Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.035
Filtrar
1.
Viruses ; 16(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39339884

RESUMO

A novel tick-borne orthonairovirus called the Yezo virus (YEZV), primarily transmitted by the Ixodes persulcatus tick, has been recently discovered and poses significant threats to human health. The YEZV is considered endemic in Japan and China. Clinical symptoms associated with this virus include thrombocytopenia, fatigue, headache, leukopenia, fever, depression, and neurological complications ranging from mild febrile illness to severe outcomes like meningitis and encephalitis. At present, there is no treatment or vaccine readily accessible for this pathogenic virus. Therefore, this research employed an immunoinformatics approach to pinpoint potential vaccine targets within the YEZV through an extensive examination of its structural proteins. Three structural proteins were chosen using specific criteria to pinpoint T-cell and B-cell epitopes, which were subsequently validated through interferon-gamma induction. Six overlapping epitopes for cytotoxic T-lymphocytes (CTL), helper T-lymphocytes (HTL), and linear B-lymphocytes (LBL) were selected to construct a multi-epitope vaccine, achieving a 92.29% coverage of the global population. These epitopes were then fused with the 50S ribosomal protein L7/L12 adjuvant to improve protection against international strains. The three-dimensional structure of the designed vaccine construct underwent an extensive evaluation through structural analysis. Following molecular docking studies, the YEZV vaccine construct emerged as a candidate for further investigation, showing the lowest binding energy (-78.7 kcal/mol) along with favorable physiochemical and immunological properties. Immune simulation and molecular dynamics studies demonstrated its stability and potential to induce a strong immune response within the host cells. This comprehensive analysis indicates that the designed vaccine construct could offer protection against the YEZV. It is crucial to conduct additional in vitro and in vivo experiments to verify its safety and effectiveness.


Assuntos
Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T , Vacinas Virais , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Animais , Vacinas Virais/imunologia , Vacinas Virais/química , Humanos , Proteínas Estruturais Virais/imunologia , Proteínas Estruturais Virais/química , Camundongos , Linfócitos T Citotóxicos/imunologia , Simulação de Acoplamento Molecular , Imunoinformática
2.
J Vet Diagn Invest ; 36(5): 745-749, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39108140

RESUMO

Rabbit hemorrhagic disease virus 2 (RHDV2) has spread across the United States infecting and causing death in domestic and wild rabbits. Immunohistochemistry (IHC) would be a useful tool for the detection of RHDV2 antigen in tissues as it is inexpensive and readily achievable in most diagnostic laboratories. However, there is no readily available antibody for this purpose. To fill this void, we generated an RHDV2 capsid protein VP60-specific antibody in chicken eggs and validated the antibody using formalin-fixed tissues from 5 domestic rabbits naturally infected with RHDV2. Viral antigen was detected immunohistochemically in various tissues, most prominently in hepatocytes and macrophages in liver, and in macrophages in spleen and cecal lymphoid tissue. Intravascular mononuclear cells in lung and renal tubular and biliary epithelium also were immunolabeled. Both nuclear and cytoplasmic immunolabeling were observed. This peptide-generated antibody is a potentially useful tool as an adjunct to reverse-transcription PCR or in situ hybridization for detection of RHDV2 in tissues.


Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Imuno-Histoquímica , Animais , Vírus da Doença Hemorrágica de Coelhos/imunologia , Coelhos , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/virologia , Infecções por Caliciviridae/diagnóstico , Imuno-Histoquímica/veterinária , Imuno-Histoquímica/métodos , Anticorpos Antivirais , Proteínas do Capsídeo/imunologia , Proteínas Estruturais Virais/imunologia
3.
J Virol ; 98(9): e0065624, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39136460

RESUMO

The multifunctional tegument protein pUL21 of HSV-2 is phosphorylated in infected cells. We have identified two residues in the unstructured linker region of pUL21, serine 251 and serine 253, as phosphorylation sites. Both phosphorylation sites are absent in HSV-1 pUL21, which likely explains why phosphorylated pUL21 was not detected in cells infected with HSV-1. Cells infected with HSV-2 strain 186 viruses deficient in pUL21 phosphorylation exhibited reductions in both cell-cell spread of virus infection and virus replication. Defects in secondary envelopment of cytoplasmic nucleocapsids were also observed in cells infected with viruses deficient in pUL21 phosphorylation as well as in cells infected with multiple strains of HSV-2 and HSV-1 deleted for pUL21. These results confirm a role for HSV pUL21 in the secondary envelopment of cytoplasmic nucleocapsids and indicate that phosphorylation of HSV-2 pUL21 is required for this activity. Phosphorylation of pUL21 was substantially reduced in cells infected with HSV-2 strain 186 mutants lacking the viral serine/threonine kinase pUL13, indicating a requirement for pUL13 in pUL21 phosphorylation. IMPORTANCE: It is well known that post-translational modification of proteins by phosphorylation can regulate protein function. Here, we determined that phosphorylation of the multifunctional HSV-2 tegument protein pUL21 requires the viral serine/threonine kinase pUL13. In addition, we identified serine residues within HSV-2 pUL21 that can be phosphorylated. Phenotypic analysis of mutant HSV-2 strains with deficiencies in pUL21 phosphorylation revealed reductions in both cell-cell spread of virus infection and virus replication. Deficiencies in pUL21 phosphorylation also compromised the secondary envelopment of cytoplasmic nucleocapsids, a critical final step in the maturation of all herpes virions. Unlike HSV-2 pUL21, phosphorylation of HSV-1 pUL21 was not detected. This fundamental difference between HSV-2 and HSV-1 may underlie our previous observations that the requirements for pUL21 differ between HSV species.


