Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.919
Filtrar
1.
Mol Pharmacol ; 106(3): 129-144, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38991745

RESUMO

G protein-coupled receptors (GPCRs) are the largest class of transmembrane receptors encoded in the human genome, and they initiate cellular responses triggered by a plethora of extracellular stimuli ranging from neurotransmitters and hormones to photons. Upon stimulation, GPCRs activate heterotrimeric G proteins (Gαßγ) in the cytoplasm, which then convey signals to their effectors to elicit cellular responses. Given the broad biological and biomedical relevance of GPCRs and G proteins in physiology and disease, there is great interest in developing and optimizing approaches to measure their signaling activity with high accuracy and across experimental systems pertinent to their functions in cellular communication. This review provides a historical perspective on approaches to measure GPCR-G protein signaling, from quantification of second messengers and other indirect readouts of activity to biosensors that directly detect the activity of G proteins. The latter is the focus of a more detailed overview of the evolution of design principles for various optical biosensors of G protein activity with different experimental capabilities. We will highlight advantages and limitations of biosensors that detect different G protein activation hallmarks, like dissociation of Gα and Gßγ or nucleotide exchange on Gα, as well as their suitability to detect signaling mediated by endogenous versus exogenous signaling components or in physiologically relevant systems like primary cells. Overall, this review intends to provide an assessment of the state-of-the-art for biosensors that directly measure G protein activity to allow readers to make informed decisions on the selection and implementation of currently available tools. SIGNIFICANCE STATEMENT: G protein activity biosensors have become essential and widespread tools to assess GPCR signaling and pharmacology. Yet, investigators face the challenge of choosing from a growing list of G protein activity biosensors. This review provides an overview of the features and capabilities of different optical biosensor designs for the direct detection of G protein activity in cells, with the aim of facilitating the rational selection of systems that align with the specific scientific questions and needs of investigators.


Assuntos
Técnicas Biossensoriais , Proteínas Heterotriméricas de Ligação ao GTP , Receptores Acoplados a Proteínas G , Técnicas Biossensoriais/métodos , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Transdução de Sinais/fisiologia
3.
Eur J Appl Physiol ; 124(7): 1943-1958, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38753016

RESUMO

PURPOSE: Genetic factors are important in terms of athletic performance. Recent studies to determine the relationship between the genes that lead to physiological responses have attracted attention. In this respect, this meta-analysis study was designed to examine the relationship between genetic polymorphism (BDKRB2 rs5810761, GNB3 rs5443, HIF1A rs11549565, MCT1 rs1049434, NOS3 rs2070744) and endurance athlete's status. METHODS: The search included studies published from 2009 to 2022. To determine the relevant studies, Pubmed, Web of Science databases were systematically scanned. Only case-control studies were included in the meta-analysis. To determine the relevant studies, Pubmed, Web of Science databases were systematically scanned, and a total of 31 studies met the criteria for inclusion in the meta-analysis. Relevant data from the included studies were collected and analyzed using a random effects or fixed effects model. The effect size was calculated as the odds ratio or a risk ratio the corresponding 95% confidence intervals. RESULTS: According to the results of the analysis, BDKRB2 rs5810761 + 9 allele, and NOS3 rs2070744 T allele were significantly more prevalent in endurance athletes (p < 0.05). Genotype distributions of BDKRB2 rs5810761, MCT1 rs1049434, and NOS3 rs2070744 showed significant differences in the dominant model (p < 0.05). However, no significant association was found between endurance athlete status and GNB3 rs5443 and HIF1A rs11549465 polymorphisms. CONCLUSION: These results show that some gene polymorphisms play an important role in endurance athlete status and suggest that having a specific genetic basis may also confer a physiological advantage for performance.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Transportadores de Ácidos Monocarboxílicos , Resistência Física , Polimorfismo de Nucleotídeo Único , Simportadores , Humanos , Resistência Física/genética , Simportadores/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Transportadores de Ácidos Monocarboxílicos/genética , Óxido Nítrico Sintase Tipo III/genética , Atletas , Desempenho Atlético/fisiologia , Proteínas Heterotriméricas de Ligação ao GTP/genética , Receptores Acoplados a Proteínas G/genética
4.
Nature ; 629(8013): 951-956, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632403

