Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.458
Filtrar
1.
Sci Adv ; 10(38): eadq6505, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39292789

RESUMO

Hypericum perforatum, also known as "natural fluoxetine," is a commonly used herbal remedy for treating depression. It is unclear whether melatonin in plants regulated by the endogenous circadian clock system is like in vertebrates. In this work, we found that the melatonin signal and melatonin biosynthesis gene, serotonin N-acetyltransferase HpSNAT1, oscillates in a 24-hour cycle in H. perforatum. First, we constructed a yeast complementary DNA library of H. perforatum and found a clock protein HpLHY that can directly bind to the HpSNAT1 promoter. Second, it was confirmed that HpLHY inhibits the expression of HpSNAT1 by targeting the Evening Element. Last, it indicated that HpLHY-overexpressing plants had reduced levels of melatonin in 12-hour light/12-hour dark cycle photoperiod, while loss-of-function mutants exhibited high levels, but this rhythm seems to disappear as well. The results revealed the regulatory role of LHY in melatonin biosynthesis, which may make an important contribution to the field of melatonin synthesis regulation.


Assuntos
Regulação da Expressão Gênica de Plantas , Hypericum , Melatonina , Proteínas de Plantas , Melatonina/biossíntese , Melatonina/metabolismo , Hypericum/metabolismo , Hypericum/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Regiões Promotoras Genéticas , Ritmo Circadiano , Fotoperíodo
2.
Front Immunol ; 15: 1444426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139571

RESUMO

Breast cancer (BC) is one of the most common and fatal malignancies among women worldwide. Circadian rhythms have emerged in recent studies as being involved in the pathogenesis of breast cancer. In this paper, we reviewed the molecular mechanisms by which the dysregulation of the circadian genes impacts the development of BC, focusing on the critical clock genes, brain and muscle ARNT-like protein 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK). We discussed how the circadian rhythm disruption (CRD) changes the tumor microenvironment (TME), immune responses, inflammation, and angiogenesis. The CRD compromises immune surveillance and features and activities of immune effectors, including CD8+ T cells and tumor-associated macrophages, that are important in an effective anti-tumor response. Meanwhile, in this review, we discuss bidirectional interactions: age and circadian rhythms, aging further increases the risk of breast cancer through reduced vasoactive intestinal polypeptide (VIP), affecting suprachiasmatic nucleus (SCN) synchronization, reduced ability to repair damaged DNA, and weakened immunity. These complex interplays open new avenues toward targeted therapies by the combination of clock drugs with chronotherapy to potentiate the immune response while reducing tumor progression for better breast cancer outcomes. This review tries to cover the broad area of emerging knowledge on the tumor-immune nexus affected by the circadian rhythm in breast cancer.


Assuntos
Envelhecimento , Neoplasias da Mama , Ritmo Circadiano , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias da Mama/imunologia , Ritmo Circadiano/imunologia , Feminino , Envelhecimento/imunologia , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Relógios Biológicos
3.
Sci Rep ; 14(1): 19886, 2024 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191924

RESUMO

Prenatal alcohol-exposed (AE) infants and children often demonstrate disrupted sleep patterns, including more frequent awakenings, reduced total sleep time, and more night-to-night sleep variability. Despite the strong connection between sleep patterns and circadian rhythmicity, relatively little is known about circadian rhythm disruptions in individuals with AE. Recently, several reports demonstrated that evaluating the expression patterns of human clock genes in biological fluids could reveal an individual's circadian phenotype. Human saliva offers an emerging and easily available physiological sample that can be collected non-invasively for core-clock gene transcript analyses. We compared the expression patterns of core-clock genes and their regulatory genes in salivary samples of children aged 6-10 years-old with and without AE during the light cycle between ZT0-ZT11. We isolated the RNA from the samples and measured the expression patterns of core clock genes and clock regulating genes using the human specific primers with quantitative real-time PCR. Analysis of core clock genes expression levels in saliva samples from AE children indicates significantly altered levels in expression of core-clock BMAL1, CLOCK, PER1-3 and CRY1,2, as compared to those in age-matched control children. We did not find any sex difference in levels of clock genes in AE and control groups. Cosinor analysis was used to evaluate the rhythmic pattern of these clock genes, which identified circadian patterns in the levels of core clock genes in the control group but absent in the AE group. The gene expression profile of a salivary circadian biomarker ARRB1 was rhythmic in saliva of control children but was arhythmic in AE children. Altered expression patterns were also observed in clock regulatory genes: NPAS2, NFL3, NR1D1, DEC1, DEC2, and DBP, as well as chromatin modifiers: MLL1, P300, SIRT1, EZH2, HDAC3, and ZR1D1, known to maintain rhythmic expression of core-clock genes. Overall, these findings provide the first evidence that AE disturbs the circadian patten expression of core clock genes and clock-regulatory chromatin modifiers in saliva.