Assuntos
Herpesvirus Humano 2 , Nucleocapsídeo , Replicação Viral , Herpesvirus Humano 2/metabolismo , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/fisiologia , Fosforilação , Animais , Chlorocebus aethiops , Humanos , Células Vero , Nucleocapsídeo/metabolismo , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Citoplasma/metabolismo , Citoplasma/virologia , Linhagem Celular , Proteínas Estruturais Virais/metabolismo , Proteínas Estruturais Virais/genética , Montagem de Vírus , Herpes Simples/virologia , Herpes Simples/metabolismo
4.
Vet Microbiol ; 296: 110191, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39032445

RESUMO

Infectious bursal disease virus (IBDV) is a highly contagious virus with a dsRNA genome, predominantly infecting chickens and causing significant economic losses due to high mortality rates. The emergence of recombinant, novel variant, and highly virulent strains that evade current vaccines has led to frequent epidemics and outbreaks in the poultry industry. The lack of targeted antivirals for IBDV underscores the pressing requirement to develop potent therapeutic options. Within this framework, our research investigated the effectiveness of picroside II, a naturally derived iridoid glycoside, against viruses in DF-1 cells. Our findings demonstrate that picroside II significantly inhibits viral replication, with its efficacy increasing proportionally to the dosage administered. Through time-addition and antiviral duration analysis, we determined that picroside II therapeutically blocks IBDV replication, with its effects persisting for over 72 hours. Further investigation revealed that picroside II specifically inhibits the cellular replication stage of IBDV's lifecycle. Additionally, our findings indicate that picroside II impairs VP1 polymerase activity by binding to the active pocket, which significantly disrupts the interaction between VP1 and VP3. Mutations at three critical binding sites on VP1 not only impair virus replication but also hinder polymerase function and disrupt VP1-VP3 interactions. Collectively, these results demonstrate that picroside II, by inhibiting viral polymerase activity, represents a promising antiviral agent against IBDV.


Assuntos
Antivirais , Galinhas , Cinamatos , Vírus da Doença Infecciosa da Bursa , Glucosídeos Iridoides , Replicação Viral , Replicação Viral/efeitos dos fármacos , Vírus da Doença Infecciosa da Bursa/efeitos dos fármacos , Vírus da Doença Infecciosa da Bursa/fisiologia , Vírus da Doença Infecciosa da Bursa/genética , Animais , Cinamatos/farmacologia , Glucosídeos Iridoides/farmacologia , Antivirais/farmacologia , Linhagem Celular , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/tratamento farmacológico
5.
ACS Infect Dis ; 10(8): 2507-2524, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992989

RESUMO

The Alphavirus genus includes viruses that cause encephalitis due to neuroinvasion and viruses that cause arthritis due to acute and chronic inflammation. There is no approved therapeutic for alphavirus infections, but significant efforts are ongoing, more so in recent years, to develop vaccines and therapeutics for alphavirus infections. This review article highlights some of the major advances made so far to identify small molecules that can selectively target the structural and the nonstructural proteins in alphaviruses with the expectation that persistent investigation of an increasingly expanding chemical space through a variety of structure-based design and high-throughput screening strategies will yield candidate drugs for clinical studies. While most of the works discussed are still in the early discovery to lead optimization stages, promising avenues remain for drug development against this family of viruses.


