Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.466
Filtrar
1.
Extremophiles ; 28(3): 44, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39313567

RESUMO

L-asparaginase (ASNase, E.C. 3.5.1.1) catalyzes the deamination of L-asparagine to L-aspartic acid and ammonia and is widely used in medicine to treat acute lymphocytic leukemia. It also has significant applications in the food industry by inhibiting acrylamide formation. In this study, we characterized a thermostable ASNase from the hyper thermophilic strain, Pyrococcus yayanosii CH1. The recombinant enzyme (PyASNase) exhibited maximal activity at pH 8.0 and 85 °C. Moreover, PyASNase demonstrated promising thermostability across temperatures ranging from 70 to 95 °C. The kinetic parameters of PyASNase for L-asparagine were a Km of 6.3 mM, a kcat of 1989s-1, and a kcat/Km of 315.7 mM-1 s-1. Treating potato samples with 10 U/mL of PyASNase at 85 °C for merely 10 min reduced the acrylamide content in the final product by 82.5%, demonstrating a high efficiency and significant advantage of PyASNase in acrylamide inhibition.


Assuntos
Acrilamida , Asparaginase , Estabilidade Enzimática , Pyrococcus , Asparaginase/química , Asparaginase/metabolismo , Asparaginase/genética , Acrilamida/química , Acrilamida/metabolismo , Pyrococcus/enzimologia , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Temperatura Alta
2.
Nat Commun ; 15(1): 7950, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261503

RESUMO

Histones are important chromatin-organizing proteins in eukaryotes and archaea. They form superhelical structures around which DNA is wrapped. Recent studies have shown that some archaea and bacteria contain alternative histones that exhibit different DNA binding properties, in addition to highly divergent sequences. However, the vast majority of these histones are identified in metagenomes and thus are difficult to study in vivo. The recent revolutionary breakthroughs in computational protein structure prediction by AlphaFold2 and RoseTTAfold allow for unprecedented insights into the potential function and structure of previously uncharacterized proteins. Here, we categorize the prokaryotic histone space into 17 distinct groups based on AlphaFold2 predictions. We identify a superfamily of histones, termed α3 histones, which are common in archaea and present in several bacteria. Importantly, we establish the existence of a large family of histones throughout archaea and in some bacteriophages that, instead of wrapping DNA, bridge DNA, thereby diverging from conventional nucleosomal histones.


Assuntos
Archaea , Bactérias , Histonas , Histonas/metabolismo , Histonas/química , Histonas/genética , Archaea/metabolismo , Archaea/genética , Bactérias/metabolismo , Bactérias/genética , Células Procarióticas/metabolismo , Filogenia , Nucleossomos/metabolismo , Modelos Moleculares , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Sequência de Aminoácidos
3.
DNA Repair (Amst) ; 142: 103760, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39236417

RESUMO

HerA is an ATP-dependent translocase that is widely distributed in archaea and some bacteria. It belongs to the HerA/FtsK translocase bacterial family, which is a subdivision of the RecA family. Currently, it is identified that HerA participates in the repair of DNA double-strand breaks (DSBs) or confers anti-phage defense by assembling other proteins into large complexes. In recent years, there has been a growing understanding of the bioinformatics, biochemistry, structure, and function of HerA subfamily members in both archaea and bacteria. This comprehensive review compares the structural disparities among diverse HerAs and elucidates their respective roles in specific life processes.


Assuntos
Proteínas de Bactérias , Evolução Molecular , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Archaea/metabolismo , Archaea/genética , Reparo do DNA , Quebras de DNA de Cadeia Dupla , Bactérias/metabolismo , Modelos Moleculares
4.
J Agric Food Chem ; 72(33): 18585-18593, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39133835

