Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
1.
Expert Opin Ther Pat ; 34(8): 593-610, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38946486

RESUMO

INTRODUCTION: Focal adhesion kinase (FAK) is a cytoplasmic non-receptor tyrosine kinase over-expressed in various malignancies which is related to various cellular functions such as adhesion, metastasis and proliferation. AREAS COVERED: There is growing evidence that FAK is a promising therapeutic target for designing inhibitors by regulating the downstream pathways of FAK. Some potential FAK inhibitors have entered clinical phase research. EXPERT OPINION: FAK could be an effective target in medicinal chemistry research and there were a variety of FAKIs have been patented recently. Here, we updated an overview of design, synthesis and structure-activity relationship of chemotherapeutic FAK inhibitors (FAKIs) from 2017 until now based on our previous work. We hope our efforts can broaden the understanding of FAKIs and provide new ideas and insights for future cancer treatment from medicinal chemistry point of view.


Assuntos
Antineoplásicos , Desenho de Fármacos , Proteína-Tirosina Quinases de Adesão Focal , Neoplasias , Patentes como Assunto , Inibidores de Proteínas Quinases , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Química Farmacêutica , Desenvolvimento de Medicamentos , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
2.
J Chem Inf Model ; 64(15): 6053-6061, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39051776

RESUMO

Covalent kinase inhibitors (CKIs) have recently garnered considerable attention, yet the rational design of CKIs continues to pose a great challenge. In the discovery of CKIs targeting focal adhesion kinase (FAK), it has been observed that the chemical structure of the linkers plays a key role in achieving covalent targeting of FAK. However, the mechanism behind the observation remains elusive. In this work, we employ a comprehensive suite of advanced computational methods to investigate the mechanism of CKIs covalently targeting FAK. We reveal that the linker of an inhibitor influences the contacts between the warhead and residue(s) and the residence time in active conformation, thereby dictating the inhibitor's capability to bind covalently to FAK. This study reflects the complexity of CKI design and underscores the importance of considering the dynamic interactions and residence times for the successful development of covalent drugs.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal , Simulação de Dinâmica Molecular , Ligação Proteica , Inibidores de Proteínas Quinases , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/química , Conformação Proteica , Humanos
3.
Eur J Med Chem ; 276: 116678, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39029337

RESUMO

Focal adhesion kinase (FAK) is considered as a pivotal intracellular non-receptor tyrosine kinase, and has garnered significant attention as a promising target for anticancer drug development. As of early 2024, a total of 12 drugs targeting FAK have been approved for clinical or preclinical studies worldwide, including three PROTAC degraders. In recent three years (2021-2023), significant progress has been made in designing targeted FAK anticancer agents, including the development of a novel benzenesulfofurazan type NO-releasing FAK inhibitor and the first-in-class dual-target inhibitors simultaneously targeting FAK and HDACs. Given the pivotal role of FAK in the discovery of anticancer drugs, as well as the notable advancements achieved in FAK inhibitors and PROTAC degraders in recent years, this review is underbaked to present a comprehensive overview of the function and structure of FAK. Additionally, the latest findings on the inhibitors and PROTAC degraders of FAK from the past three years, along with their optimization strategies and anticancer activities, were summarized, which might help to provide novel insights for the development of novel targeted FAK agents with promising anticancer potential and favorable pharmacological profiles.


Assuntos
Antineoplásicos , Proteína-Tirosina Quinases de Adesão Focal , Neoplasias , Inibidores de Proteínas Quinases , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias/tratamento farmacológico , Animais , Estrutura Molecular
4.
J Cell Sci ; 137(14)2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-39034922