Assuntos
Ritmo Circadiano , Epigênese Genética , Transtornos do Espectro Alcoólico Fetal , Saliva , Humanos , Saliva/metabolismo , Criança , Feminino , Masculino , Transtornos do Espectro Alcoólico Fetal/genética , Transtornos do Espectro Alcoólico Fetal/metabolismo , Ritmo Circadiano/genética , Gravidez , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Regulação da Expressão Gênica , Relógios Circadianos/genética
4.
Int J Mol Sci ; 25(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39201344

RESUMO

Breast cancer (BC) is the leading cause of cancer death among women worldwide. Women employed in shift jobs face heightened BC risk due to prolonged exposure to night shift work (NSW), classified as potentially carcinogenic by the International Agency for Research on Cancer (IARC). This risk is linked to disruptions in circadian rhythms governed by clock genes at the cellular level. However, the molecular mechanisms are unclear. This study aimed to assess clock genes as potential BC biomarkers among women exposed to long-term NSW. Clock gene expression was analysed in paired BC and normal breast tissues within Nurses' Health Studies I and II GEO datasets. Validation was performed on additional gene expression datasets from healthy night shift workers and women with varying BC susceptibility, as well as single-cell sequencing datasets. Post-transcriptional regulators of clock genes were identified through miRNA analyses. Significant alterations in clock gene expression in BC compared to normal tissues were found. BHLHE40, CIART, CLOCK, PDPK1, and TIMELESS were over-expressed, while HLF, NFIL3, NPAS3, PER1, PER3, SIM1, and TEF were under-expressed. The downregulation of PER1 and TEF and upregulation of CLOCK correlated with increased BC risk in healthy women. Also, twenty-six miRNAs, including miR-10a, miR-21, miR-107, and miR-34, were identified as potential post-transcriptional regulators influenced by NSW. In conclusion, a panel of clock genes and circadian miRNAs are suggested as BC susceptibility biomarkers among night shift workers, supporting implications for risk stratification and early detection strategies.


Assuntos
Neoplasias da Mama , Regulação Neoplásica da Expressão Gênica , Jornada de Trabalho em Turnos , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/etiologia , Jornada de Trabalho em Turnos/efeitos adversos , Proteínas CLOCK/genética , Biologia Computacional/métodos , Biomarcadores Tumorais/genética , Ritmo Circadiano/genética , MicroRNAs/genética , Adulto , Pessoa de Meia-Idade
5.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39201748

RESUMO

INTRODUCTION: This study aimed to investigate the relationship between obstructive sleep apnea (OSA), circadian rhythms, and individual sleep-wake preferences, as measured by chronotype, and to assess the association between circadian clock gene expression and subjective sleep-related variables. METHODS: A total of 184 individuals were recruited, underwent polysomnography (PSG), and completed questionnaires including a chronotype questionnaire (CQ), insomnia severity index (ISI), and Epworth sleepiness scale (ESS). Blood samples were collected in the evening before and morning after PSG. Gene expression analysis included BMAL1, CLOCK, PER1, CRY1, NPAS2, and NR1D1. RESULTS: In the OSA group, the subjective amplitude (AM score of CQ) positively correlated with all circadian clock genes in the morning (R ≥ 0.230 and p < 0.05 for each one), while the morningness-eveningness (ME score of CQ) was only associated with the evening BMAL1 level (R = 0.192; p = 0.044). In healthy controls, insomnia severity correlated with evening expression of BMAL1, PER1, and CRY1. CONCLUSIONS: The findings highlight the complex interplay between OSA, circadian rhythms, and sleep-related variables, suggesting potential determinants of morning chronotype in OSA and implicating disrupted circadian clock function in subjective feelings of energy throughout the day. Further research is warranted to elucidate underlying mechanisms and guide personalized management strategies.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Apneia Obstrutiva do Sono , Distúrbios do Início e da Manutenção do Sono , Humanos , Masculino , Distúrbios do Início e da Manutenção do Sono/genética , Distúrbios do Início e da Manutenção do Sono/metabolismo , Feminino , Apneia Obstrutiva do Sono/genética , Apneia Obstrutiva do Sono/fisiopatologia , Apneia Obstrutiva do Sono/metabolismo , Pessoa de Meia-Idade , Relógios Circadianos/genética , Adulto , Ritmo Circadiano/genética , Polissonografia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Regulação da Expressão Gênica , Sonolência , Inquéritos e Questionários , Cronotipo , Criptocromos
6.
Cancer Lett ; 599: 217147, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094826