RESUMO

Metabotropic glutamate receptors belong to a family of G protein-coupled receptors that are obligate dimers and possess a large extracellular ligand-binding domain that is linked via a cysteine-rich domain to their 7-transmembrane domain1. Upon activation, these receptors undergo a large conformational change to transmit the ligand binding signal from the extracellular ligand-binding domain to the G protein-coupling 7-transmembrane domain2. In this manuscript, we propose a model for a sequential, multistep activation mechanism of metabotropic glutamate receptor subtype 5. We present a series of structures in lipid nanodiscs, from inactive to fully active, including agonist-bound intermediate states. Further, using bulk and single-molecule fluorescence imaging, we reveal distinct receptor conformations upon allosteric modulator and G protein binding.


Assuntos
Ligantes , Domínios Proteicos , Receptor de Glutamato Metabotrópico 5 , Humanos , Regulação Alostérica/efeitos dos fármacos , Fluorescência , Modelos Moleculares , Ligação Proteica , Receptor de Glutamato Metabotrópico 5/agonistas , Receptor de Glutamato Metabotrópico 5/química , Receptor de Glutamato Metabotrópico 5/metabolismo , Imagem Individual de Molécula , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo
5.
Nature ; 629(8011): 481-488, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632411

RESUMO

The human calcium-sensing receptor (CaSR) detects fluctuations in the extracellular Ca2+ concentration and maintains Ca2+ homeostasis1,2. It also mediates diverse cellular processes not associated with Ca2+ balance3-5. The functional pleiotropy of CaSR arises in part from its ability to signal through several G-protein subtypes6. We determined structures of CaSR in complex with G proteins from three different subfamilies: Gq, Gi and Gs. We found that the homodimeric CaSR of each complex couples to a single G protein through a common mode. This involves the C-terminal helix of each Gα subunit binding to a shallow pocket that is formed in one CaSR subunit by all three intracellular loops (ICL1-ICL3), an extended transmembrane helix 3 and an ordered C-terminal region. G-protein binding expands the transmembrane dimer interface, which is further stabilized by phospholipid. The restraint imposed by the receptor dimer, in combination with ICL2, enables G-protein activation by facilitating conformational transition of Gα. We identified a single Gα residue that determines Gq and Gs versus Gi selectivity. The length and flexibility of ICL2 allows CaSR to bind all three Gα subtypes, thereby conferring capacity for promiscuous G-protein coupling.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Receptores de Detecção de Cálcio , Humanos , Cálcio/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/química , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Sítios de Ligação , Estrutura Secundária de Proteína , Especificidade por Substrato
6.
Cell Signal ; 118: 111138, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38467243

RESUMO

Heterotrimeric G proteins are responsible for signal transduction from G-protein-coupled receptors (GPCRs) to intracellular effectors. This process is only possible when G proteins are located on the inner side of the cell membrane due to the specific localization of GPCR receptors. The Gα subunit is directed to the cell membrane through several signals, including modification by fatty acid moieties, interaction with the Gßγ complex, and, as observed in some Gα proteins, the presence of basic amino acid residues in the N-terminal region. In this work, we focused on investigating the influence of the polybasic region on the localization and function of a representative member of the Gαi family, Gαi3. Through the use of confocal microscopy and fluorescence lifetime microscopy, we showed that, in the case of this protein, neutralizing the positive charge does not significantly affect its abundance in the cell membrane. However, it does affect its spatial arrangement concerning the dopamine D2 receptor and influences inhibitory effect of Gαi3 on intracellular cAMP production triggered by D2 receptor stimulation. Moreover, in this work, we have shown, for the first time, that nonlipidated Gαi3 binds to negatively charged lipids through electrostatic interactions, and membrane fluidity plays a significant role in this interaction.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Transdução de Sinais , Transdução de Sinais/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Membrana Celular/metabolismo
7.
Am J Physiol Cell Physiol ; 326(5): C1410-C1422, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38525541