RESUMO

Focal adhesion kinase (FAK; encoded by PTK2) was discovered over 30 years ago as a cytoplasmic protein tyrosine kinase that is localized to cell adhesion sites, where it is activated by integrin receptor binding to extracellular matrix proteins. FAK is ubiquitously expressed and functions as a signaling scaffold for a variety of proteins at adhesions and in the cell cytoplasm, and with transcription factors in the nucleus. FAK expression and intrinsic activity are essential for mouse development, with molecular connections to cell motility, cell survival and gene expression. Notably, elevated FAK tyrosine phosphorylation is common in tumors, including pancreatic and ovarian cancers, where it is associated with decreased survival. Small molecule and orally available FAK inhibitors show on-target inhibition in tumor and stromal cells with effects on chemotherapy resistance, stromal fibrosis and tumor microenvironment immune function. Herein, we discuss recent insights regarding mechanisms of FAK activation and signaling, its roles as a cytoplasmic and nuclear scaffold, and the tumor-intrinsic and -extrinsic effects of FAK inhibitors. We also discuss results from ongoing and advanced clinical trials targeting FAK in low- and high-grade serous ovarian cancers, where FAK acts as a master regulator of drug resistance. Although FAK is not known to be mutationally activated, preventing FAK activity has revealed multiple tumor vulnerabilities that support expanding clinical combinatorial targeting possibilities.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal , Neoplasias , Transdução de Sinais , Humanos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Animais , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Feminino , Microambiente Tumoral , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética
5.
Nat Commun ; 15(1): 3740, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702347

RESUMO

Insufficient functional ß-cell mass causes diabetes; however, an effective cell replacement therapy for curing diabetes is currently not available. Reprogramming of acinar cells toward functional insulin-producing cells would offer an abundant and autologous source of insulin-producing cells. Our lineage tracing studies along with transcriptomic characterization demonstrate that treatment of adult mice with a small molecule that specifically inhibits kinase activity of focal adhesion kinase results in trans-differentiation of a subset of peri-islet acinar cells into insulin producing ß-like cells. The acinar-derived insulin-producing cells infiltrate the pre-existing endocrine islets, partially restore ß-cell mass, and significantly improve glucose homeostasis in diabetic mice. These findings provide evidence that inhibition of the kinase activity of focal adhesion kinase can convert acinar cells into insulin-producing cells and could offer a promising strategy for treating diabetes.


Assuntos
Células Acinares , Diabetes Mellitus Experimental , Células Secretoras de Insulina , Animais , Células Secretoras de Insulina/metabolismo , Camundongos , Células Acinares/metabolismo , Masculino , Insulina/metabolismo , Transdiferenciação Celular , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/farmacologia , Ilhotas Pancreáticas/metabolismo
6.
J Mol Graph Model ; 130: 108789, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718434

RESUMO

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that modulates integrin and growth factor signaling pathways and is implicated in cancer cell migration, proliferation, and survival. Over the past decade various, FAK kinase, FERM, and FAT domain inhibitors have been reported and a few kinase domain inhibitors are under clinical consideration. However, few of them were identified as multikinase inhibitors. In kinase drug design selectivity is always a point of concern, to improve selectivity allosteric inhibitor development is the best choice. The current research utilized a pharmacophore modeling (PM) approach to identify novel allosteric inhibitors of FAK. The all-available allosteric inhibitor bound 3D structures with PDB ids 4EBV, 4EBW, and 4I4F were utilized for the pharmacophore modeling. The validated PM models were utilized to map a database of 770,550 compounds prepared from ZINC, EXIMED, SPECS, ASINEX, and InterBioScreen, aiming to identify potential allosteric inhibitors. The obtained compounds from screening step were forwarded to molecular docking (MD) for the prediction of binding orientation inside the allosteric site and the results were evaluated with the known FAK allosteric inhibitor (REF). Finally, 14 FAK-inhibitor complexes were selected from the docking study and were studied under molecular dynamics simulations (MDS) for 500 ns. The complexes were ranked according to binding free energy (BFE) and those demonstrated higher affinity for allosteric site of FAK than REF inhibitors were selected. The selected complexes were further analyzed for intermolecular interactions and finally, three potential allosteric inhibitor candidates for the inhibition of FAK protein were identified. We believe that identified scaffolds may help in drug development against FAK as an anticancer agent.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Regulação Alostérica , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/química , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Sítio Alostérico , Ligação Proteica , Desenho de Fármacos , Sítios de Ligação , Farmacóforo
7.
Expert Opin Investig Drugs ; 33(6): 639-651, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38676368