Assuntos
Alphavirus , Antivirais , Proteínas não Estruturais Virais , Alphavirus/efeitos dos fármacos , Alphavirus/química , Antivirais/farmacologia , Antivirais/química , Humanos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Infecções por Alphavirus/tratamento farmacológico , Infecções por Alphavirus/virologia , Animais , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/antagonistas & inibidores
6.
Vet Microbiol ; 296: 110198, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067145

RESUMO

Senecavirus A (SVA) is a causative agent that can cause vesicular disease in swine, which causes a great threat to the swine husbandry in the world. Therefore, it is necessary to develop a vaccine that can effectively prevent the spread of SVA. In this study, we developed a 24-polymeric nano-scaffold using ß-annulus peptide from tomato bushy effect virus (TBSV) by coupling this antigen to SVA B cell epitope VP121-26 and VP2 proteins via linkers, respectively. The SVA-based nanoparticle protein of the VP1(B)-ß-VP2 was expressed and purified by low-cost prokaryotic system to prepare a SVA nanoparticle vaccine. The immunological protective effect of SVA nanoparticle vaccine was evaluated in mouse and swine models, respectively. The results suggested that both mice and swine could induce high levels SVA neutralizing antibodies and IgG antibodies after two doses immunization. In addition, the swine challenge protection experiment showed that the protection rate of immune SVA nanoparticle vaccine and SVA inactivated vaccine both were 80 %, while the negative control had no protection effect. It demonstrated that SVA nanoparticle vaccine effectively prevented SVA infection in swine. In summary, the preparation of SVA vaccine by using ß-annulus peptide is a promising candidate vaccine for prevent SVA transmission, and provides a new idea for the development of novel SVA vaccines.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Nanovacinas , Infecções por Picornaviridae , Picornaviridae , Doenças dos Suínos , Vacinas Virais , Animais , Feminino , Camundongos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Proteínas do Capsídeo/imunologia , Camundongos Endogâmicos BALB C , Nanovacinas/administração & dosagem , Nanovacinas/imunologia , Picornaviridae/imunologia , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/prevenção & controle , Infecções por Picornaviridae/imunologia , Infecções por Picornaviridae/virologia , Suínos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Proteínas Estruturais Virais/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem
7.
Biochem Biophys Res Commun ; 728: 150334, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-38968773

RESUMO

Capsid-like poxvirus scaffold proteins self-assemble into semi-regular lattice that govern the formation of spherical immature virus particles. The scaffolding is a critical step in virus morphogenesis as exemplified by the drug rifampicin that impairs the recruitment of scaffold onto the viral membrane in vaccinia virus (VACV). Here we report cryo-electron microscopy structure of scaffolding protein Orfv075 of orf virus (ORFV) that causes smallpox-like diseases in sheep, goats and occasionally humans via zoonotic infection. We demonstrate that the regions that are involved in intertrimeric interactions for scaffold assembly are largely conserved in comparison to its VACV orthologue protein D13 whose intermediate assembly structures have been previously characterized. By contrast, less conserved regions are located away from these interfaces, indicating both viruses share similar assembly mechanisms. We also show that the phenylalanine-rich binding site of rifampicin in D13 is conserved in Orfv075, and molecular docking simulation confirms similar binding modes. Our study provides structural basis of scaffolding protein as a target for anti-poxvirus treatment across wide range of poxvirus genera.


Assuntos
Microscopia Crioeletrônica , Vírus do Orf , Vírus do Orf/química , Vírus do Orf/ultraestrutura , Simulação de Acoplamento Molecular , Animais , Sítios de Ligação , Conformação Proteica , Modelos Moleculares , Sequência de Aminoácidos , Proteínas Virais/química , Proteínas Virais/ultraestrutura , Proteínas Virais/metabolismo , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/ultraestrutura , Proteínas Estruturais Virais/metabolismo , Rifampina/química , Rifampina/farmacologia
8.
Front Cell Infect Microbiol ; 14: 1351303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881736

RESUMO

Introduction: Fowl adenovirus (FAdV) is a significant pathogen in poultry, causing various diseases such as hepatitis-hydropericardium, inclusion body hepatitis, and gizzard erosion. Different serotypes of FAdV are associated with specific conditions, highlighting the need for targeted prevention strategies. Given the rising prevalence of FAdV-related diseases globally, effective vaccination and biosecurity measures are crucial. In this study, we explore the potential of structural proteins to design a multi-epitope vaccine targeting FAdV. Methods: We employed an in silico approach to design the multi-epitope vaccine. Essential viral structural proteins, including hexon, penton, and fiber protein, were selected as vaccine targets. T-cell and B-cell epitopes binding to MHC-I and MHC-II molecules were predicted using computational methods. Molecular docking studies were conducted to validate the interaction of the multi-epitope vaccine candidate with chicken Toll-like receptors 2 and 5. Results: Our in silico methodology successfully identified potential T-cell and B-cell epitopes within the selected viral structural proteins. Molecular docking studies revealed strong interactions between the multi-epitope vaccine candidate and chicken Toll-like receptors 2 and 5, indicating the structural integrity and immunogenic potential of the designed vaccine. Discussion: The designed multi-epitope vaccine presents a promising approach for combating FAdV infections in chickens. By targeting essential viral structural proteins, the vaccine is expected to induce a robust immunological response. The in silico methodology utilized in this study provides a rapid and cost-effective means of vaccine design, offering insights into potential vaccine candidates before experimental validation. Future studies should focus on in vitro and in vivo evaluations to further assess the efficacy and safety of the proposed vaccine.