RESUMO

The dysregulation of circadian rhythm oscillation is a prominent feature of various solid tumors. Thus, clarifying the molecular mechanisms that maintain the circadian clock is important. In the present study, we revealed that the transcription factor forkhead box FOXK1 functions as an oncogene in breast cancer. We showed that FOXK1 recruits multiple transcription corepressor complexes, including NCoR/SMRT, SIN3A, NuRD, and REST/CoREST. Among them, the FOXK1/NCoR/SIN3A complex transcriptionally regulates a cohort of genes, including CLOCK, PER2, and CRY2, that are critically involved in the circadian rhythm. The complex promoted the proliferation of breast cancer cells by disturbing the circadian rhythm oscillation. Notably, the nuclear expression of FOXK1 was positively correlated with tumor grade. Insulin resistance gradually became more severe with tumor progression and was accompanied by the increased expression of OGT, which caused the nuclear translocation and increased expression of FOXK1. Additionally, we found that metformin downregulates FOXK1 and exports it from the nucleus, while HDAC inhibitors (HDACi) inhibit the FOXK1-related enzymatic activity. Combined treatment enhanced the expression of circadian clock genes through the regulation of FOXK1, thereby exerting an antitumor effect, indicating that highly nuclear FOXK1-expressing breast cancers are potential candidates for the combined application of metformin and HDACi.


Assuntos
Neoplasias da Mama , Ritmo Circadiano , Fatores de Transcrição Forkhead , Regulação Neoplásica da Expressão Gênica , Resistência à Insulina , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Animais , Ritmo Circadiano/genética , Criptocromos/genética , Criptocromos/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 1 de Receptor Nuclear/genética , Inibidores de Histona Desacetilases/farmacologia , Camundongos , Carcinogênese/genética , Células MCF-7 , Camundongos Nus
7.
Mol Nutr Food Res ; 68(16): e2400234, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39126133

RESUMO

Alcohol use disorder accounts for a growing worldwide health system concern. Alcohol causes damages to various organs, including intestine and liver, primarily involved in its absorption and metabolism. However, alcohol-related organ damage risk varies significantly among individuals, even when they report consuming comparable dosages of alcohol. Factor(s) that may modulate the risk of organ injuries from alcohol consumption could be responsible for inter-individual variations in susceptibility to alcohol-related organ damages. Accumulating evidence suggests disruptions in circadian rhythm can exacerbate alcohol-related organ damages. Here we investigated the interplay between alcohol, circadian rhythm, and key tissue cellular processes at baseline, after a regular and a shift in the light/dark cycle (LCD) in mice. Central/peripheral clock expression of core clock genes (CoClGs) was analyzed. We also studied circadian homeostasis of tissue cellular processes that are involved in damages from alcohol. These experiments reveal that alcohol affects the expression of CoClGs causing a central-peripheral dyssynchrony, amplified by shift in LCD. The observed circadian clock dyssynchrony was linked to circadian disorganization of key processes involved in the alcohol-related damages, particularly when alcohol was combined with LCD. These results offer insights into the mechanisms by which alcohol interacts with circadian rhythm disruption to promote organ injury.


Assuntos
Ritmo Circadiano , Etanol , Homeostase , Camundongos Endogâmicos C57BL , Animais , Homeostase/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Masculino , Etanol/farmacologia , Relógios Circadianos/efeitos dos fármacos , Camundongos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Fotoperíodo , Consumo de Bebidas Alcoólicas/efeitos adversos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
8.
PLoS One ; 19(7): e0305712, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39028707