RESUMO

INTRODUCTION: FAK, a nonreceptor cytoplasmic tyrosine kinase, plays a crucial role in tumor metastasis, drug resistance, tumor stem cell maintenance, and regulation of the tumor microenvironment. FAK has emerged as a promising target for tumor therapy based on both preclinical and clinical data. AREAS COVERED: This paper aims to summarize the molecular mechanisms underlying FAK's involvement in tumorigenesis and progression. Encouraging results have emerged from ongoing clinical trials of FAK inhibitors. Additionally, we present an overview of clinical trials for FAK inhibitors, examining their potential as promising treatments. The pertinent studies gathered from databases including PubMed, ClinicalTrials.gov. EXPERT OPINION: Since the first finding in 1990s, targeting FAK has became the focus of interests in many pharmaceutical companies. Through 30 years' discovery, the industry and academy gradually realized the features of FAK target which may not be a driver gene but a solid defense system for the cancer initiation and development. Currently, the ongoing clinical regimens involving FAK inhibition are all the combination strategies in which FAK inhibitors can further strengthen the cancer cell killing effects of other testing agents. The emerging positive signal in clinical trials foresee targeting FAK as class will be an effective mean to fight against cancers.


Assuntos
Antineoplásicos , Proteína-Tirosina Quinases de Adesão Focal , Neoplasias , Inibidores de Proteínas Quinases , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/farmacologia , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Microambiente Tumoral/efeitos dos fármacos , Terapia de Alvo Molecular , Resistencia a Medicamentos Antineoplásicos , Desenvolvimento de Medicamentos , Progressão da Doença
8.
Biochem Pharmacol ; 224: 116246, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685282

RESUMO

Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, plays an essential role in regulating cell proliferation, migration and invasion through both kinase-dependent enzymatic function and kinase-independent scaffolding function. The overexpression and activation of FAK is commonly observed in various cancers and some drug-resistant settings. Therefore, targeted disruption of FAK has been identified as an attractive strategy for cancer treatment. To date, numerous structurally diverse inhibitors targeting distinct domains of FAK have been developed, encompassing kinase domain inhibitors, FERM domain inhibitors, and FAT domain inhibitors, with several FAK inhibitors advanced to clinical trials. Moreover, given the critical role of FAK scaffolding function in signal transduction, FAK-targeted PROTACs have also been developed. Although no current FAK-targeted therapeutics have been approved for the market, the combination of FAK inhibitors with other anticancer drugs has shown considerable promise in the clinic. This review provides an overview of current drug discovery strategies targeting FAK, including the development of FAK inhibitors, FAK-based dual-target inhibitors and proteolysis-targeting chimeras (PROTACs) in both literature and patent applications. Accordingly, their design and optimization process, mechanisms of action and biological activities are discussed to offer insights into future directions of FAK-targeting drug discovery in cancer therapy.


Assuntos
Antineoplásicos , Proteína-Tirosina Quinases de Adesão Focal , Neoplasias , Inibidores de Proteínas Quinases , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Animais , Proteólise/efeitos dos fármacos , Terapia de Alvo Molecular/métodos
9.
Exp Neurol ; 376: 114776, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38609046

RESUMO

BACKGROUND AND PURPOSE: The poor prognosis in patients with subarachnoid hemorrhage (SAH) is often attributed to neuronal apoptosis. Recent evidence suggests that Laminin subunit gamma 1 (LAMC1) is essential for cell survival and proliferation. However, the effects of LAMC1 on early brain injury after SAH and the underlying mechanisms are unknown. The current study aimed to reveal the anti-neuronal apoptotic effect and the potential mechanism of LAMC1 in the rat and in the in vitro SAH models. METHODS: The SAH model of Sprague-Dawley rats was established by endovascular perforation. Recombinant LAMC1 (rLAMC1) was administered intranasally 30 min after modeling. LAMC1 small interfering RNA (LAMC1 siRNA), focal adhesion kinase (FAK)-specific inhibitor Y15 and PI3K-specific inhibitor LY294002 were administered before SAH modeling to explore the neuroprotection mechanism of rLAMC1. HT22 cells were cultured and stimulated by oxyhemoglobin to establish an in vitro model of SAH. Subsequently, SAH grades, neurobehavioral tests, brain water content, blood-brain barrier permeability, western blotting, immunofluorescence, TUNEL, and Fluoro-Jade C staining were performed. RESULTS: The expression of endogenous LAMC1 was markedly decreased after SAH, both in vitro and in vivo. rLAMC1 significantly reduced the brain water content and blood-brain barrier permeability, improved short- and long-term neurobehavior, and decreased neuronal apoptosis. Furthermore, rLAMC1 treatment significantly increased the expression of p-FAK, p-PI3K, p-AKT, Bcl-XL, and Bcl-2 and decreased the expression of Bax and cleaved caspase -3. Conversely, knockdown of endogenous LAMC1 aggravated the neurological impairment, suppressed the expression of Bcl-XL and Bcl-2, and upregulated the expression of Bax and cleaved caspase-3. Additionally, the administration of Y15 and LY294002 abolished the protective roles of rLAMC1. In vitro, rLAMC1 significantly reduced neuronal apoptosis, and the protective effects were also abolished by Y15 and LY294002. CONCLUSION: Exogenous LAMC1 treatment improved neurological deficits after SAH in rats, and attenuated neuronal apoptosis in both in vitro and in vivo SAH models, at least partially through the FAK/PI3K/AKT pathway.