Assuntos
Infecções por Adenoviridae , Galinhas , Epitopos de Linfócito B , Epitopos de Linfócito T , Simulação de Acoplamento Molecular , Doenças das Aves Domésticas , Vacinas de Subunidades Antigênicas , Animais , Vacinas de Subunidades Antigênicas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito B/imunologia , Infecções por Adenoviridae/prevenção & controle , Infecções por Adenoviridae/veterinária , Infecções por Adenoviridae/imunologia , Vacinas Virais/imunologia , Proteínas Estruturais Virais/imunologia , Proteínas Estruturais Virais/genética , Aviadenovirus/imunologia , Aviadenovirus/genética , Simulação por Computador , Vacinas de Subunidades Proteicas
9.
Viruses ; 16(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38932285

RESUMO

Infectious pancreatic necrosis virus (IPNV) causes economic losses with a highly variable mortality rate worldwide, especially in rainbow trout. The virus has a double-stranded bi-partite RNA genome designated segment A and B. New complete genome sequences of nine rainbow trout isolates from Turkey were determined and subjected to phylogenetic analysis, identifying all as genotype 5 (serotype Sp). A time-dependent change in the extended pathogenicity motif of VP2 from P217T221A247 (PTA) to PTE P217T221E247 over a period of 10 years was identified. A wider analysis of 99 IPNV sequences from Turkey and Iran revealed the emergence of the motif PTE from 2007 to 2017, inducing significant morbidity in fry by 2013. In fact, displacement of the PTA motif, by the PTE motif in IPNV isolates appeared to be connected to a production peak of rainbow trout in 2013. An additional CAI analysis provided more evidence, indicating that rainbow trout culture in Turkey has an influence on the evolution of IPNV.


Assuntos
Infecções por Birnaviridae , Doenças dos Peixes , Vírus da Necrose Pancreática Infecciosa , Oncorhynchus mykiss , Animais , Motivos de Aminoácidos , Aquicultura , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/virologia , Evolução Molecular , Doenças dos Peixes/virologia , Genoma Viral , Genótipo , Vírus da Necrose Pancreática Infecciosa/genética , Vírus da Necrose Pancreática Infecciosa/patogenicidade , Vírus da Necrose Pancreática Infecciosa/isolamento & purificação , Vírus da Necrose Pancreática Infecciosa/classificação , Oncorhynchus mykiss/virologia , Filogenia , Turquia , Proteínas Estruturais Virais/genética , Virulência
10.
Vet Microbiol ; 295: 110148, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851152

RESUMO

Water buffalo Hunnivirus (BufHuV) belongs to the family Picornaviridae and is a newly discovered member of the Hunnivirus A genus. It causes intestinal diseases in cattle, mainly lead to subclinical infections, thereby seriously threatening the health of cattle herds. In addition, it can also bring about various clinical disease syndromes which results in severe economic losses to the cattle industry. To date, there have been no reports worldwide on the study of Hunnivirus virus infecting host cells and causing innate immune responses. In this study, we found that interferon treatment effectively blocked BufHuV replication and infection with the virus weakened the host antiviral responses. Inhibiting the transcription of IFN-ß and ISGs induced by either Sendai virus (SeV) or poly(I:C) in MDBK and HCT-8 cells, were dependent on the IRF3 or NF-κB signaling pathways, and this inhibited the activation of IFN-ß promoter by TBK1 and its upstream molecules, RIGI and MDA5. By constructing and screening five BufHuV proteins, we found that VP2, 2 C, 3 C and 3D inhibited the activation of IFN-ß promoter induced by SeV. Subsequently, we showed that VP2 inhibited the activation of IRF3 induced by SeV or poly (I:C), and it inhibited IRF3 activation by inhibiting its phosphorylation and nuclear translocation. In addition, we confirmed that VP2 inhibited the activation of IFNß induced by signaling molecules, MDA5 and TBKI. In summary, these findings provide new insights into the pathogenesis of Hunnivirus and its mechanisms involved in evading host immune responses.