RESUMO

INTRODUCTION: Circadian rhythms (CRs) orchestrate intrinsic 24-hour oscillations which synchronize an organism's physiology and behaviour with respect to daily cycles. CR disruptions have been linked to Parkinson's Disease (PD), the second most prevalent neurodegenerative disorder globally, and are associated to several PD-symptoms such as sleep disturbances. Studying molecular changes of CR offers a potential avenue for unravelling novel insights into the PD progression, symptoms, and can be further used for optimization of treatment strategies. Yet, a comprehensive characterization of the alterations at the molecular expression level for core-clock and clock-controlled genes in PD is still missing. METHODS AND ANALYSIS: The proposed study protocol will be used to characterize expression profiles of circadian genes obtained from saliva samples in PD patients and controls. For this purpose, 20 healthy controls and 70 PD patients will be recruited. Data from clinical assessment, questionnaires, actigraphy tracking and polysomnography will be collected and clinical evaluations will be repeated as a follow-up in one-year time. We plan to carry out sub-group analyses considering several clinical factors (e.g., biological sex, treatment dosages, or fluctuation of symptoms), and to correlate reflected changes in CR of measured genes with distinct PD phenotypes (diffuse malignant and mild/motor-predominant). Additionally, using NanoStringⓇ multiplex technology on a subset of samples, we aim to further explore potential CR alterations in hundreds of genes involved in neuropathology pathways. DISCUSSION: CLOCK4PD is a mono-centric, non-interventional observational study aiming at the molecular characterization of CR alterations in PD. We further plan to determine physiological modifications in sleep and activity patterns, and clinical factors correlating with the observed CR changes. Our study may provide valuable insights into the intricate interplay between CR and PD with a potential to be used as a predictor of circadian alterations reflecting distinct disease phenotypes, symptoms, and progression outcomes.


Assuntos
Relógios Circadianos , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Relógios Circadianos/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Saliva/metabolismo , Ritmo Circadiano/genética , Estudos de Casos e Controles , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Adulto , Polissonografia
9.
Cell Commun Signal ; 22(1): 375, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054537

RESUMO

BACKGROUND: Olanzapine (OLZ) reverses chronic stress-induced anxiety. Chronic stress promotes cancer development via abnormal neuro-endocrine activation. However, how intervention of brain-body interaction reverses chronic stress-induced tumorigenesis remains elusive. METHODS: KrasLSL-G12D/WT lung cancer model and LLC1 syngeneic tumor model were used to study the effect of OLZ on cancer stemness and anxiety-like behaviors. Cancer stemness was evaluated by qPCR, western-blotting, immunohistology staining and flow-cytometry analysis of stemness markers, and cancer stem-like function was assessed by serial dilution tumorigenesis in mice and extreme limiting dilution analysis in primary tumor cells. Anxiety-like behaviors in mice were detected by elevated plus maze and open field test. Depression-like behaviors in mice were detected by tail suspension test. Anxiety and depression states in human were assessed by Hospital Anxiety and Depression Scale (HADS). Chemo-sensitivity of lung cancer was assessed by in vivo syngeneic tumor model and in vitro CCK-8 assay in lung cancer cell lines. RESULTS: In this study, we found that OLZ reversed chronic stress-enhanced lung tumorigenesis in both KrasLSL-G12D/WT lung cancer model and LLC1 syngeneic tumor model. OLZ relieved anxiety and depression-like behaviors by suppressing neuro-activity in the mPFC and reducing norepinephrine (NE) releasing under chronic stress. NE activated ADRB2-cAMP-PKA-CREB pathway to promote CLOCK transcription, leading to cancer stem-like traits. As such, CLOCK-deficiency or OLZ reverses NE/chronic stress-induced gemcitabine (GEM) resistance in lung cancer. Of note, tumoral CLOCK expression is positively associated with stress status, serum NE level and poor prognosis in lung cancer patients. CONCLUSION: We identify a new mechanism by which OLZ ameliorates chronic stress-enhanced tumorigenesis and chemoresistance. OLZ suppresses mPFC-NE-CLOCK axis to reverse chronic stress-induced anxiety-like behaviors and lung cancer stemness. Decreased NE-releasing prevents activation of ADRB2-cAMP-PKA-CREB pathway to inhibit CLOCK transcription, thus reversing lung cancer stem-like traits and chemoresistance under chronic stress.


