of the interplay between primary endothelial cells and pericytes in a 3D microfluidic environment assists in the elucidation of the angiogenic response.


Assuntos
Engenharia Celular , Microambiente Celular , Células Endoteliais/patologia , Imageamento Tridimensional , Microfluídica , Pericitos/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Separação Celular , Células Cultivadas , Regulação para Baixo , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Neovascularização Patológica/patologia , Pericitos/metabolismo , Proteína-Arginina Desiminase do Tipo 2/antagonistas & inibidores , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais
20.
J Infect Dis ; 223(6): 1093-1102, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-32729925

RESUMO

BACKGROUND: Pseudomonas aeruginosa (PA) is a pathogenic bacterium that causes severe pneumonia in critically ill and immunocompromised patients. Peptidylarginine deiminase (PAD) 2, PAD4, and caspase-1 are important enzymes in mediating host response to infection. The goal of this study was to determine the interplay between PAD2, PAD4, and caspase-1 in PA pneumonia-induced sepsis. METHODS: Pneumonia was produced in wild-type, Pad2-/-, and Pad4-/- mice by intranasal inoculation of PA (2.5 × 106 colony-forming units per mouse), and survival (n = 15/group) was monitored for 10 days. Bone marrow-derived macrophages (BMDMs) were isolated for in vitro studies. Samples were collected at specific timepoints for Western blot, bacterial load determination, and flow cytometry analysis. RESULTS: Caspase-1-dependent inflammation was diminished in PA-inoculated Pad2-/- mice, contributing to reduced macrophage death and enhanced bacterial clearance. In addition, Pad2-/- mice exhibited improved survival and attenuated acute lung injury after PA infection. In contrast, Pad4-/- mice did not display diminished caspase-1 activation, altered bacterial loads, or improved survival. CONCLUSIONS: Peptidylarginine deiminase 2 plays an essential role in the pathogenesis of pulmonary sepsis by mediating caspase-1 activation. This goes against previous findings of PAD4 in sepsis. Our study suggests that PAD2 is a potential therapeutic target of PA pneumonia-induced sepsis.


Assuntos
Caspase 1 , Pneumonia Bacteriana , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Sepse , Animais , Camundongos , Camundongos Knockout , Pneumonia Bacteriana/enzimologia , Proteína-Arginina Desiminase do Tipo 4 , Pseudomonas aeruginosa , Sepse/complicações , Sepse/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...