Assuntos
Fator Regulador 3 de Interferon , Interferon beta , Interferon beta/genética , Interferon beta/imunologia , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Animais , Humanos , Linhagem Celular , Transdução de Sinais/efeitos dos fármacos , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Imunidade Inata , Bovinos , Búfalos/virologia , NF-kappa B/metabolismo
11.
Vaccine ; 42(24): 126081, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38944579

RESUMO

Infectious bursal disease virus (IBDV) is an acute and highly infectious RNA virus known for its immunosuppressive capabilities, chiefly inflicting rapid damage to the bursa of Fabricius (BF) of chickens. Current clinical control of IBDV infection relies on vaccination. However, the emergence of novel variant IBDV (nVarIBDV) has posed a threat to the poultry industry across the globe, underscoring the great demand for innovative and effective vaccines. Our previous studies have highlighted the critical role of IBDV VP5 as an apoptosis-inducer in host cells. In this study, we engineered IBDV mutants via a reverse genetic system to introduce amino acid mutations in VP5. We found that the mutant IBDV-VP5/3m strain caused reduced host cell mortality, and that strategic mutations in VP5 reduced IBDV replication early after infection, thereby delaying cell death. Furthermore, inoculation of chickens with IBDV-VP5/3m effectively reduced damage to BF and induced neutralizing antibody production comparable to that of parental IBDV WT strain. Importantly, vaccination with IBDV-VP5/3m protected chickens against challenges with nVarIBDV, an emerging IBDV variant strain in China, reducing nVarIBDV loads in BF while alleviating bursal atrophy and splenomegaly, suggesting that IBDV-VP5/3m might serve as a novel vaccine candidate that could be further developed as an effective vaccine for clinical control of IBD. This study provides a new clue to the development of novel and effective vaccines.


Assuntos
Infecções por Birnaviridae , Galinhas , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Vacinas Atenuadas , Vacinas Virais , Animais , Aminoácidos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Birnaviridae/prevenção & controle , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/imunologia , Bolsa de Fabricius/virologia , Bolsa de Fabricius/imunologia , Bolsa de Fabricius/patologia , Vírus da Doença Infecciosa da Bursa/genética , Vírus da Doença Infecciosa da Bursa/imunologia , Mutação , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/genética , Proteínas não Estruturais Virais , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/imunologia , Vacinas Virais/imunologia , Vacinas Virais/genética , Replicação Viral
12.
J Mol Biol ; 436(12): 168595, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38724003

RESUMO

During the late stage of infection, alphabaculoviruses produce many occlusion bodies (OBs) in the nuclei of the insect host's cells through the hyperexpression of polyhedrin (POLH), a major OB component encoded by polh. The strong polh promoter has been used to develop a baculovirus expression vector system for recombinant protein expression in cultured insect cells and larvae. However, the relationship between POLH accumulation and the polh coding sequence remains largely unelucidated. This study aimed to assess the importance of polh codon usage and/or nucleotide sequences in POLH accumulation by generating a baculovirus Bombyx mori nucleopolyhedrovirus (BmNPV) expressing mutant polh (co-polh) optimized according to the codon preference of its host insect. Although the deduced amino acid sequence of CO-POLH was the same as that of wild-type POLH, POLH accumulation was significantly lower in cells infected with the co-polh mutant. This reduction was due to decreased polh mRNA levels rather than translational repression. Analysis of mutant viruses with chimeric polh revealed that a 30 base-pair (bp) 5' proximal polh coding region was necessary for maintaining high polh mRNA levels. Sequence comparison of wild-type polh and co-polh identified five nucleotide differences in this region, indicating that these nucleotides were critical for polh hyperexpression. Furthermore, luciferase reporter assays showed that the 30 bp 5' coding region was sufficient for maintaining the polh promoter-driven high level of polh mRNA. Thus, our whole-gene scanning by codon optimization identified important hidden nucleotides for polh hyperexpression in alphabaculoviruses.


Assuntos
Bombyx , Nucleopoliedrovírus , Proteínas de Matriz de Corpos de Inclusão , Nucleopoliedrovírus/genética , Animais , Proteínas de Matriz de Corpos de Inclusão/genética , Bombyx/virologia , Bombyx/genética , Nucleotídeos/genética , Nucleotídeos/metabolismo , Regiões Promotoras Genéticas , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo , Códon/genética , Regulação Viral da Expressão Gênica , Linhagem Celular
13.
Proc Natl Acad Sci U S A ; 121(19): e2401341121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696466

RESUMO

Neurotropic alphaherpesviruses, including herpes simplex virus type 1 (HSV-1), recruit microtubule motor proteins to invade cells. The incoming viral particle traffics to nuclei in a two-step process. First, the particle uses the dynein-dynactin motor to sustain transport to the centrosome. In neurons, this step is responsible for long-distance retrograde axonal transport and is an important component of the neuroinvasive property shared by these viruses. Second, a kinesin-dependent mechanism redirects the particle from the centrosome to the nucleus. We have reported that the kinesin motor used during the second step of invasion is assimilated into nascent virions during the previous round of infection. Here, we report that the HSV-1 pUL37 tegument protein suppresses the assimilated kinesin-1 motor during retrograde axonal transport. Region 2 (R2) of pUL37 was required for suppression and functioned independently of the autoinhibitory mechanism native to kinesin-1. Furthermore, the motor domain and proximal coiled coil of kinesin-1 were sufficient for HSV-1 assimilation, pUL37 suppression, and nuclear trafficking. pUL37 localized to the centrosome, the site of assimilated kinesin-1 activation during infection, when expressed in cells in the absence of other viral proteins; however, pUL37 did not suppress kinesin-1 in this context. These results indicate that the pUL37 tegument protein spatially and temporally regulates kinesin-1 via the amino-terminal motor region in the context of the incoming viral particle.