Assuntos
Apoptose , Laminina , Neurônios , Transdução de Sinais , Hemorragia Subaracnóidea , Animais , Masculino , Camundongos , Ratos , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Quinase 1 de Adesão Focal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Laminina/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/patologia , Hemorragia Subaracnóidea/tratamento farmacológico
10.
J Cancer Res Clin Oncol ; 150(3): 117, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460052

RESUMO

PURPOSE: This study investigated the potential applicability and the underlying mechanisms of flavokawain C, a natural compound derived from kava extracts, in liver cancer treatment. METHODS: Drug distribution experiment used to demonstrate the preferential tissues enrichment of flavokawain C. Cell proliferation, apoptosis and migration effect of flavokawain C were determined by MTT, colony formation, EdU staining, cell adhesion, transwell, flow cytometry and western blot assay. The mechanism was explored by comet assay, immunofluorescence assay, RNA-seq-based Kyoto encyclopedia of genes and genomes analysis, molecular dynamics, bioinformatics analysis and western blot assay. The anticancer effect of flavokawain C was further confirmed by xenograft tumor model. RESULTS: The studies first demonstrated the preferential enrichment of flavokawain C within liver tissues in vivo. The findings demonstrated that flavokawain C significantly inhibited proliferation and migration of liver cancer cells, induced cellular apoptosis, and triggered intense DNA damage along with strong DNA damage response. The findings from RNA-seq-based KEGG analysis, molecular dynamics, bioinformatics analysis, and western blot assay mechanistically indicated that treatment with flavokawain C notably suppressed the FAK/PI3K/AKT signaling pathway in liver cancer cells. This effect was attributed to the induction of gene changes and the binding of flavokawain C to the ATP sites of FAK and PI3K, resulting in the inhibition of their phosphorylation. Additionally, flavokawain C also displayed the strong capacity to inhibit Huh-7-derived xenograft tumor growth in mice with minimal adverse effects. CONCLUSIONS: These findings identified that flavokawain C is a promising anticancer agent for liver cancer treatment.


Assuntos
Chalconas , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Apoptose , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Chalconas/farmacologia , Chalconas/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/efeitos dos fármacos
11.
J Exp Clin Cancer Res ; 43(1): 51, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373953