RESUMO

Adipose dysfunction in lipodystrophic SEIPIN deficiency is associated with multiple metabolic disorders and increased risks of developing cardiovascular diseases, such as atherosclerosis, cardiac hypertrophy, and heart failure. Recently, adipose transplantation has been found to correct adipose dysfunction and metabolic disorders in lipodystrophic Seipin knockout mice; however, whether adipose transplantation could improve lipodystrophy-associated cardiovascular consequences is still unclear. Here, we aimed to explore the effects of adipose transplantation on lipodystrophy-associated metabolic cardiovascular diseases in Seipin knockout mice crossed into atherosclerosis-prone apolipoprotein E (Apoe) knockout background. At 2 months of age, lipodystrophic Seipin/Apoe double knockout mice and nonlipodystrophic Apoe knockout controls were subjected to adipose transplantation or sham operation. Seven months later, mice were euthanized. Our data showed that although adipose transplantation had no significant impact on endogenous adipose atrophy or gene expression, it remarkably increased plasma leptin but not adiponectin concentration in Seipin/Apoe double knockout mice. This led to significantly reduced hyperlipidemia, hepatic steatosis, and insulin resistance in Seipin/Apoe double knockout mice. Consequently, atherosclerosis burden, intraplaque macrophage infiltration, and aortic inflammatory gene expression were all attenuated in Seipin/Apoe double knockout mice with adipose transplantation. However, adipocyte morphology, macrophage infiltration, or fibrosis of the perivascular adipose tissue was not altered in Seipin/Apoe double knockout mice with adipose transplantation, followed by no significant improvement of vasoconstriction or relaxation. In conclusion, we demonstrate that adipose transplantation could alleviate lipodystrophy-associated metabolic disorders and atherosclerosis but has an almost null impact on perivascular adipose abnormality or vascular dysfunction in lipodystrophic Seipin/Apoe double knockout mice.NEW & NOTEWORTHY Adipose transplantation (AT) reverses multiply metabolic derangements in lipodystrophy, but whether it could improve lipodystrophy-related cardiovascular consequences is unknown. Here, using Seipin/Apoe double knockout mice as a lipodystrophy disease model, we showed that AT partially restored adipose functionality, which translated into significantly reduced atherosclerosis. However, AT was incapable of reversing perivascular adipose abnormality or vascular dysfunction. The current study provides preliminary experimental evidence on the therapeutic potential of AT on lipodystrophy-related metabolic cardiovascular diseases.


Assuntos
Tecido Adiposo , Aterosclerose , Subunidades gama da Proteína de Ligação ao GTP , Lipodistrofia , Camundongos Knockout , Animais , Camundongos , Tecido Adiposo/metabolismo , Tecido Adiposo/transplante , Apolipoproteínas E/genética , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Subunidades gama da Proteína de Ligação ao GTP/deficiência , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Resistência à Insulina , Leptina/sangue , Leptina/metabolismo , Lipodistrofia/metabolismo , Lipodistrofia/genética , Lipodistrofia/patologia , Camundongos Endogâmicos C57BL
8.
Dis Model Mech ; 17(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38454882

RESUMO

Seipin (BSCL2), a conserved endoplasmic reticulum protein, plays a critical role in lipid droplet (LD) biogenesis and in regulating LD morphology, pathogenic variants of which are associated with Berardinelli-Seip congenital generalized lipodystrophy type 2 (BSCL2). To model BSCL2 disease, we generated an orthologous BSCL2 variant, seip-1(A185P), in Caenorhabditis elegans. In this study, we conducted an unbiased chemical mutagenesis screen to identify genetic suppressors that restore embryonic viability in the seip-1(A185P) mutant background. A total of five suppressor lines were isolated and recovered from the screen. The defective phenotypes of seip-1(A185P), including embryonic lethality and impaired eggshell formation, were significantly suppressed in each suppressor line. Two of the five suppressor lines also alleviated the enlarged LDs in the oocytes. We then mapped a suppressor candidate gene, lmbr-1, which is an ortholog of human limb development membrane protein 1 (LMBR1). The CRISPR/Cas9 edited lmbr-1 suppressor alleles, lmbr-1(S647F) and lmbr-1(P314L), both significantly suppressed embryonic lethality and defective eggshell formation in the seip-1(A185P) background. The newly identified suppressor lines offer valuable insights into potential genetic interactors and pathways that may regulate seipin in the lipodystrophy model.