Assuntos
Células-Tronco Neoplásicas , Norepinefrina , Olanzapina , Animais , Olanzapina/farmacologia , Camundongos , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Norepinefrina/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Linhagem Celular Tumoral , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/complicações , Camundongos Endogâmicos C57BL , Ansiedade/tratamento farmacológico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Carcinogênese/efeitos dos fármacos , Depressão/tratamento farmacológico
10.
J Clin Invest ; 134(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007272

RESUMO

A growing body of research has identified circadian-rhythm disruption as a risk factor for metabolic health. However, the underlying biological basis remains complex, and complete molecular mechanisms are unknown. There is emerging evidence from animal and human research to suggest that the expression of core circadian genes, such as circadian locomotor output cycles kaput gene (CLOCK), brain and muscle ARNT-Like 1 gene (BMAL1), period (PER), and cyptochrome (CRY), and the consequent expression of hundreds of circadian output genes are integral to the regulation of cellular metabolism. These circadian mechanisms represent potential pathophysiological pathways linking circadian disruption to adverse metabolic health outcomes, including obesity, metabolic syndrome, and type 2 diabetes. Here, we aim to summarize select evidence from in vivo animal models and compare these results with epidemiologic research findings to advance understanding of existing foundational evidence and potential mechanistic links between circadian disruption and altered clock gene expression contributions to metabolic health-related pathologies. Findings have important implications for the treatment, prevention, and control of metabolic pathologies underlying leading causes of death and disability, including diabetes, cardiovascular disease, and cancer.


Assuntos
Proteínas CLOCK , Ritmo Circadiano , Diabetes Mellitus Tipo 2 , Humanos , Animais , Ritmo Circadiano/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/genética , Obesidade/metabolismo , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Relógios Circadianos/genética
11.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000480

RESUMO

The regulation of the circadian clock plays an important role in influencing physiological conditions. While it is reported that the timing and quantity of energy intake impact circadian regulation, the underlying mechanisms remain unclear. This study investigated the impact of dietary protein intake on peripheral clocks. Firstly, transcriptomic analysis was conducted to investigate molecular targets of low-protein intake. Secondly, mPer2::Luc knock-in mice, fed with either a low-protein, normal, or high-protein diet for 6 weeks, were analyzed for the oscillation of PER2 expression in peripheral tissues and for the expression profiles of circadian and metabolic genes. Lastly, the candidate pathway identified by the in vivo analysis was validated using AML12 cells. As a result, using transcriptomic analysis, we found that the low-protein diet hardly altered the circadian rhythm in the central clock. In animal experiments, expression levels and period lengths of PER2 were different in peripheral tissues depending on dietary protein intake; moreover, mRNA levels of clock-controlled genes and endoplasmic reticulum (ER) stress genes were affected by dietary protein intake. Induction of ER stress in AML12 cells caused an increased amplitude of Clock and Bmal1 and an advanced peak phase of Per2. This result shows that the intake of different dietary protein ratios causes an alteration of the circadian rhythm, especially in the peripheral clock of mice. Dietary protein intake modifies the oscillation of ER stress genes, which may play key roles in the regulation of the circadian clock.


Assuntos
Ritmo Circadiano , Proteínas Alimentares , Proteínas Circadianas Period , Animais , Camundongos , Ritmo Circadiano/genética , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proteínas Alimentares/administração & dosagem , Estresse do Retículo Endoplasmático , Relógios Circadianos/genética , Masculino , Camundongos Endogâmicos C57BL , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Perfilação da Expressão Gênica , Linhagem Celular , Transcriptoma
12.
Nature ; 632(8023): 147-156, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39020173

RESUMO

Changes in the amount of daylight (photoperiod) alter physiology and behaviour1,2. Adaptive responses to seasonal photoperiods are vital to all organisms-dysregulation associates with disease, including affective disorders3 and metabolic syndromes4. The circadian rhythm circuitry is implicated in such responses5,6, yet little is known about the precise cellular substrates that underlie phase synchronization to photoperiod change. Here we identify a brain circuit and system of axon branch-specific and reversible neurotransmitter deployment that are critical for behavioural and sleep adaptation to photoperiod. A type of neuron called mrEn1-Pet17 in the mouse brainstem median raphe nucleus segregates serotonin from VGLUT3 (also known as SLC17A8, a proxy for glutamate) to different axonal branches that innervate specific brain regions involved in circadian rhythm and sleep-wake timing8,9. This branch-specific neurotransmitter deployment did not distinguish between daylight and dark phase; however, it reorganized with change in photoperiod. Axonal boutons, but not cell soma, changed neurochemical phenotype upon a shift away from equinox light/dark conditions, and these changes were reversed upon return to equinox conditions. When we genetically disabled Vglut3 in mrEn1-Pet1 neurons, sleep-wake periods, voluntary activity and clock gene expression did not synchronize to the new photoperiod or were delayed. Combining intersectional rabies virus tracing and projection-specific neuronal silencing, we delineated a preoptic area-to-mrEn1Pet1 connection that was responsible for decoding the photoperiodic inputs, driving the neurotransmitter reorganization and promoting behavioural synchronization. Our results reveal a brain circuit and periodic, branch-specific neurotransmitter deployment that regulates organismal adaptation to photoperiod change.