RESUMO

BACKGROUNDS: Immune checkpoint blockade (ICB) is widely considered to exert long-term treatment benefits by activating antitumor immunity. However, many cancer patients show poor clinical responses to ICB due in part to the lack of an immunogenic niche. Focal adhesion kinase (FAK) is frequently amplified and acts as an immune modulator across cancer types. However, evidence illustrates that targeting FAK is most effective in combination therapy rather than in monotherapy. METHODS: Here, we used drug screening, in vitro and in vivo assays to filter out that doxorubicin and its liposomal form pegylated liposome doxorubicin (PLD) showed synergistic anti-tumor effects in combination with FAK inhibitor IN10018. We hypothesized that anti-tumor immunity and immunogenic cell death (ICD) may be involved in the treatment outcomes through the data analysis of our clinical trial testing the combination of IN10018 and PLD. We then performed cell-based assays and animal studies to detect whether FAK inhibition by IN10018 can boost the ICD of PLD/doxorubicin and further established syngeneic models to test the antitumor effect of triplet combination of PLD, IN10018, and ICB. RESULTS: We demonstrated that the combination of FAK inhibitor IN10018, and PLD/doxorubicin exerted effective antitumor activity. Notably, the doublet combination regimen exhibited response latency and long-lasting treatment effects clinically, outcomes frequently observed in immunotherapy. Our preclinical study confirmed that the 2-drug combination can maximize the ICD of cancer cells. This approach primed the tumor microenvironment, supplementing it with sufficient tumor-infiltrating lymphocytes (TILs) to activate antitumor immunity. Finally, different animal studies confirmed that the antitumor effects of ICB can be significantly enhanced by this doublet regimen. CONCLUSIONS: We confirmed that targeting FAK by IN10018 can enhance the ICD of PLD/doxorubicin, further benefiting the anti-tumor effect of ICB. The animal tests of the triplet regimen warrant further discovery in the real world.


Assuntos
Lipossomos , Neoplasias , Animais , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/uso terapêutico , Morte Celular Imunogênica , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Polietilenoglicóis , Microambiente Tumoral
12.
BMC Pulm Med ; 23(1): 440, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957604

RESUMO

BACKGROUND: The combination of the endocannabinoid system (ECS) and the type 2 cannabinoid receptor (CB2R) can activate various signal pathways, leading to distinct pathophysiological roles. This interaction has gained significant attention in recent research on fibrosis diseases. Focal adhesion kinase (FAK) plays a crucial role in regulating signals from growth factor receptors and Integrins. It is also involved in the transformation of fibroblasts into myofibroblasts. This study aims to investigate the impact of the CB2R agonist JWH133 on lung fibrosis and its potential to alleviate pulmonary fibrosis in mice through the FAK pathway. METHODS: The C57 mice were categorized into five groups: control, BLM, BLM + JWH133, BLM + JWH133 + NC, and BLM + JWH133 + FAK groups.JWH133 was administered to mice individually or in conjunction with the FAK vector. After 21 days, pathological changes in mouse lung tissues, inflammatory factor levels, hydroxyproline levels, and collagen contents were evaluated. Moreover, the levels of the FAK/ERK/S100A4 pathway-related proteins were measured. RESULTS: JWH133 treatment decreased inflammatory factor levels, attenuated pathological changes, and reduced extracellular matrix accumulation in the mouse model of bleomycin-induced pulmonary fibrosis; however, these effects were reversed by FAK. JWH133 attenuated fibrosis by regulating the FAK/ERK/S100A4 pathway. CONCLUSIONS: The results presented in this study show that JWH133 exerts a protective effect against pulmonary fibrosis by inhibiting the FAK/ERK/S100A4 pathway.Therefore, JWH133 holds promise as a potential therapeutic target for pulmonary fibrosis.


Assuntos
Agonistas de Receptores de Canabinoides , Fibrose Pulmonar , Transdução de Sinais , Animais , Camundongos , Bleomicina , Agonistas de Receptores de Canabinoides/farmacologia , Fibrose , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Pulmão/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
13.
Molecules ; 28(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771129

RESUMO

Precise binding affinity predictions are essential for structure-based drug discovery (SBDD). Focal adhesion kinase (FAK) is a member of the tyrosine kinase protein family and is overexpressed in a variety of human malignancies. Inhibition of FAK using small molecules is a promising therapeutic option for several types of cancer. Here, we conducted computational modeling of FAK-targeting inhibitors using three-dimensional structure-activity relationship (3D-QSAR), molecular dynamics (MD), and hybrid topology-based free energy perturbation (FEP) methods. The structure-activity relationship (SAR) studies between the physicochemical descriptors and inhibitory activities of the chemical compounds were performed with reasonable statistical accuracy using CoMFA and CoMSIA. These are two well-known 3D-QSAR methods based on the principle of supervised machine learning (ML). Essential information regarding residue-specific binding interactions was determined using MD and MM-PB/GBSA methods. Finally, physics-based relative binding free energy (ΔΔGRBFEA→B) terms of analogous ligands were estimated using alchemical FEP simulation. An acceptable agreement was observed between the experimental and computed relative binding free energies. Overall, the results suggested that using ML and physics-based hybrid approaches could be useful in synergy for the rational optimization of accessible lead compounds with similar scaffolds targeting the FAK receptor.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Humanos , Sítios de Ligação , Entropia , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , /farmacologia
14.
Bioorg Chem ; 131: 106328, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36542986