Assuntos
Subunidades gama da Proteína de Ligação ao GTP , Proteínas Heterotriméricas de Ligação ao GTP , Lipodistrofia Generalizada Congênita , Lipodistrofia , Animais , Humanos , Lipodistrofia Generalizada Congênita/genética , Lipodistrofia Generalizada Congênita/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Lipodistrofia/genética
9.
Plant Physiol Biochem ; 210: 108567, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554538

RESUMO

Heterotrimeric G-proteins are key modulators of multiple signaling and developmental pathways in plants, in which they act as molecular switches to engage in transmitting various stimuli signals from outside into the cells. Substantial studies have identified G proteins as essential components of the organismal response to abiotic stress, leading to adaptation and survival in plants. Meanwhile, sugars are also well acknowledged key players in stress perception, signaling, and gene expression regulation. Connections between the two significant signaling pathways in stress response are of interest to a general audience in plant biology. In this article, advances unraveling a pivotal role of G proteins in the process of sugar signals outside the cells being translated into the operation of autophagy in cells during stress are reviewed. In addition, we have presented recent findings on G proteins regulating the response to drought, salt, alkali, cold, heat and other abiotic stresses. Perspectives on G-protein research are also provided in the end. Since G protein signaling regulates many agronomic traits, elucidation of detailed mechanism of the related pathways would provide useful insights for the breeding of abiotic stress resistant and high-yield crops.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Proteínas de Plantas , Transdução de Sinais , Estresse Fisiológico , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Açúcares/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fenômenos Fisiológicos Vegetais
10.
J Biol Chem ; 300(3): 105756, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364891

RESUMO

Heterotrimeric G proteins (Gαßγ) are molecular switches that relay signals from 7-transmembrane receptors located at the cell surface to the cytoplasm. The function of these receptors is so intimately linked to heterotrimeric G proteins that they are named G protein-coupled receptors (GPCRs), showcasing the interdependent nature of this archetypical receptor-transducer axis of transmembrane signaling in eukaryotes. It is generally assumed that activation of heterotrimeric G protein signaling occurs exclusively by the action of GPCRs, but this idea has been challenged by the discovery of alternative mechanisms by which G proteins can propagate signals in the cell. This review will focus on a general principle of G protein signaling that operates without the direct involvement of GPCRs. The mechanism of G protein signaling reviewed here is mediated by a class of G protein regulators defined by containing an evolutionarily conserved sequence named the Gα-binding-and-activating (GBA) motif. Using the best characterized proteins with a GBA motif as examples, Gα-interacting vesicle-associated protein (GIV)/Girdin and dishevelled-associating protein with a high frequency of leucine residues (DAPLE), this review will cover (i) the mechanisms by which extracellular cues not relayed by GPCRs promote the coupling of GBA motif-containing regulators with G proteins, (ii) the structural and molecular basis for how GBA motifs interact with Gα subunits to facilitate signaling, (iii) the relevance of this mechanism in different cellular and pathological processes, including cancer and birth defects, and (iv) strategies to manipulate GBA-G protein coupling for experimental therapeutics purposes, including the development of rationally engineered proteins and chemical probes.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Receptores Acoplados a Proteínas G , Motivos de Aminoácidos , Membrana Celular/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Humanos , Animais , Engenharia de Proteínas
11.
Nature ; 626(8001): 1141-1148, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326620

RESUMO

The calcium-sensing receptor (CaSR) is a family C G-protein-coupled receptor1 (GPCR) that has a central role in regulating systemic calcium homeostasis2,3. Here we use cryo-electron microscopy and functional assays to investigate the activation of human CaSR embedded in lipid nanodiscs and its coupling to functional Gi versus Gq proteins in the presence and absence of the calcimimetic drug cinacalcet. High-resolution structures show that both Gi and Gq drive additional conformational changes in the activated CaSR dimer to stabilize a more extensive asymmetric interface of the seven-transmembrane domain (7TM) that involves key protein-lipid interactions. Selective Gi and Gq coupling by the receptor is achieved through substantial rearrangements of intracellular loop 2 and the C terminus, which contribute differentially towards the binding of the two G-protein subtypes, resulting in distinct CaSR-G-protein interfaces. The structures also reveal that natural polyamines target multiple sites on CaSR to enhance receptor activation by zipping negatively charged regions between two protomers. Furthermore, we find that the amino acid L-tryptophan, a well-known ligand of CaSR extracellular domains, occupies the 7TM bundle of the G-protein-coupled protomer at the same location as cinacalcet and other allosteric modulators. Together, these results provide a framework for G-protein activation and selectivity by CaSR, as well as its allosteric modulation by endogenous and exogenous ligands.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Receptores de Detecção de Cálcio , Humanos , Regulação Alostérica/efeitos dos fármacos , Cinacalcete/farmacologia , Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Ligantes , Lipídeos , Nanoestruturas/química , Poliaminas/metabolismo , Conformação Proteica/efeitos dos fármacos , Receptores de Detecção de Cálcio/química , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/ultraestrutura , Especificidade por Substrato , Triptofano/metabolismo , Cálcio/metabolismo
12.
Stem Cells Dev ; 33(7-8): 177-188, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38386508