RESUMO

d-Tagatose is a highly promising functional sweetener known for its various physiological functions. In this study, a novel tagatose 4-epimerase from Thermoprotei archaeon (Thar-T4Ease), with the ability to convert d-fructose to d-tagatose, was discovered through a combination of structure similarity search and sequence-based protein clustering. The recombinant Thar-T4Ease exhibited optimal activity at pH 8.5 and 85 °C, in the presence of 1 mM Ni2+. Its kcat and kcat/Km values toward d-fructose were measured to be 248.5 min-1 and 2.117 mM-1·min-1, respectively. Notably, Thar-T4Ease exhibited remarkable thermostability, with a t1/2 value of 198 h at 80 °C. Moreover, it achieved a conversion ratio of 18.9% using 100 g/L d-fructose as the substrate. Finally, based on sequence and structure analysis, crucial residues for the catalytic activity of Thar-T4Ease were identified by molecular docking and site-directed mutagenesis. This research expands the repertoire of enzymes with C4-epimerization activity and opens up new possibilities for the cost-effective production of d-tagatose from d-fructose.


Assuntos
Estabilidade Enzimática , Hexoses , Simulação de Acoplamento Molecular , Hexoses/química , Hexoses/metabolismo , Cinética , Proteínas Arqueais/genética , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Frutose/química , Frutose/metabolismo , Carboidratos Epimerases/genética , Carboidratos Epimerases/química , Carboidratos Epimerases/metabolismo , Concentração de Íons de Hidrogênio , Especificidade por Substrato , Temperatura Alta , Sequência de Aminoácidos , Racemases e Epimerases/genética , Racemases e Epimerases/química , Racemases e Epimerases/metabolismo
5.
Extremophiles ; 28(3): 42, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39215799

RESUMO

Methanogenic archaea are chemolithotrophic prokaryotes that can reduce carbon dioxide with hydrogen gas to form methane. These microorganisms make a significant contribution to the global carbon cycle, with methanogenic archaea from anoxic environments estimated to contribute > 500 million tons of global methane annually. Archaeal methanogenesis is dependent on the methanofurans; aminomethylfuran containing coenzymes that act as the primary C1 acceptor molecule during carbon dioxide fixation. Although the biosynthetic pathway to the methanofurans has been elucidated, structural adaptations which confer thermotolerance to Mfn enzymes from extremophilic archaea are yet to be investigated. Here we focus on the methanofuran biosynthetic enzyme MfnB, which catalyses the condensation of two molecules of glyceralde-3-phosphate to form 4­(hydroxymethyl)-2-furancarboxaldehyde-phosphate. In this study, MfnB enzymes from the hyperthermophile Methanocaldococcus jannaschii and the mesophile Methanococcus maripaludis have been recombinantly overexpressed and purified to homogeneity. Thermal unfolding studies, together with steady-state kinetic assays, demonstrate thermoadaptation in the M. jannaschii enzyme. Molecular dynamics simulations have been used to provide a structural explanation for the observed properties. These reveal a greater number of side chain interactions in the M. jannaschii enzyme, which may confer protection from heating effects by enforcing spatial residue constraints.


Assuntos
Proteínas Arqueais , Estabilidade Enzimática , Methanocaldococcus , Methanocaldococcus/enzimologia , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/química , Mathanococcus/enzimologia , Termotolerância , Aldeído Liases/metabolismo , Aldeído Liases/genética , Aldeído Liases/química , Temperatura Alta , Simulação de Dinâmica Molecular
6.
J Bacteriol ; 206(9): e0020524, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39194224