Assuntos
Herpesvirus Humano 1 , Cinesinas , Proteínas Estruturais Virais , Cinesinas/metabolismo , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/metabolismo , Humanos , Animais , Transporte Axonal/fisiologia , Chlorocebus aethiops , Centrossomo/metabolismo , Neurônios/metabolismo , Neurônios/virologia , Células Vero , Núcleo Celular/metabolismo , Núcleo Celular/virologia
14.
Vet Res ; 55(1): 63, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760810

RESUMO

The maintenance of viral protein homeostasis depends on the interaction between host cell proteins and viral proteins. As a molecular chaperone, heat shock protein 70 (HSP70) has been shown to play an important role in viral infection. Our results showed that HSP70 can affect translation, replication, assembly, and release during the life cycle of duck hepatitis A virus type 1 (DHAV-1). We demonstrated that HSP70 can regulate viral translation by interacting with the DHAV-1 internal ribosome entry site (IRES). In addition, HSP70 interacts with the viral capsid proteins VP1 and VP3 and promotes their stability by inhibiting proteasomal degradation, thereby facilitating the assembly of DHAV-1 virions. This study demonstrates the specific role of HSP70 in regulating DHAV-1 replication, which are helpful for understanding the pathogenesis of DHAV-1 infection and provide additional information about the role of HSP70 in infection by different kinds of picornaviruses, as well as the interaction between picornaviruses and host cells.


Assuntos
Proteínas de Choque Térmico HSP70 , Vírus da Hepatite do Pato , Sítios Internos de Entrada Ribossomal , Replicação Viral , Vírus da Hepatite do Pato/fisiologia , Vírus da Hepatite do Pato/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Animais , Proteínas Estruturais Virais/metabolismo , Proteínas Estruturais Virais/genética , Patos , Doenças das Aves Domésticas/virologia , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/virologia , Infecções por Picornaviridae/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Hepatite Viral Animal/virologia , Hepatite Viral Animal/metabolismo , Biossíntese de Proteínas
15.
Avian Pathol ; 53(5): 419-429, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38784976

RESUMO

Since the detection of antigenically atypical very virulent Infectious bursal disease viruses (vvIBDV) in Egypt in 1999, the country has been experiencing recurrent outbreaks with high mortality rates and typical gross lesions associated with typical vvIBDV. However, a significant change occurred in 2023, marked by a notable increase in reported subclinical IBDV cases. To evaluate the field situation, samples from 21 farms in 2023 and 18 farms from 2021 and 2022, all of which had experienced IBD outbreaks based on clinical diagnosis, were collected, and subjected to VP2-HVR sequencing. Phylogenetic analysis revealed that all samples collected in 2021 and 2022 clustered with classical virulent strains and vvIBDV. In 2023, one sample clustered with the Egyptian vvIBDV, another with classical virulent IBDV, and the rest with the novel variant IBDV (nVarIBDV) circulating in China. The alignment of deduced amino acid sequences for VP2 showed that all Egyptian classic virulent strains were identical to the Winterfield or Lukert strains, while vvIBDV strains exhibited two out of the three typical residues found in Egyptian vvIBDV, namely Y220F and G254S, but not A321T. Meanwhile, all Egyptian variant strains exhibited typical residues found in nVarIBDV. However, all Egyptian variants showed a mutation at position 321 (321V), which represents the most exposed part of the capsid and is known to have a massive impact on IBDV antigenicity, except for one sample that had 318G instead. This report highlights the emergence of a new variant IBDV in Egypt, clustered with the Chinese new variants, spreading subclinically in broiler farms across a wide geographic area.RESEARCH HIGHLIGHTS New variant IBDV which emerged in Egypt clustered with Chinese nVarIBDV.nVarIBDV spread subclinically across a wide geographic area.Mutation at 321 represents capsid's most exposed part, a defining feature.Antigenically modified vvIBDV still circulating in Egypt with typical lesions.