RESUMO

Seipin deficiency is an important cause of type 2 Berardinelli-Seip congenital dyslipidemia (BSCL2). BSCL2 is a severe lipodystrophy syndrome with lack of adipose tissue, hepatic steatosis, insulin resistance, and normal or higher bone mineral density. Bone marrow mesenchymal stem cells (BMSCs) are believed to maintain bone and fat homeostasis by differentiating into osteoblasts and adipocytes. We aimed to explore the role of seipin in the osteogenic/adipogenic differentiation balance of BMSCs. Seipin loxP/loxP mice are used to explore metabolic disorders caused by seipin gene mutations. Compared with wild-type mice, subcutaneous fat deficiency and ectopic fat accumulation were higher in seipin knockout mice. Microcomputed tomography of the tibia revealed the increased bone content in seipin knockout mice. We generated seipin-deficient BMSCs in vitro and revealed that lipogenic genes are downregulated and osteogenic genes are upregulated in seipin-deficient BMSCs. In addition, peroxisome proliferator-activated receptor gamma (PPARγ) signaling is reduced in seipin-deficient BMSCs, while using the PPARγ activator increased the lipogenic differentiation and decreased osteogenic differentiation of seipin-deficient BMSCs. Our findings indicated that bone and lipid metabolism can be regulated by seipin through modulating the differentiation of mesenchymal stem cells. Thus, a new insight of seipin mutations in lipid metabolism disorders was revealed, providing a prospective strategy for MSC transplantation-based treatment of BSCL2.


Assuntos
Subunidades gama da Proteína de Ligação ao GTP , Proteínas Heterotriméricas de Ligação ao GTP , Células-Tronco Mesenquimais , Animais , Camundongos , Diferenciação Celular/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos Knockout , Osteogênese/genética , PPAR gama/genética , PPAR gama/metabolismo , Microtomografia por Raio-X
13.
Genes (Basel) ; 15(1)2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38255003

RESUMO

Programmed cell death (PCD) is a critical process in plant immunity, enabling the targeted elimination of infected cells to prevent the spread of pathogens. The tight regulation of PCD within plant cells is well-documented; however, specific mechanisms remain elusive or controversial. Heterotrimeric G proteins are multifunctional signaling elements consisting of three distinct subunits, Gα, Gß, and Gγ. In Arabidopsis, the Gßγ dimer serves as a positive regulator of plant defense. Conversely, in species such as rice, maize, cotton, and tomato, mutants deficient in Gß exhibit constitutively active defense responses, suggesting a contrasting negative role for Gß in defense mechanisms within these plants. Using a transient overexpression approach in addition to knockout mutants, we observed that Gßγ enhanced cell death progression and elevated the accumulation of reactive oxygen species in a similar manner across Arabidopsis, tomato, and Nicotiana benthamiana, suggesting a conserved G protein role in PCD regulation among diverse plant species. The enhancement of PCD progression was cooperatively regulated by Gßγ and one Gα, XLG2. We hypothesize that G proteins participate in two distinct mechanisms regulating the initiation and progression of PCD in plants. We speculate that G proteins may act as guardees, the absence of which triggers PCD. However, in Arabidopsis, this G protein guarding mechanism appears to have been lost in the course of evolution.