RESUMO

Members of the kingdom Nanobdellati, previously known as DPANN archaea, are characterized by ultrasmall cell sizes and reduced genomes. They primarily thrive through ectosymbiotic interactions with specific hosts in diverse environments. Recent successful cultivations have emphasized the importance of adhesion to host cells for understanding the ecophysiology of Nanobdellati. Cell adhesion is often mediated by cell surface carbohydrates, and in archaea, this may be facilitated by the glycosylated S-layer protein that typically coats their cell surface. In this study, we conducted glycoproteomic analyses on two co-cultures of Nanobdellati with their host archaea, as well as on pure cultures of both host and non-host archaea. Nanobdellati exhibited various glycoproteins, including archaellins and hypothetical proteins, with glycans that were structurally distinct from those of their hosts. This indicated that Nanobdellati autonomously synthesize their glycans for protein modifications probably using host-derived substrates, despite the high energy cost. Glycan modifications on Nanobdellati proteins consistently occurred on asparagine residues within the N-X-S/T sequon, consistent with patterns observed across archaea, bacteria, and eukaryotes. In both host and non-host archaea, S-layer proteins were commonly modified with hexose, N-acetylhexosamine, and sulfonated deoxyhexose. However, the N-glycan structures of host archaea, characterized by distinct sugars such as deoxyhexose, nonulosonate sugar, and pentose at the nonreducing ends, were implicated in enabling Nanobdellati to differentiate between host and non-host cells. Interestingly, the specific sugar, xylose, was eliminated from the N-glycan in a host archaeon when co-cultured with Nanobdella. These findings enhance our understanding of the role of protein glycosylation in archaeal interactions.IMPORTANCENanobdellati archaea, formerly known as DPANN, are phylogenetically diverse, widely distributed, and obligately ectosymbiotic. The molecular mechanisms by which Nanobdellati recognize and adhere to their specific hosts remain largely unexplored. Protein glycosylation, a fundamental biological mechanism observed across all domains of life, is often crucial for various cell-cell interactions. This study provides the first insights into the glycoproteome of Nanobdellati and their host and non-host archaea. We discovered that Nanobdellati autonomously synthesize glycans for protein modifications, probably utilizing substrates derived from their hosts. Additionally, we identified distinctive glycosylation patterns that suggest mechanisms through which Nanobdellati differentiate between host and non-host cells. This research significantly advances our understanding of the molecular basis of microbial interactions in extreme environments.


Assuntos
Proteínas Arqueais , Glicosilação , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/química , Nanoarchaeota/metabolismo , Nanoarchaeota/genética , Glicoproteínas/metabolismo , Glicoproteínas/genética , Glicoproteínas/química , Archaea/metabolismo , Archaea/genética , Polissacarídeos/metabolismo , Glicoproteínas de Membrana
7.
J Agric Food Chem ; 72(34): 19081-19092, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39105795

RESUMO

Chitosanases are valuable enzymatic tools in the food industry for converting chitosan into functional chitooligosaccharides (COSs). However, most of the chitosanases extensively characterized produced a low degree of polymerization (DP) COSs (DP = 1-3, LdpCOSs), indicating an imperative for enhancements in the product specificity for the high DP COS (DP >3, HdpCOSs) production. In this study, a chitosanase from Methanosarcina sp. 1.H.T.1A.1 (OUC-CsnA4) was cloned and expressed. Analysis of the enzyme-substrate interactions and the subsite architecture of the OUC-CsnA4 indicated that a Ser49 mutation could modify its interaction pattern with the substrate, potentially enhancing product specificity for producing HdpCOSs. Site-directed mutagenesis provided evidence that the S49I and S49P mutations in OUC-CsnA4 enabled the production of up to 24 and 26% of (GlcN)5 from chitosan, respectively─the wild-type enzyme was unable to produce detectable levels of (GlcN)5. These mutations also altered substrate binding preferences, favoring the binding of longer-chain COSs (DP >5) and enhancing (GlcN)5 production. Furthermore, molecular dynamics simulations and molecular docking studies underscored the significance of +2 subsite interactions in determining the (GlcN)4 and (GlcN)5 product specificity. These findings revealed that the positioning and interactions of the reducing end of the substrate within the catalytic cleft are crucial factors influencing the product specificity of chitosanase.


Assuntos
Quitosana , Glicosídeo Hidrolases , Methanosarcina , Mutagênese Sítio-Dirigida , Oligossacarídeos , Polimerização , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Quitosana/química , Quitosana/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/química , Especificidade por Substrato , Methanosarcina/enzimologia , Methanosarcina/genética , Methanosarcina/metabolismo , Methanosarcina/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Quitina/metabolismo , Quitina/química , Quitina/análogos & derivados , Cinética
8.
FEMS Microbiol Ecol ; 100(9)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39127612