Assuntos
Infecções por Birnaviridae , Galinhas , Vírus da Doença Infecciosa da Bursa , Filogenia , Doenças das Aves Domésticas , Vírus da Doença Infecciosa da Bursa/genética , Vírus da Doença Infecciosa da Bursa/patogenicidade , Vírus da Doença Infecciosa da Bursa/isolamento & purificação , Animais , Egito/epidemiologia , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/virologia , Infecções por Birnaviridae/epidemiologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Galinhas/virologia , Surtos de Doenças/veterinária , Sequência de Aminoácidos , Vacinas Virais/imunologia , Vacinação/veterinária , Proteínas Estruturais Virais/genética , Virulência , Variação Genética
16.
Vet Microbiol ; 293: 110073, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579481

RESUMO

African swine fever virus (ASFV) is a large double stranded DNA arbovirus that is highly contagious and seriously endangers domestic and wild pigs. In the past decade, African swine fever (ASF) has spread in many countries in the Caucasus, Russian Federation, Eastern Europe and Asia, causing significant losses to the pig industry. At present, there is a lack of effective vaccine and treatment for ASF. Therefore, the rapid and accurate detection is crucial for ASF prevention and control. In this study, we have developed a portable lateral flow strip (LFS) detection mediated by recombinase polymerase amplification (RPA) and CRISPR/LwCas13a, which is performed at 37 ℃ and visualized by eyes without the need for complex instruments. This RPA-LwCas13a-LFS is based on the ASFV structural protein p17 gene (D117L), with a detection sensitivity up to 2 gene copies. This method is highly specific and has no cross reactivity to 7 other pig viruses. In the detection of two batches of 100 clinical samples, the p17 (D117L) RPA-LwCas13a-LFS had 100% coincidence with conventional quantitative PCR (qPCR). These findings demonstrate the potential of this simple, rapid, sensitive, and specific ASFV detection method for on-site ASFV detection.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Sistemas CRISPR-Cas , Animais , Febre Suína Africana/virologia , Febre Suína Africana/diagnóstico , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/veterinária , Sensibilidade e Especificidade , Suínos , Proteínas Estruturais Virais/análise , Proteínas Estruturais Virais/genética
17.
Viruses ; 16(4)2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38675855

RESUMO

The foot-and-mouth disease virus is a highly contagious and economically devastating virus of cloven-hooved animals, including cattle, buffalo, sheep, and goats, causing reduced animal productivity and posing international trade restrictions. For decades, chemically inactivated vaccines have been serving as the most effective strategy for the management of foot-and-mouth disease. Inactivated vaccines are commercially produced in cell culture systems, which require successful propagation and adaptation of field isolates, demanding a high cost and laborious time. Cell culture adaptation is chiefly indebted to amino acid substitutions in surface-exposed capsid proteins, altering the necessity of RGD-dependent receptors to heparan sulfate macromolecules for virus binding. Several amino acid substations in VP1, VP2, and VP3 capsid proteins of FMDV, both at structural and functional levels, have been characterized previously. This literature review combines frequently reported amino acid substitutions in virus capsid proteins, their critical roles in virus adaptation, and functional characterization of the substitutions. Furthermore, this data can facilitate molecular virologists to develop new vaccine strains against the foot-and-mouth disease virus, revolutionizing vaccinology via reverse genetic engineering and synthetic biology.


Assuntos
Substituição de Aminoácidos , Proteínas do Capsídeo , Vírus da Febre Aftosa , Tropismo Viral , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , Técnicas de Cultura de Células , Febre Aftosa/virologia , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Receptores Virais/metabolismo , Receptores Virais/genética , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo
18.
J Virol ; 98(5): e0018124, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38639485

RESUMO

Infectious bursal disease (IBD) is an acute and fatal immunosuppressive disease caused by infectious bursal disease virus (IBDV). As an obligate intracellular parasite, IBDV infection is strictly regulated by host factors. Knowledge on the antiviral activity and possible mechanism of host factors might provide the theoretical basis for the prevention and control of IBD. In this study, RNA-sequencing results indicated that many host factors were induced by IBDV infection, among which the expression levels of OASL (2´,5´-oligadenylate synthetase-like protein) was significantly upregulated. OASL overexpression significantly inhibited IBDV replication, whereas OASL knockdown promoted IBDV replication. Interestingly, the antiviral ability of OASL was independent of its canonical enzymatic activity, i.e., OASL targeted viral protein VP2 for degradation, depending on the autophagy receptor p62/SQSTM1 in the autophagy pathway. Additionally, the 316 lysine (K) of VP2 was the key site for autophagy degradation, and its replacement with arginine disrupted VP2 degradation induced by OASL and enhanced IBDV replication. Importantly, our results for the first time indicate a unique and potent defense mechanism of OASL against double-stranded RNA virus by interaction with viral proteins, which leads to their degradation. IMPORTANCE: OASL (2´,5´-oligadenylate synthetase-like protein) exhibits broad-spectrum antiviral effects against single-stranded RNA viruses in mammals, potentially serving as a promising target for novel antiviral strategies. However, its role in inhibiting the replication of double-stranded RNA viruses (dsRNA viruses), such as infectious bursal disease virus (IBDV), in avian species remains unclear. Our findings indicated a unique and potent defense mechanism of OASL against dsRNA viruses. It has been previously shown in mammals that OASL inhibits virus replication through increasing interferon production. The groundbreaking aspect of our study is the finding that OASL has the ability to interact with IBDV viral protein VP2 and target it for degradation and thus exerts its antiviral effect. Our results reveal the interaction between avian natural antiviral immune response and IBDV infection. Our study not only enhances our understanding of bird defenses against viral infections but can also inform strategies for poultry disease management.