Assuntos
Arabidopsis , Proteínas Heterotriméricas de Ligação ao GTP , Solanum lycopersicum , Arabidopsis/genética , Morte Celular/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética , Apoptose/genética , Nicotiana , Solanum lycopersicum/genética
14.
Plant Commun ; 5(4): 100813, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38213027

RESUMO

Modern crop varieties display a degree of mismatch between their current distributions and the suitability of the local climate for their productivity. To address this issue, we present Oryza CLIMtools (https://gramene.org/CLIMtools/oryza_v1.0/), the first resource for pan-genome prediction of climate-associated genetic variants in a crop species. Oryza CLIMtools consists of interactive web-based databases that enable the user to (1) explore the local environments of traditional rice varieties (landraces) in South-East Asia and (2) investigate the environment by genome associations for 658 Indica and 283 Japonica rice landrace accessions collected from georeferenced local environments and included in the 3K Rice Genomes Project. We demonstrate the value of these resources by identifying an interplay between flowering time and temperature in the local environment that is facilitated by adaptive natural variation in OsHD2 and disrupted by a natural variant in OsSOC1. Prior quantitative trait locus analysis has suggested the importance of heterotrimeric G proteins in the control of agronomic traits. Accordingly, we analyzed the climate associations of natural variants in the different heterotrimeric G protein subunits. We identified a coordinated role of G proteins in adaptation to the prevailing potential evapotranspiration gradient and revealed their regulation of key agronomic traits, including plant height and seed and panicle length. We conclude by highlighting the prospect of targeting heterotrimeric G proteins to produce climate-resilient crops.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Oryza , Oryza/genética , Fenótipo , Locos de Características Quantitativas/genética , Agricultura , Proteínas Heterotriméricas de Ligação ao GTP/genética
15.
Pharmacol Ther ; 255: 108589, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295906

RESUMO

The original paradigm of classical - also referred to as canonical - cellular signal transduction of heterotrimeric G proteins (G protein) is defined by a hierarchical, orthograde interaction of three players: the agonist-activated G protein-coupled receptor (GPCR), which activates the transducing G protein, that in turn regulates its intracellular effectors. This receptor-transducer-effector concept was extended by the identification of regulators and adapters such as the regulators of G protein signaling (RGS), receptor kinases like ßARK, or GPCR-interacting arrestin adapters that are integrated into this canonical signaling process at different levels to enable fine-tuning. Finally, the identification of atypical signaling mechanisms of classical regulators, together with the discovery of novel modulators, added a new and fascinating dimension to the cellular G protein signal transduction. This heterogeneous group of accessory G protein modulators was coined "activators of G protein signaling" (AGS) proteins and plays distinct roles in canonical and non-canonical G protein signaling pathways. AGS proteins contribute to the control of essential cellular functions such as cell development and division, intracellular transport processes, secretion, autophagy or cell movements. As such, they are involved in numerous biological processes that are crucial for diseases, like diabetes mellitus, cancer, and stroke, which represent major health burdens. Although the identification of a large number of non-canonical G protein signaling pathways has broadened the spectrum of this cellular communication system, their underlying mechanisms, functions, and biological effects are poorly understood. In this review, we highlight and discuss atypical G protein-dependent signaling mechanisms with a focus on inhibitory G proteins (Gi) involved in canonical and non-canonical signal transduction, review recent developments and open questions, address the potential of new approaches for targeted pharmacological interventions.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Transdução de Sinais , Humanos , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
16.
Plant J ; 117(2): 616-631, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37910396

RESUMO

The membrane-bound heterotrimeric G-proteins in plants play a crucial role in defending against a broad range of pathogens. This study emphasizes the significance of Extra-large Gα protein 2 (XLG2), a plant-specific G-protein, in mediating the plant response to Sclerotinia sclerotiorum, which infects over 600 plant species worldwide. Our analysis of Arabidopsis G-protein mutants showed that loss of XLG2 function increased susceptibility to S. sclerotiorum, accompanied by compromised accumulation of jasmonic acid (JA) during pathogen infection. Overexpression of the XLG2 gene in xlg2 mutant plants resulted in higher resistance and increased JA accumulation during S. sclerotiorum infection. Co-immunoprecipitation (co-IP) analysis on S. sclerotiorum infected Col-0 samples, using two different approaches, identified 201 XLG2-interacting proteins. The identified JA-biosynthetic and JA-responsive proteins had compromised transcript expression in the xlg2 mutant during pathogen infection. XLG2 was found to interact physically with a JA-responsive protein, Coronatine induced 1 (CORI3) in Co-IP, and confirmed using split firefly luciferase complementation and bimolecular fluorescent complementation assays. Additionally, genetic analysis revealed an additive effect of XLG2 and CORI3 on resistance against S. sclerotiorum, JA accumulation, and expression of the defense marker genes. Overall, our study reveals two independent pathways involving XLG2 and CORI3 in contributing resistance against S. sclerotiorum.