RESUMO

Family GH1 glycosyl hydrolases are ubiquitous in prokaryotes and eukaryotes and are utilized in numerous industrial applications, including bioconversion of lignocelluloses. In this study, hyperacidophilic archaeon Cuniculiplasma divulgatum (S5T=JCM 30642T) was explored as a source of novel carbohydrate-active enzymes. The genome of C. divulgatum encodes three GH1 enzyme candidates, from which CIB12 and CIB13 were heterologously expressed and characterized. Phylogenetic analysis of CIB12 and CIB13 clustered them with ß-glucosidases from genuinely thermophilic archaea including Thermoplasma acidophilum, Picrophilus torridus, Sulfolobus solfataricus, Pyrococcus furiosus, and Thermococcus kodakarensis. Purified enzymes showed maximal activities at pH 4.5-6.0 (CIB12) and 4.5-5.5 (CIB13) with optimal temperatures at 50°C, suggesting a high-temperature origin of Cuniculiplasma spp. ancestors. Crystal structures of both enzymes revealed a classical (α/ß)8 TIM-barrel fold with the active site located inside the barrel close to the C-termini of ß-strands including the catalytic residues Glu204 and Glu388 (CIB12), and Glu204 and Glu385 (CIB13). Both enzymes preferred cellobiose over lactose as substrates and were classified as cellobiohydrolases. Cellobiose addition increased the biomass yield of Cuniculiplasma cultures growing on peptides by 50%, suggesting that the cellobiohydrolases expand the carbon substrate range and hence environmental fitness of Cuniculiplasma.


Assuntos
Filogenia , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , beta-Glucosidase/genética , beta-Glucosidase/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Especificidade por Substrato , Temperatura
9.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39201583

RESUMO

Hyperthermophilic archaea such as Pyrococcus furiosus survive under very aggressive environmental conditions by occupying niches inaccessible to representatives of other domains of life. The ability to survive such severe living conditions must be ensured by extraordinarily efficient mechanisms of DNA processing, including repair. Therefore, in this study, we compared kinetics of conformational changes of DNA Endonuclease Q from P. furiosus during its interaction with various DNA substrates containing an analog of an apurinic/apyrimidinic site (F-site), hypoxanthine, uracil, 5,6-dihydrouracil, the α-anomer of adenosine, or 1,N6-ethenoadenosine. Our examination of DNA cleavage activity and fluorescence time courses characterizing conformational changes of the dye-labeled DNA substrates during the interaction with EndoQ revealed that the enzyme induces multiple conformational changes of DNA in the course of binding. Moreover, the obtained data suggested that the formation of the enzyme-substrate complex can proceed through dissimilar kinetic pathways, resulting in different types of DNA conformational changes, which probably allow the enzyme to perform its biological function at an extreme temperature.


Assuntos
Clivagem do DNA , Pyrococcus furiosus , Pyrococcus furiosus/enzimologia , Cinética , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Especificidade por Substrato , Conformação de Ácido Nucleico , DNA/metabolismo
10.
J Bioinform Comput Biol ; 22(4): 2450021, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39215524

RESUMO

Sorting signals are crucial for the anchoring of proteins to the cell surface in archaea and bacteria. These proteins often feature distinct motifs at their C-terminus, cleaved by sortase or sortase-like enzymes. Gram-positive bacteria exhibit the LPXTGX consensus motif, cleaved by sortases, while Gram-negative bacteria employ exosortases recognizing motifs like PEP. Archaea utilize exosortase homologs known as archaeosortases for signal anchoring. Traditionally identification of such C-terminal sorting signals was performed with profile Hidden Markov Models (pHMMs). The Cell-Wall PREDiction (CW-PRED) method introduced for the first time a custom-made class HMM for proteins in Gram-positive bacteria that contain a cell wall sorting signal which begins with an LPXTG motif, followed by a hydrophobic domain and a tail of positively charged residues. Here we present a new and updated version of CW-PRED for predicting C-terminal sorting signals in Archaea, Gram-positive, and Gram-negative bacteria. We used a large training set and several model enhancements that improve motif identification in order to achieve better discrimination between C-terminal signals and other proteins. Cross-validation demonstrates CW-PRED's superiority in sensitivity and specificity compared to other methods. Application of the method in reference proteomes reveals a large number of potential surface proteins not previously identified. The method is available for academic use at http://195.251.108.230/apps.compgen.org/CW-PRED/ and as standalone software.