RESUMO

Epigenetic regulation and Focal adhesion kinase (FAK) are considered to be two important targets for the development of antitumor drugs. Studies have shown that the combination of FAK and HDAC inhibitors could exhibit synergistic effects in a subset of cancer cells in vitro and in vivo. At present, there are few reports on dual target inhibitors of FAK and HDAC. Here, we first reported a new compound MY-1259 as a dual FAK and HDAC6 inhibitor, which exhibited efficient treatment effects on gastric cancers in vitro and in vivo. MY-1259 exhibited potent inhibitory activities against FAK (IC50 = 132 nM) and HDAC6 (IC50 = 16 nM). Notably, MY-1259 showed selective inhibitory potency on HDAC6 over HDAC1, HDAC2 and HDAC3. In addition, MY-1259 could potently inhibit the proliferative activities of MGC-803 and BGC-823 cells (IC50 = 3.91 and 15.46 nM, respectively, using flow cytometry counting), induce cell apoptosis, and cellular senescence. MY-1259 could effectively down-regulate the levels of Ac-Histone H3 and Ac-α-tubulin, and also inhibit the phosphorylation of FAK at three phosphorylation sites Y397, Y576/577 and Y925, thereby inhibiting the activation of ERK and AKT/mTOR. MY-1259 exhibited more effective antitumor effect in vivo than the HDAC inhibitor SAHA and FAK inhibitor TAE-226 alone or in combination, showing the advantages of FAK/HDAC dual inhibitors in the treatment of gastric cancers. Therefore, the results in this work suggested that inhibition of FAK and HDAC by MY-1259 might represent a promising strategy for the treatment of gastric cancers.


Assuntos
Antineoplásicos , Proteína-Tirosina Quinases de Adesão Focal , Inibidores de Histona Desacetilases , Neoplasias Gástricas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Epigênese Genética , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Relação Estrutura-Atividade
15.
Biomed Pharmacother ; 151: 113114, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35594704

RESUMO

Radiation therapy offers limited clinical benefits for patients with pancreatic cancer, partly as a result of the predominantly immunosuppressive microenvironment characteristic of this specific type of cancer. A large number of abnormal blood vessels and high-density fibrous matrices in pancreatic cancer will lead to hypoxia within tumor tissue and hinder immune cell infiltration. We used low-dose X-ray irradiation, also known as low-dose radiation therapy (LDRT), to normalize the blood vessels in pancreatic cancer, while simultaneously administering an inhibitor of focal adhesion kinase (FAK) to reduce pancreatic cancer fibrosis. We found that this treatment successfully reduced pancreatic cancer hypoxia, increased immune cell infiltration, and increased sensitivity to radiation therapy for pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Microambiente Tumoral , Terapia por Raios X , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/radioterapia , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/uso terapêutico , Humanos , Hipóxia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/radioterapia , Microambiente Tumoral/imunologia , Terapia por Raios X/métodos , Neoplasias Pancreáticas
16.
Biomed Pharmacother ; 151: 113116, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35598365

RESUMO

Focal adhesion kinase (FAK, also known as PTK2) is a tyrosine kinase that regulates integrin and growth factor signaling pathways and is involved in the migration, proliferation and survival of cancer cells. FAK is a promising target for cancer treatment. Many small molecule FAK inhibitors have been identified and proven in both preclinical and clinical studies to be effective inhibitors of tumor growth and metastasis. There are many signaling pathways, such as those involving FAK, Src, AKT, MAPK, PI3K, and EGFR/HER-2, that provide survival signals in cancer cells. Dual inhibitors that simultaneously block FAK and another factor can significantly improve efficacy and overcome some of the shortcomings of single-target inhibitors, including drug resistance. In this review, the antitumor mechanisms and research status of dual inhibitors of FAK and other targets, such as Pyk2, IGF-IR, ALK, VEGFR-3, JAK2, EGFR, S6K1, and HDAC2, are summarized, providing new ideas for the development of effective FAK dual-target preparations.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal , Neoplasias , Transdução de Sinais , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
17.
Eur J Med Chem ; 237: 114373, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35486993