Assuntos
Adaptação Fisiológica , Axônios , Ritmo Circadiano , Neurotransmissores , Fotoperíodo , Animais , Feminino , Camundongos , Adaptação Fisiológica/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Axônios/metabolismo , Axônios/fisiologia , Ritmo Circadiano/fisiologia , Proteínas CLOCK/genética , Escuridão , Núcleo Dorsal da Rafe/citologia , Núcleo Dorsal da Rafe/metabolismo , Vias Neurais/fisiologia , Neurotransmissores/metabolismo , Área Pré-Óptica/citologia , Área Pré-Óptica/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Vírus da Raiva , Serotonina/metabolismo , Sono/fisiologia , Vigília/fisiologia
13.
Stroke ; 55(9): 2385-2396, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39011642

RESUMO

Circadian rhythm is a master process observed in nearly every type of cell throughout the body, and it macroscopically regulates daily physiology. Recent clinical trials have revealed the effects of circadian variation on the incidence, pathophysiological processes, and prognosis of acute ischemic stroke. Furthermore, core clock genes, the cell-autonomous pacemakers of the circadian rhythm, affect the neurovascular unit-composing cells in a nonparallel manner after the same pathophysiological processes of ischemia/reperfusion. In this review, we discuss the influence of circadian rhythms and clock genes on each type of neurovascular unit cell in the pathophysiological processes of acute ischemic stroke.


Assuntos
Ritmo Circadiano , Humanos , Ritmo Circadiano/fisiologia , Animais , AVC Isquêmico/fisiopatologia , Encéfalo/fisiopatologia , Isquemia Encefálica/fisiopatologia , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Acidente Vascular Cerebral/fisiopatologia
14.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119782, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38871225

RESUMO

Circadian Locomotor Output Cycles Kaput (CLOCK) is one of the circadian clock genes and is considered to be a fundamental regulatory gene in the circadian rhythm, responsible for mediating several biological processes. Therefore, abnormal expression of CLOCK affects its role in the circadian clock and its more general function as a direct regulator of gene expression. This dysfunction can lead to severe pathological effects, including cancer. To better understand the role of CLOCK in cancer, we compiled this review to describe the biological function of CLOCK, and especially highlighted its function in cancer development, progression, tumor microenvironment, cancer cell metabolism, and drug resistance.


Assuntos
Proteínas CLOCK , Relógios Circadianos , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Relógios Circadianos/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Microambiente Tumoral/genética , Regulação Neoplásica da Expressão Gênica , Ritmo Circadiano/genética , Animais , Resistencia a Medicamentos Antineoplásicos/genética
15.
Cell Mol Neurobiol ; 44(1): 51, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907776

RESUMO

The circadian system is a conserved time-keeping machinery that regulates a wide range of processes such as sleep/wake, feeding/fasting, and activity/rest cycles to coordinate behavior and physiology. Circadian disruption can be a contributing factor in the development of metabolic diseases, inflammatory disorders, and higher risk of cancer. Glioblastoma (GBM) is a highly aggressive grade 4 brain tumor that is resistant to conventional therapies and has a poor prognosis after diagnosis, with a median survival of only 12-15 months. GBM cells kept in culture were shown to contain a functional circadian oscillator. In seeking more efficient therapies with lower side effects, we evaluated the pharmacological modulation of the circadian clock by targeting the cytosolic kinases glycogen synthase kinase-3 (GSK-3) and casein kinase 1 ε/δ (CK1ε/δ) with specific inhibitors (CHIR99021 and PF670462, respectively), the cryptochrome protein stabilizer (KL001), or circadian disruption after Per2 knockdown expression in GBM-derived cells. CHIR99021-treated cells had a significant effect on cell viability, clock protein expression, migration, and cell cycle distribution. Moreover, cultures exhibited higher levels of reactive oxygen species and alterations in lipid droplet content after GSK-3 inhibition compared to control cells. The combined treatment of CHIR99021 with temozolomide was found to improve the effect on cell viability compared to temozolomide therapy alone. Per2 disruption affected both GBM migration and cell cycle progression. Overall, our results suggest that pharmacological modulation or molecular clock disruption severely affects GBM cell biology.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Humanos , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Piridinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Citosol/metabolismo , Citosol/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Pirimidinas/farmacologia , Movimento Celular/efeitos dos fármacos , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/fisiologia , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Espécies Reativas de Oxigênio/metabolismo
16.
Sci Rep ; 14(1): 12936, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839826