Assuntos
Proteínas Arqueais , Proteínas de Bactérias , Sinais Direcionadores de Proteínas , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Archaea/metabolismo , Archaea/genética , Biologia Computacional/métodos , Parede Celular/metabolismo , Parede Celular/química , Cadeias de Markov , Motivos de Aminoácidos , Software , Bactérias/metabolismo , Bactérias/genética , Algoritmos
11.
Nucleic Acids Res ; 52(16): 9966-9977, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39077943

RESUMO

Genome segregation is a fundamental process that preserves the genetic integrity of all organisms, but the mechanisms driving genome segregation in archaea remain enigmatic. This study delved into the unknown function of SegC (SSO0033), a novel protein thought to be involved in chromosome segregation in archaea. Using fluorescence polarization DNA binding assays, we discovered the ability of SegC to bind DNA without any sequence preference. Furthermore, we determined the crystal structure of SegC at 2.8 Å resolution, revealing the multimeric configuration and forming a large positively charged surface that can bind DNA. SegC has a tertiary structure folding similar to those of the ThDP-binding fold superfamily, but SegC shares only 5-15% sequence identity with those proteins. Unexpectedly, we found that SegC has nucleotide triphosphatase (NTPase) activity. We also determined the SegC-ADP complex structure, identifying the NTP binding pocket and relative SegC residues involved in the interaction. Interestingly, images from negative-stain electron microscopy revealed that SegC forms filamentous structures in the presence of DNA and NTPs. Further, more uniform and larger SegC-filaments are observed, when SegA-ATP was added. Notably, the introduction of SegB disrupts these oligomers, with ATP being essential for regulating filament formation. These findings provide insights into the functional and structural role of SegC in archaeal chromosome segregation.


Assuntos
Proteínas Arqueais , Segregação de Cromossomos , Modelos Moleculares , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Ligação Proteica , Cristalografia por Raios X , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/química , Sítios de Ligação , DNA Arqueal/metabolismo , DNA Arqueal/química , DNA Arqueal/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura
12.
Nucleic Acids Res ; 52(15): 8930-8946, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-38966985

RESUMO

The TOPOVIL complex catalyzes the formation of DNA double strand breaks (DSB) that initiate meiotic homologous recombination, an essential step for chromosome segregation and genetic diversity during gamete production. TOPOVIL is composed of two subunits (SPO11 and TOPOVIBL) and is evolutionarily related to the archaeal TopoVI topoisomerase complex. SPO11 is the TopoVIA subunit orthologue and carries the DSB formation catalytic activity. TOPOVIBL shares homology with the TopoVIB ATPase subunit. TOPOVIBL is essential for meiotic DSB formation, but its molecular function remains elusive, partly due to the lack of biochemical studies. Here, we purified TOPOVIBLΔC25 and characterized its structure and mode of action in vitro. Our structural analysis revealed that TOPOVIBLΔC25 adopts a dynamic conformation in solution and our biochemical study showed that the protein remains monomeric upon incubation with ATP, which correlates with the absence of ATP binding. Moreover, TOPOVIBLΔC25 interacted with DNA, with a preference for some geometries, suggesting that TOPOVIBL senses specific DNA architectures. Altogether, our study identified specific TOPOVIBL features that might help to explain how TOPOVIL function evolved toward a DSB formation activity in meiosis.


Assuntos
Quebras de DNA de Cadeia Dupla , Meiose , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , DNA/metabolismo , DNA/química , DNA/genética , DNA Topoisomerases Tipo II , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Modelos Moleculares , Ligação Proteica
13.
Nat Commun ; 15(1): 5841, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992036