RESUMO

The intracellular non-receptor tyrosine protein kinase Focal adhesion kinase (FAK) is a key signalling regulator, which mediates tumor survival, invasion, metastasis, and angiogenesis through its kinase catalytic functions and non-kinase scaffolding functions. Previous efforts have clarified that it is crucial to address both FAK kinase and scaffolding functions instead of just inhibiting FAK kinase activity because it may be insufficient to completely block FAK signaling. Proteolysis targeting chimera (PROTAC) technology is a method of targeting a specific protein and inducing its degradation in the cell, which can simultaneously eliminate both kinase-dependent enzymatic functions and scaffolding functions. In current study, we designed and synthesized a series of novel FAK PROTACs and the optimal PROTAC B5 exhibited potent FAK affinity with an IC50 value of 14.9 nM. Furthermore, in A549 cells, PROTAC B5 presented strong FAK degradation activity (86.4% degradation @ 10 nM), powerful antiproliferative activity (IC50 = 0.14 ± 0.01 µM) and inhibited cell migration and invasion in a concentration-dependent manner. Additionally, the in vitro preliminary drug-like properties evaluation of PROTAC B5 showed outstanding plasma stability and moderate membrane permeability. Together, current results provided a promising FAK PROTAC B5 as lead compound for cancer-related drug discovery and FAK-degradation functions exploration in biological systems.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Proteína-Tirosina Quinases de Adesão Focal , Neoplasias Pulmonares , Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Desenho de Fármacos , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Proteólise
18.
J Am Soc Nephrol ; 32(9): 2159-2174, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34465607

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is characterized by numerous cysts originating from renal tubules and is associated with significant tubular epithelial cell proliferation. Focal adhesion kinase (FAK) promotes tumor growth by regulating multiple proliferative pathways. METHODS: We established the forskolin (FSK)-induced three-dimensional (3D) Madin-Darby Canine Kidney cystogenesis model and 8-bromoadenosine-3`,5`-cyclic monophosphate-stimulated cyst formation in ex vivo embryonic kidney culture. Cultured human renal cyst-lining cells (OX-161) and normal tubular epithelial cells were treated with FAK inhibitors or transfected with green fluorescent protein-tagged FAK mutant plasmids for proliferation study. Furthermore, we examined the role of FAK in two transgenic ADPKD animal models, the kidney-specific Pkd1 knockout and the collecting duct-specific Pkd1 knockout mouse models. RESULTS: FAK activity was significantly elevated in OX-161 cells and in two ADPKD mouse models. Inhibiting FAK activity reduced cell proliferation in OX-161 cells and prevented cyst growth in ex vivo and 3D cyst models. In tissue-specific Pkd1 knockout mouse models, FAK inhibitors retarded cyst development and mitigated renal function decline. Mechanically, FSK stimulated FAK activation in tubular epithelial cells, which was blocked by a protein kinase A (PKA) inhibitor. Inhibition of FAK activation by inhibitors or transfected cells with mutant FAK constructs interrupted FSK-mediated Src activation and upregulation of ERK and mTOR pathways. CONCLUSIONS: Our study demonstrates the critical involvement of FAK in renal cyst development, suggests that FAK is a potential therapeutic target in treating patients with ADPKD, and highlights the role of FAK in cAMP-PKA-regulated proliferation.