RESUMO

Circadian rhythms are endogenous oscillations in nearly all organisms, from prokaryotes to humans, allowing them to adapt to cyclical environments for close to 24 h. Circadian rhythms are regulated by a central clock, based on a transcription-translation feedback loop. One important protein in the central loop in metazoan clocks is PERIOD, which is regulated in part by Casein kinase 1ε/δ (CK1ε/δ) phosphorylation. In the nematode Caenorhabditis elegans, period and casein kinase 1ε/δ are conserved as lin-42 and kin-20, respectively. Here, we studied the involvement of lin-42 and kin-20 in the circadian rhythms of the adult nematode using a bioluminescence-based circadian transcriptional reporter. We show that mutations of lin-42 and kin-20 generate a significantly longer endogenous period, suggesting a role for both genes in the nematode circadian clock, as in other organisms. These phenotypes can be partially rescued by overexpression of either gene under their native promoter. Both proteins are expressed in neurons and epidermal seam cells, as well as in other cells. Depletion of LIN-42 and KIN-20, specifically in neuronal cells after development, was sufficient to lengthen the period of oscillating sur-5 expression. Therefore, we conclude that LIN-42 and KIN-20 are critical regulators of the adult nematode circadian clock through neuronal cells.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Ritmo Circadiano , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Regulação da Expressão Gênica , Mutação , Neurônios/metabolismo , Fatores de Transcrição
17.
Proc Natl Acad Sci U S A ; 121(23): e2316858121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805270

RESUMO

In mammals, CLOCK and BMAL1 proteins form a heterodimer that binds to E-box sequences and activates transcription of target genes, including Period (Per). Translated PER proteins then bind to the CLOCK-BMAL1 complex to inhibit its transcriptional activity. However, the molecular mechanism and the impact of this PER-dependent inhibition on the circadian clock oscillation remain elusive. We previously identified Ser38 and Ser42 in a DNA-binding domain of CLOCK as phosphorylation sites at the PER-dependent inhibition phase. In this study, knockout rescue experiments showed that nonphosphorylatable (Ala) mutations at these sites shortened circadian period, whereas their constitutive-phospho-mimetic (Asp) mutations completely abolished the circadian rhythms. Similarly, we found that nonphosphorylatable (Ala) and constitutive-phospho-mimetic (Glu) mutations at Ser78 in a DNA-binding domain of BMAL1 also shortened the circadian period and abolished the rhythms, respectively. The mathematical modeling predicted that these constitutive-phospho-mimetic mutations weaken the DNA binding of the CLOCK-BMAL1 complex and that the nonphosphorylatable mutations inhibit the PER-dependent displacement (reduction of DNA-binding ability) of the CLOCK-BMAL1 complex from DNA. Biochemical experiments supported the importance of these phosphorylation sites for displacement of the complex in the PER2-dependent inhibition. Our results provide direct evidence that phosphorylation of CLOCK-Ser38/Ser42 and BMAL1-Ser78 plays a crucial role in the PER-dependent inhibition and the determination of the circadian period.


Assuntos
Fatores de Transcrição ARNTL , Proteínas CLOCK , Relógios Circadianos , Proteínas Circadianas Period , Animais , Humanos , Camundongos , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/química , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Ritmo Circadiano/genética , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , DNA/metabolismo , Células HEK293 , Mutação , Células NIH 3T3 , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Fosforilação , Ligação Proteica , Domínios Proteicos
18.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(2): 190-196, 2024 Feb 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38755715

RESUMO

One of the most common and significant symptoms for skin disorders is pruritus. Additionally, it serves as a significant catalyst for the exacerbation or reoccurrence of skin diseases. Pruritus seriously affects patients' physical and mental health, and even the quality of life. It brings a heavy burden to the patients, the families, even the whole society. The pathogenesis and regulation mechanisms for pruritus are complicated and have not yet been elucidated. Previous clinical studies have shown that itch worsens at night in scabies, chronic pruritus, atopic dermatitis, and psoriasis, suggesting that skin pruritus may change with circadian rhythm. Cortisol, melatonin, core temperature, cytokines, and prostaglandins are the main regulatory factors of the circadian rhythm of pruritus. Recent studies have shown that some CLOCK genes, such as BMAL1, CLOCK, PER, and CRY, play an important role in the regulation of the circadian rhythm of pruritus by regulating the Janus tyrosine kinase (JAK)-signal transducer and activator of transcription (STAT) and nuclear factor kappa-B (NF-κB) signaling pathways. However, the mechanisms for circadian clock genes in regulation of circadian rhythm of pruritus have not been fully elucidated. Further studies on the mechanism of circadian clock genes in the regulation of circadian rhythm of pruritus will lay a foundation for elucidating the regulatory mechanisms for pruritus, and also provide new ideas for the control of pruritus and the alleviation of skin diseases.