RESUMO

The swimming device of archaea-the archaellum-presents asparagine (N)-linked glycans. While N-glycosylation serves numerous roles in archaea, including enabling their survival in extreme environments, how this post-translational modification contributes to cell motility remains under-explored. Here, we report the cryo-EM structure of archaellum filaments from the haloarchaeon Halobacterium salinarum, where archaellins, the building blocks of the archaellum, are N-glycosylated, and the N-glycosylation pathway is well-resolved. We further determined structures of archaellum filaments from two N-glycosylation mutant strains that generate truncated glycans and analyzed their motility. While cells from the parent strain exhibited unidirectional motility, the N-glycosylation mutant strain cells swam in ever-changing directions within a limited area. Although these mutant strain cells presented archaellum filaments that were highly similar in architecture to those of the parent strain, N-linked glycan truncation greatly affected interactions between archaellum filaments, leading to dramatic clustering of both isolated and cell-attached filaments. We propose that the N-linked tetrasaccharides decorating archaellins act as physical spacers that minimize the archaellum filament aggregation that limits cell motility.


Assuntos
Proteínas Arqueais , Halobacterium salinarum , Glicosilação , Halobacterium salinarum/metabolismo , Halobacterium salinarum/genética , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/química , Polissacarídeos/metabolismo , Microscopia Crioeletrônica , Mutação , Citoesqueleto/metabolismo , Processamento de Proteína Pós-Traducional , Movimento Celular
14.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000272

RESUMO

In recent years, interest in very small proteins (µ-proteins) has increased significantly, and they were found to fulfill important functions in all prokaryotic and eukaryotic species. The halophilic archaeon Haloferax volcanii encodes about 400 µ-proteins of less than 70 amino acids, 49 of which contain at least two C(P)XCG motifs and are, thus, predicted zinc finger proteins. The determination of the NMR solution structure of HVO_2753 revealed that only one of two predicted zinc fingers actually bound zinc, while a second one was metal-free. Therefore, the aim of the current study was the homologous production of additional C(P)XCG proteins and the quantification of their zinc content. Attempts to produce 31 proteins failed, underscoring the particular difficulties of working with µ-proteins. In total, 14 proteins could be produced and purified, and the zinc content was determined. Only nine proteins complexed zinc, while five proteins were zinc-free. Three of the latter could be analyzed using ESI-MS and were found to contain another metal, most likely cobalt or nickel. Therefore, at least in haloarchaea, the variability of predicted C(P)XCG zinc finger motifs is higher than anticipated, and they can be metal-free, bind zinc, or bind another metal. Notably, AlphaFold2 cannot correctly predict whether or not the four cysteines have the tetrahedral configuration that is a prerequisite for metal binding.


Assuntos
Proteínas Arqueais , Haloferax volcanii , Dedos de Zinco , Zinco , Haloferax volcanii/metabolismo , Haloferax volcanii/química , Zinco/metabolismo , Zinco/química , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Ligação Proteica , Sequência de Aminoácidos
15.
Food Res Int ; 191: 114738, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059928

RESUMO

Salt-tolerant proteases with remarkable stability are highly desirable biocatalysts in the salt-fermented food industry. In this study, the undigested autocleavage product of HlyA (halolysin A), a low-salt adapted halolysin from halophilic archaeon Halococcus salifodinae, was investigated. HlyA underwent autocleavage of its C-terminal extension (CTE) at temperatures over 40 °C or NaCl concentrations below 2 M to yield HlyAΔCTE. HlyAΔCTE demonstrated robust stability over a wide range of -20-60 °C, 0.5-4 M NaCl, and pH 6.0-10.0 for at least 72 h. Notably, HlyAΔCTE is the first reported halolysin with such exceptional stability. Compared with HlyA, HlyAΔCTE preferred high temperatures (50-75 °C), low salinities (0.5-2.5 M NaCl), and near-neutral (pH 6.5-8.0) conditions to achieve high activity, consistently with its production conditions. HlyAΔCTE displayed a higher Vmax value against azocasein than HlyA. During fish sauce fermentation, HlyAΔCTE significantly enhanced fish protein hydrolysis, indicating its potential as a robust biocatalyst in the salt-fermented food industry.