Assuntos
2',5'-Oligoadenilato Sintetase , Autofagia , Infecções por Birnaviridae , Galinhas , Vírus da Doença Infecciosa da Bursa , Proteínas Estruturais Virais , Replicação Viral , Vírus da Doença Infecciosa da Bursa/fisiologia , Animais , Infecções por Birnaviridae/virologia , Infecções por Birnaviridae/metabolismo , Proteínas Estruturais Virais/metabolismo , Proteínas Estruturais Virais/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , 2',5'-Oligoadenilato Sintetase/genética , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/metabolismo , Interações Hospedeiro-Patógeno , Células HEK293 , Humanos , Linhagem Celular
19.
Viruses ; 16(4)2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38675887

RESUMO

PRRS is a viral disease that profoundly impacts the global swine industry, causing significant economic losses. The development of a novel and effective vaccine is crucial to halt the rapid transmission of this virus. There have been several vaccination attempts against PRRSV using both traditional and alternative vaccine design development approaches. Unfortunately, there is no currently available vaccine that can completely control this disease. Thus, our study aimed to develop an mRNA vaccine using the antigens expressed by single or fused PRRSV structural proteins. In this study, the nucleotide sequence of the immunogenic mRNA was determined by considering the antigenicity of structural proteins and the stability of spatial structure. Purified GP5 protein served as the detection antigen in the immunological evaluation. Furthermore, cellular mRNA expression was detected by immunofluorescence and western blotting. In a mice experiment, the Ab titer in serum and the activation of spleen lymphocytes triggered by the antigen were detected by ELISA and ICS, respectively. Our findings demonstrated that both mRNA vaccines can significantly stimulate cellular and humoral immune responses. More specifically, the GP5-mRNA exhibited an immunological response that was similar to that of the commercially available vaccine when administered in high doses. To conclude, our vaccine may show promising results against the wild-type virus in a natural host.


Assuntos
Anticorpos Antivirais , Imunidade Celular , Imunidade Humoral , Camundongos Endogâmicos BALB C , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas do Envelope Viral , Vacinas Virais , Vacinas de mRNA , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Camundongos , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Síndrome Respiratória e Reprodutiva Suína/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Suínos , Feminino , Proteínas Estruturais Virais/imunologia , Proteínas Estruturais Virais/genética , RNA Mensageiro/genética
20.
Vet Microbiol ; 293: 110094, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636175

RESUMO

Infectious bursa disease (IBD) is an acute, highly contactable, lethal, immunosuppressive infectious disease caused by the Infectious bursa disease virus (IBDV). Currently, the emerged novel variant IBDV (nVarIBDV) and the sustainedly prevalent very virulent IBDV (vvIBDV) are the two most prevalent strains of IBDV in China. The antigenic properties of the two prevalent strains differed significantly, which led to the escape of nVarIBDV from the immune protection provided by the existing vvIBDV vaccine. However, the molecular basis of the nVarIBDV immune escape remains unclear. In this study, we demonstrated, for the first time, that residues 252, 254, and 256 in the PDE of VP2 are involved in the immune escape of the emerging nVarIBDV. Firstly, the IFA-mediated antigen-antibody affinity assay showed that PBC and PDE of VP2 could affect the affinity of vvIBDV antiserum to VP2, of which PDE was more significant. The key amino acids of PDE influencing the antigen-antibody affinity were also identified, with G254N being the most significant, followed by V252I and I256V. Then the mutated virus with point or combined mutations was rescued by reverse genetics. it was further demonstrated that mutations of V252I, G254N, and I256V in PDE could individually or collaboratively reduce antigen-antibody affinity and interfere with antiserum neutralization, with G254N being the most significant. This study revealed the reasons for the widespread prevalence of nVarIBDV in immunized chicken flocks and provided innovative ideas for designing novel vaccines that match the antigen of the epidemic strain.


Assuntos
Infecções por Birnaviridae , Proteínas do Capsídeo , Galinhas , Evasão da Resposta Imune , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Vírus da Doença Infecciosa da Bursa/genética , Vírus da Doença Infecciosa da Bursa/imunologia , Animais , Galinhas/virologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/virologia , Infecções por Birnaviridae/imunologia , China , Anticorpos Antivirais/imunologia , Mutação , Vacinas Virais/imunologia , Proteínas Estruturais Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...