Assuntos
Ritmo Circadiano , Prurido , Prurido/fisiopatologia , Prurido/etiologia , Humanos , Ritmo Circadiano/fisiologia , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Transdução de Sinais , Melatonina/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , NF-kappa B/metabolismo , Relógios Circadianos/genética , Relógios Circadianos/fisiologia
19.
PLoS Genet ; 20(5): e1011278, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805552

RESUMO

Chromatin organization plays a crucial role in gene regulation by controlling the accessibility of DNA to transcription machinery. While significant progress has been made in understanding the regulatory role of clock proteins in circadian rhythms, how chromatin organization affects circadian rhythms remains poorly understood. Here, we employed ATAC-seq (Assay for Transposase-Accessible Chromatin with Sequencing) on FAC-sorted Drosophila clock neurons to assess genome-wide chromatin accessibility at dawn and dusk over the circadian cycle. We observed significant oscillations in chromatin accessibility at promoter and enhancer regions of hundreds of genes, with enhanced accessibility either at dusk or dawn, which correlated with their peak transcriptional activity. Notably, genes with enhanced accessibility at dusk were enriched with E-box motifs, while those more accessible at dawn were enriched with VRI/PDP1-box motifs, indicating that they are regulated by the core circadian feedback loops, PER/CLK and VRI/PDP1, respectively. Further, we observed a complete loss of chromatin accessibility rhythms in per01 null mutants, with chromatin consistently accessible at both dawn and dusk, underscoring the critical role of Period protein in driving chromatin compaction during the repression phase at dawn. Together, this study demonstrates the significant role of chromatin organization in circadian regulation, revealing how the interplay between clock proteins and chromatin structure orchestrates the precise timing of biological processes throughout the day. This work further implies that variations in chromatin accessibility might play a central role in the generation of diverse circadian gene expression patterns in clock neurons.


Assuntos
Cromatina , Ritmo Circadiano , Proteínas de Drosophila , Drosophila melanogaster , Animais , Cromatina/genética , Cromatina/metabolismo , Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Transcrição Gênica , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Regiões Promotoras Genéticas , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Relógios Circadianos/genética , Drosophila/genética , Elementos Facilitadores Genéticos , Fatores de Transcrição de Zíper de Leucina Básica
20.
Elife ; 122024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743049

RESUMO

The circadian clock enables anticipation of the day/night cycle in animals ranging from cnidarians to mammals. Circadian rhythms are generated through a transcription-translation feedback loop (TTFL or pacemaker) with CLOCK as a conserved positive factor in animals. However, CLOCK's functional evolutionary origin and mechanism of action in basal animals are unknown. In the cnidarian Nematostella vectensis, pacemaker gene transcript levels, including NvClk (the Clock ortholog), appear arrhythmic under constant darkness, questioning the role of NvCLK. Utilizing CRISPR/Cas9, we generated a NvClk allele mutant (NvClkΔ), revealing circadian behavior loss under constant dark (DD) or light (LL), while maintaining a 24 hr rhythm under light-dark condition (LD). Transcriptomics analysis revealed distinct rhythmic genes in wild-type (WT) polypsunder LD compared to DD conditions. In LD, NvClkΔ/Δ polyps exhibited comparable numbers of rhythmic genes, but were reduced in DD. Furthermore, under LD, the NvClkΔ/Δ polyps showed alterations in temporal pacemaker gene expression, impacting their potential interactions. Additionally, differential expression of non-rhythmic genes associated with cell division and neuronal differentiation was observed. These findings revealed that a light-responsive pathway can partially compensate for circadian clock disruption, and that the Clock gene has evolved in cnidarians to synchronize rhythmic physiology and behavior with the diel rhythm of the earth's biosphere.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Ritmo Circadiano/genética , Relógios Circadianos/genética , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/fisiologia , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Fotoperíodo , Cnidários/fisiologia , Cnidários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...