Assuntos
Fermentação , Alimentos Fermentados , Cloreto de Sódio , Alimentos Fermentados/microbiologia , Cloreto de Sódio/química , Estabilidade Enzimática , Produtos Pesqueiros/análise , Concentração de Íons de Hidrogênio , Halococcus/metabolismo , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Peptídeo Hidrolases/metabolismo , Temperatura
16.
Methods Mol Biol ; 2819: 279-295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39028512

RESUMO

Atomic force microscopy is a high-resolution imaging technique useful for observing the structures of biomolecular complexes. This approach provides a straightforward method to characterize the binding behavior of different chromatin architectural proteins and to analyze the increasingly complex structural units assembled on the DNA. The protocol describes the preparation, AFM imaging, and structural analysis of chromatin that is reconstituted in vitro using purified proteins and DNA. Here, we describe the successful application of the method on the chromatin architectural proteins of the archaeon Sulfolobus solfataricus.


Assuntos
DNA , Microscopia de Força Atômica , Sulfolobus solfataricus , Microscopia de Força Atômica/métodos , Sulfolobus solfataricus/metabolismo , DNA/química , DNA/metabolismo , Cromatina/metabolismo , Cromatina/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Ligação Proteica
17.
J Biol Chem ; 300(8): 107505, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944122

RESUMO

Archaeosine (G+) is an archaea-specific tRNA modification synthesized via multiple steps. In the first step, archaeosine tRNA guanine transglucosylase (ArcTGT) exchanges the G15 base in tRNA with 7-cyano-7-deazaguanine (preQ0). In Euryarchaea, preQ015 in tRNA is further modified by archaeosine synthase (ArcS). Thermococcus kodakarensis ArcS catalyzes a lysine-transfer reaction to produce preQ0-lysine (preQ0-Lys) as an intermediate. The resulting preQ0-Lys15 in tRNA is converted to G+15 by a radical S-adenosyl-L-methionine enzyme for archaeosine formation (RaSEA), which forms a complex with ArcS. Here, we focus on the substrate tRNA recognition mechanism of ArcS. Kinetic parameters of ArcS for lysine and tRNA-preQ0 were determined using a purified enzyme. RNA fragments containing preQ0 were prepared from Saccharomyces cerevisiae tRNAPhe-preQ015. ArcS transferred 14C-labeled lysine to RNA fragments. Furthermore, ArcS transferred lysine to preQ0 nucleoside and preQ0 nucleoside 5'-monophosphate. Thus, the L-shaped structure and the sequence of tRNA are not essential for the lysine-transfer reaction by ArcS. However, the presence of D-arm structure accelerates the lysine-transfer reaction. Because ArcTGT from thermophilic archaea recognizes the common D-arm structure, we expected the combination of T. kodakarensis ArcTGT and ArcS and RaSEA complex would result in the formation of preQ0-Lys15 in all tRNAs. This hypothesis was confirmed using 46 T. kodakarensis tRNA transcripts and three Haloferax volcanii tRNA transcripts. In addition, ArcTGT did not exchange the preQ0-Lys15 in tRNA with guanine or preQ0 base, showing that formation of tRNA-preQ0-Lys by ArcS plays a role in preventing the reverse reaction in G+ biosynthesis.


Assuntos
Proteínas Arqueais , Lisina , Thermococcus , Thermococcus/metabolismo , Thermococcus/genética , Thermococcus/enzimologia , Lisina/metabolismo , Lisina/química , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/química , RNA de Transferência/metabolismo , RNA de Transferência/genética , RNA de Transferência/química , RNA Arqueal/metabolismo , RNA Arqueal/genética , RNA Arqueal/química , Guanina/metabolismo , Guanina/química , Guanina/análogos & derivados , Especificidade por Substrato , Cinética , Nucleosídeos/metabolismo , Nucleosídeos/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Guanosina/análogos & derivados
18.
J Biosci Bioeng ; 138(3): 188-195, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38918133