Assuntos
Aminoácidos , Proteínas de Arabidopsis , Arabidopsis , Ascomicetos , Proteínas Heterotriméricas de Ligação ao GTP , Indenos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Doenças das Plantas/genética
17.
Structure ; 32(1): 47-59.e7, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37989308

RESUMO

It is well established that G-protein-coupled receptors (GPCRs) stimulated by neurotransmitters are critical for neuromodulation. Much less is known about how heterotrimeric G-protein (Gαßγ) regulation after receptor-mediated activation contributes to neuromodulation. Recent evidence indicates that the neuronal protein GINIP shapes GPCR inhibitory neuromodulation via a unique mechanism of G-protein regulation that controls pain and seizure susceptibility. However, the molecular basis of this mechanism remains ill-defined because the structural determinants of GINIP responsible for binding and regulating G proteins are not known. Here, we combined hydrogen-deuterium exchange mass spectrometry, computational structure predictions, biochemistry, and cell-based biophysical assays to demonstrate an effector-like binding mode of GINIP to Gαi. Specific amino acids of GINIP's PHD domain first loop are essential for G-protein binding and subsequent regulation of Gαi-GTP and Gßγ signaling upon neurotransmitter GPCR stimulation. In summary, these findings shed light onto the molecular basis for a post-receptor mechanism of G-protein regulation that fine-tunes inhibitory neuromodulation.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Transdução de Sinais , Transdução de Sinais/fisiologia , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ligação Proteica , Neurotransmissores
18.
Animal Model Exp Med ; 7(3): 324-336, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38155461

RESUMO

BACKGROUND: Bitter taste receptors (Tas2rs) are generally considered to sense various bitter compounds to escape the intake of toxic substances. Bitter taste receptors have been found to widely express in extraoral tissues and have important physiological functions outside the gustatory system in vivo. METHODS: To investigate the physiological functions of the bitter taste receptor cluster Tas2r106/Tas2r104/Tas2r105/Tas2r114 in lingual and extraoral tissues, multiple Tas2rs mutant mice and Gnat3 were produced using CRISPR/Cas9 gene-editing technique. A mixture containing Cas9 and sgRNA mRNAs for Tas2rs and Gnat3 gene was microinjected into the cytoplasm of the zygotes. Then, T7EN1 assays and sequencing were used to screen genetic mutation at the target sites in founder mice. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunostaining were used to study the expression level of taste signaling cascade and bitter taste receptor in taste buds. Perception to taste substance was also studied using two-bottle preference tests. RESULTS: We successfully produced several Tas2rs and Gnat3 mutant mice using the CRISPR/Cas9 technique. Immunostaining results showed that the expression of GNAT3 and PLCB2 was not altered in Tas2rs mutant mice. But qRT-PCR results revealed the changed expression profile of mTas2rs gene in taste buds of these mutant mice. With two-bottle preference tests, these mutant mice eliminate responses to cycloheximide due to genetic mutation of Tas2r105. In addition, these mutant mice showed a loss of taste perception to quinine dihydrochloride, denatonium benzoate, and cucurbitacin B (CuB). Gnat3-mediated taste receptor and its signal pathway contribute to CuB perception. CONCLUSIONS: These findings implied that these mutant mice would be a valuable means to understand the biological functions of TAS2Rs in extraoral tissues and investigate bitter compound-induced responses mediated by these TAS2Rs in many extraoral tissues.