Assuntos
Aminopiridinas/farmacologia , Benzamidas/farmacologia , Células Epiteliais/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Ácidos Hidroxâmicos/farmacologia , Rim Policístico Autossômico Dominante/prevenção & controle , Pirazinas/farmacologia , Sulfonamidas/farmacologia , Animais , Técnicas de Cultura de Células , Proliferação de Células , Modelos Animais de Doenças , Cães , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Rim Policístico Autossômico Dominante/etiologia , Rim Policístico Autossômico Dominante/patologia , Transdução de Sinais
19.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575938

RESUMO

By employing an innovative biohybrid membrane, the present study aimed at elucidating the mechanistic role of the focal adhesion kinase (FAK) in epithelial morphogenesis in vitro over 4, 7, and 10 days. The consequences of siRNA-mediated FAK knockdown on epithelial morphogenesis were monitored by quantifying cell layers and detecting the expression of biomarkers of epithelial differentiation and homeostasis. Histologic examination of FAK-depleted samples showed a significant increase in cell layers resembling epithelial hyperplasia. Semiquantitative fluorescence imaging (SQFI) revealed tissue homeostatic disturbances by significantly increased involucrin expression over time, persistence of yes-associated protein (YAP) and an increase of keratin (K) 1 at day 4. The dysbalanced involucrin pattern was underscored by ROCK-IISer1366 activity at day 7 and 10. SQFI data were confirmed by quantitative PCR and Western blot analysis, thereby corroborating the FAK shutdown-related expression changes. The artificial FAK shutdown was also associated with a significantly higher expression of filaggrin at day 10, sustained keratinocyte proliferation, and the dysregulated expression of K19 and vimentin. These siRNA-induced consequences indicate the mechanistic role of FAK in epithelial morphogenesis by simultaneously considering prospective biomaterial-based epithelial regenerative approaches.


Assuntos
Proteínas de Ciclo Celular/genética , Células Epiteliais/citologia , Proteína-Tirosina Quinases de Adesão Focal/genética , Hiperplasia Epitelial Focal/genética , Morfogênese/genética , Fatores de Transcrição/genética , Biomarcadores/metabolismo , Células Epiteliais/metabolismo , Proteínas Filagrinas , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Hiperplasia Epitelial Focal/patologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regeneração Tecidual Guiada , Humanos , Proteínas de Filamentos Intermediários/genética , Queratina-1/genética , Queratinócitos/efeitos dos fármacos , Precursores de Proteínas/genética , RNA Interferente Pequeno/farmacologia
20.
PLoS One ; 16(9): e0257576, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34551004

RESUMO

Exaggerated inflammatory response results in pathogenesis of various inflammatory diseases. Tumor Necrosis Factor-alpha (TNF) is a multi-functional pro-inflammatory cytokine regulating a wide spectrum of physiological, biological, and cellular processes. TNF induces Focal Adhesion Kinase (FAK) for various activities including induction of pro-inflammatory response. The mechanism of FAK activation by TNF is unknown and the involvement of cell surface integrins in modulating TNF response has not been determined. In the current study, we have identified an oxysterol 25-hydroxycholesterol (25HC) as a soluble extracellular lipid amplifying TNF mediated innate immune pro-inflammatory response. Our results demonstrated that 25HC-integrin-FAK pathway amplifies and optimizes TNF-mediated pro-inflammatory response. 25HC generating enzyme cholesterol 25-hydroxylase (C25H) was induced by TNF via NFκB and MAPK pathways. Specifically, chromatin immunoprecipitation assay identified binding of AP-1 (Activator Protein-1) transcription factor ATF2 (Activating Transcription Factor 2) to the C25H promoter following TNF stimulation. Furthermore, loss of C25H, FAK and α5 integrin expression and inhibition of FAK and α5ß1 integrin with inhibitor and blocking antibody, respectively, led to diminished TNF-mediated pro-inflammatory response. Thus, our studies show extracellular 25HC linking TNF pathway with integrin-FAK signaling for optimal pro-inflammatory activity and MAPK/NFκB-C25H-25HC-integrin-FAK signaling network playing an essential role to amplify TNF dependent pro-inflammatory response. Thus, we have identified 25HC as the key factor involved in FAK activation during TNF mediated response and further demonstrated a role of cell surface integrins in positively regulating TNF dependent pro-inflammatory response.


Assuntos
Transdução de Sinais/efeitos dos fármacos , Esteroide Hidroxilases/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator 2 Ativador da Transcrição/metabolismo , Animais , Células Cultivadas , Quimiocina CCL3/metabolismo , Feminino , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Hidroxicolesteróis/metabolismo , Integrina alfa5/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Ligação Proteica , Esteroide Hidroxilases/deficiência , Esteroide Hidroxilases/genética , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...