RESUMO

SshEstI, a carboxylesterase from the thermoacidophilic archaeon Saccharolobus shibatae, is a member of the hormone-sensitive lipase family that displays slightly alkaliphilic activity with an optimum activity at pH 8.0. In this study, three distinct strategies were explored to confer acidophilic properties to SshEstI. The first strategy involved engineering the oxyanion hole by replacing Gly81 with serine or aspartic acid. The G81S mutant showed optimum activity at pH 7.0, whereas the aspartic acid mutant (G81D) rendered the enzyme slightly acidophilic with optimum activity observed at pH 6.0; however, kcat and kcat/Km values were reduced by these substitutions. The second strategy involved examining the effects of surfactant additives on the pH-activity profiles of SshEstI. The results showed that cetyltrimethylammonium bromide (CTAB) enhanced wild-type enzyme (WT) activity at acidic pH values. In the presence of 0.1 mM CTAB, G81S and G81D were acidophilic enzymes with optimum activity at pH 6.0 and 4.0, respectively, although their enzyme activities were low. The third strategy involved engineering the active site to resemble that of kumamolisin-As (kuma-As), an acidophilic peptidase of the sedolisin family. The catalytic triad of kuma-As was exchanged into SshEstI using site-directed mutagenesis. X-ray crystallographic analysis of the mutants (H274D and H274E) revealed that the potential hydrogen donor-acceptor distances around the active site of WT were fully maintained in these mutants. However, these mutants were inactive at pH 4-8.


Assuntos
Domínio Catalítico , Concentração de Íons de Hidrogênio , Esterol Esterase/química , Esterol Esterase/metabolismo , Esterol Esterase/genética , Cetrimônio/química , Tensoativos/farmacologia , Tensoativos/química , Tensoativos/metabolismo , Cinética , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Mutagênese Sítio-Dirigida , Carboxilesterase/metabolismo , Carboxilesterase/química , Carboxilesterase/genética , Estabilidade Enzimática
19.
Nat Commun ; 15(1): 5049, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877064

RESUMO

Type IV pili (T4P) represent one of the most common varieties of surface appendages in archaea. These filaments, assembled from small pilin proteins, can be many microns long and serve diverse functions, including adhesion, biofilm formation, motility, and intercellular communication. Here, we determine atomic structures of two distinct adhesive T4P from Saccharolobus islandicus via cryo-electron microscopy (cryo-EM). Unexpectedly, both pili were assembled from the same pilin polypeptide but under different growth conditions. One filament, denoted mono-pilus, conforms to canonical archaeal T4P structures where all subunits are equivalent, whereas in the other filament, the tri-pilus, the same polypeptide exists in three different conformations. The three conformations in the tri-pilus are very different from the single conformation found in the mono-pilus, and involve different orientations of the outer immunoglobulin-like domains, mediated by a very flexible linker. Remarkably, the outer domains rotate nearly 180° between the mono- and tri-pilus conformations. Both forms of pili require the same ATPase and TadC-like membrane pore for assembly, indicating that the same secretion system can produce structurally very different filaments. Our results show that the structures of archaeal T4P appear to be less constrained and rigid than those of the homologous archaeal flagellar filaments that serve as helical propellers.


Assuntos
Proteínas Arqueais , Microscopia Crioeletrônica , Proteínas de Fímbrias , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/ultraestrutura , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/ultraestrutura , Modelos Moleculares , Fímbrias Bacterianas/ultraestrutura , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/química , Conformação Proteica , Sequência de Aminoácidos
20.
Acta Crystallogr D Struct Biol ; 80(Pt 7): 464-473, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38860981

RESUMO

Eukaryotic and archaeal translation initiation factor 2 in complex with GTP delivers the initiator methionyl-tRNA to the small ribosomal subunit. Over the past 20 years, thanks to the efforts of various research groups, including ours, this factor from the archaeon Sulfolobus solfataricus and its individual subunits have been crystallized in ten different space groups. Analysis of the molecular packing in these crystals makes it possible to better understand the roles of functionally significant switches and other elements of the nucleotide-binding pocket during the function of the factor as well as the influence of external effects on its transition between active and inactive states.


Assuntos
Proteínas Arqueais , Sulfolobus solfataricus , Sulfolobus solfataricus/química , Sulfolobus solfataricus/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/química , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/metabolismo , Conformação Proteica , Sítios de Ligação , RNA de Transferência de Metionina/química , RNA de Transferência de Metionina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...