Assuntos
Mutação , Receptores Acoplados a Proteínas G , Percepção Gustatória , Animais , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Percepção Gustatória/genética , Percepção Gustatória/efeitos dos fármacos , Camundongos , Compostos de Amônio Quaternário/farmacologia , Papilas Gustativas/efeitos dos fármacos , Papilas Gustativas/metabolismo , Sistemas CRISPR-Cas , Paladar/efeitos dos fármacos , Paladar/genética , Transducina/genética , Transducina/metabolismo , Edição de Genes , Triterpenos , Proteínas Heterotriméricas de Ligação ao GTP , Fosfolipase C beta
19.
Mol Cell Proteomics ; 23(2): 100705, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135118

RESUMO

The microbe-associated molecular pattern flg22 is recognized in a flagellin-sensitive 2-dependent manner in root tip cells. Here, we show a rapid and massive change in protein abundance and phosphorylation state of the Arabidopsis root cell proteome in WT and a mutant deficient in heterotrimeric G-protein-coupled signaling. flg22-induced changes fall on proteins comprising a subset of this proteome, the heterotrimeric G protein interactome, and on highly-populated hubs of the immunity network. Approximately 95% of the phosphorylation changes in the heterotrimeric G-protein interactome depend, at least partially, on a functional G protein complex. One member of this interactome is ATBα, a substrate-recognition subunit of a protein phosphatase 2A complex and an interactor to Arabidopsis thaliana Regulator of G Signaling 1 protein (AtRGS1), a flg22-phosphorylated, 7-transmembrane spanning modulator of the nucleotide-binding state of the core G-protein complex. A null mutation of ATBα strongly increases basal endocytosis of AtRGS1. AtRGS1 steady-state protein level is lower in the atbα mutant in a proteasome-dependent manner. We propose that phosphorylation-dependent endocytosis of AtRGS1 is part of the mechanism to degrade AtRGS1, thus sustaining activation of the heterotrimeric G protein complex required for the regulation of system dynamics in innate immunity. The PP2A(ATBα) complex is a critical regulator of this signaling pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Heterotriméricas de Ligação ao GTP , Proteínas RGS , Arabidopsis/metabolismo , Fosforilação , Proteínas de Arabidopsis/metabolismo , Proteoma/metabolismo , Proteínas RGS/química , Proteínas RGS/genética , Proteínas RGS/metabolismo , Transdução de Sinais , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Flagelina/farmacologia , Flagelina/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
20.
Arq Bras Cardiol ; 120(12): e20230396, 2023 Dec.
Artigo em Português, Inglês | MEDLINE | ID: mdl-38126445

RESUMO

BACKGROUND: Central Illustration : G Protein Subunit Beta 3 (GNB3) Variant Is Associated with Biochemical Changes in Brazilian Patients with Hypertension. BACKGROUND: Genes and their variants associated with environmental factors contribute to the development of the hypertensive phenotype. The G protein beta 3 subunit gene (GNB3) is involved in the intracellular signaling process, and its variants have been related to susceptibility to arterial hypertension. OBJECTIVE: To determine the association of the GNB3 variant (rs5443:C>T) with arterial hypertension, biochemical parameters, age, and obesity in hypertensive and normotensive individuals from Ouro Preto, Minas Gerais, Brazil. METHOD: The identification of variants was performed by real-time PCR, using the TaqMan® system, in 310 samples (155 hypertensive and 155 normotensive). Biochemical analyses (renal function, lipid profile and glycemia) were performed from the serum using UV/Vis spectrophotometry and ion-selective electrode. A multiple logistic regression model was used to identify factors associated with arterial hypertension. The analysis of continuous variables with normal distribution was performed using the unpaired Student's t test; non-normal data were analyzed using Mann-Whitney. P < 0.05 was considered significant. RESULTS: The rs5443:C>T variant was not associated with arterial hypertension in the evaluated population (p = 0.88). Regarding biochemical measures, the T allele was associated with high levels of triglycerides, glucose and uric acid in hypertensive individuals (p < 0.05). CONCLUSION: These results show the importance of genetic diagnosis to prevent the causes and consequences of diseases and imply that the GNB3 rs5443:C>T variant may be associated with changes in the biochemical profile in hypertensive individuals.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Hipertensão , Humanos , Alelos , Pressão Sanguínea/genética , Brasil , Genótipo , Hipertensão/genética , Subunidades Proteicas/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...