Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
Int J Mol Sci ; 25(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39337567

RESUMO

Despite the success of AlphaFold2 approaches in predicting single protein structures, these methods showed intrinsic limitations in predicting multiple functional conformations of allosteric proteins and have been challenged to accurately capture the effects of single point mutations that induced significant structural changes. We examined several implementations of AlphaFold2 methods to predict conformational ensembles for state-switching mutants of the ABL kinase. The results revealed that a combination of randomized alanine sequence masking with shallow multiple sequence alignment subsampling can significantly expand the conformational diversity of the predicted structural ensembles and capture shifts in populations of the active and inactive ABL states. Consistent with the NMR experiments, the predicted conformational ensembles for M309L/L320I and M309L/H415P ABL mutants that perturb the regulatory spine networks featured the increased population of the fully closed inactive state. The proposed adaptation of AlphaFold can reproduce the experimentally observed mutation-induced redistributions in the relative populations of the active and inactive ABL states and capture the effects of regulatory mutations on allosteric structural rearrangements of the kinase domain. The ensemble-based network analysis complemented AlphaFold predictions by revealing allosteric hotspots that correspond to state-switching mutational sites which may explain the global effect of regulatory mutations on structural changes between the ABL states. This study suggested that attention-based learning of long-range dependencies between sequence positions in homologous folds and deciphering patterns of allosteric interactions may further augment the predictive abilities of AlphaFold methods for modeling of alternative protein sates, conformational ensembles and mutation-induced structural transformations.


Assuntos
Conformação Proteica , Proteínas Proto-Oncogênicas c-abl , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Regulação Alostérica , Mutação , Humanos , Modelos Moleculares , Alanina/genética , Alanina/química , Sequência de Aminoácidos
2.
J Chem Theory Comput ; 20(12): 5317-5336, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38865109

RESUMO

Despite the success of AlphaFold methods in predicting single protein structures, these methods showed intrinsic limitations in the characterization of multiple functional conformations of allosteric proteins. The recent NMR-based structural determination of the unbound ABL kinase in the active state and discovery of the inactive low-populated functional conformations that are unique for ABL kinase present an ideal challenge for the AlphaFold2 approaches. In the current study, we employ several adaptations of the AlphaFold2 methodology to predict protein conformational ensembles and allosteric states of the ABL kinase including randomized alanine sequence scanning combined with the multiple sequence alignment subsampling proposed in this study. We show that the proposed new AlphaFold2 adaptation combined with local frustration profiling of conformational states enables accurate prediction of the protein kinase structures and conformational ensembles, also offering a robust approach for interpretable characterization of the AlphaFold2 predictions and detection of hidden allosteric states. We found that the large high frustration residue clusters are uniquely characteristic of the low-populated, fully inactive ABL form and can define energetically frustrated cracking sites of conformational transitions, presenting difficult targets for AlphaFold2. The results of this study uncovered previously unappreciated fundamental connections between local frustration profiles of the functional allosteric states and the ability of AlphaFold2 methods to predict protein structural ensembles of the active and inactive states. This study showed that integration of the randomized sequence scanning adaptation of AlphaFold2 with a robust landscape-based analysis allows for interpretable atomistic predictions and characterization of protein conformational ensembles, providing a physical basis for the successes and limitations of current AlphaFold2 methods in detecting functional allosteric states that play a significant role in protein kinase regulation.


Assuntos
Conformação Proteica , Proteínas Proto-Oncogênicas c-abl , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/metabolismo , Regulação Alostérica , Humanos , Modelos Moleculares , Sequência de Aminoácidos
3.
Blood ; 144(6): 639-645, 2024 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-38643492

RESUMO

ABSTRACT: Secondary kinase domain mutations in BCR::ABL1 represent the most common cause of resistance to tyrosine kinase inhibitor (TKI) therapy in patients with chronic myeloid leukemia. The first 5 approved BCR::ABL1 TKIs target the adenosine triphosphate (ATP)-binding pocket. Mutations confer resistance to these ATP-competitive TKIs and those approved for other malignancies by decreasing TKI affinity and/or increasing ATP affinity. Asciminib, the first highly active allosteric TKI approved for any malignancy, targets an allosteric regulatory pocket in the BCR::ABL1 kinase C-lobe. As a non-ATP-competitive inhibitor, the activity of asciminib is predicted to be impervious to increases in ATP affinity. Here, we report several known mutations that confer resistance to ATP-competitive TKIs in the BCR::ABL1 kinase N-lobe that are distant from the asciminib binding pocket yet unexpectedly confer in vitro resistance to asciminib. Among these is BCR::ABL1 M244V, which confers clinical resistance even to escalated asciminib doses. We demonstrate that BCR::ABL1 M244V does not impair asciminib binding, thereby invoking a novel mechanism of resistance. Molecular dynamic simulations of the M244V substitution implicate stabilization of an active kinase conformation through impact on the α-C helix as a mechanism of resistance. These N-lobe mutations may compromise the clinical activity of ongoing combination studies of asciminib with ATP-competitive TKIs.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Inibidores de Proteínas Quinases , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/química , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Mutação , Trifosfato de Adenosina/metabolismo , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Proto-Oncogênicas c-abl/química , Niacinamida/análogos & derivados , Pirazóis
4.
Elife ; 122024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588001

RESUMO

Abelson tyrosine kinase (Abl) is regulated by the arrangement of its regulatory core, consisting sequentially of the SH3, SH2, and kinase (KD) domains, where an assembled or disassembled core corresponds to low or high kinase activity, respectively. It was recently established that binding of type II ATP site inhibitors, such as imatinib, generates a force from the KD N-lobe onto the SH3 domain and in consequence disassembles the core. Here, we demonstrate that the C-terminal αI-helix exerts an additional force toward the SH2 domain, which correlates both with kinase activity and type II inhibitor-induced disassembly. The αI-helix mutation E528K, which is responsible for the ABL1 malformation syndrome, strongly activates Abl by breaking a salt bridge with the KD C-lobe and thereby increasing the force onto the SH2 domain. In contrast, the allosteric inhibitor asciminib strongly reduces Abl's activity by fixating the αI-helix and reducing the force onto the SH2 domain. These observations are explained by a simple mechanical model of Abl activation involving forces from the KD N-lobe and the αI-helix onto the KD/SH2SH3 interface.


Assuntos
Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas c-abl , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/metabolismo , Modelos Moleculares , Proteínas Tirosina Quinases/metabolismo , Domínios de Homologia de src , Mesilato de Imatinib/farmacologia
5.
Elife ; 122023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843155

RESUMO

c-Abl kinase, a key signaling hub in many biological processes ranging from cell development to proliferation, is tightly regulated by two inhibitory Src homology domains. An N-terminal myristoyl modification can bind to a hydrophobic pocket in the kinase C-lobe, which stabilizes the autoinhibitory assembly. Activation is triggered by myristoyl release. We used molecular dynamics simulations to show how both myristoyl and the Src homology domains are required to impose the full inhibitory effect on the kinase domain and reveal the allosteric transmission pathway at residue-level resolution. Importantly, we find myristoyl insertion into a membrane to thermodynamically compete with binding to c-Abl. Myristoyl thus not only localizes the protein to the cellular membrane, but membrane attachment at the same time enhances activation of c-Abl by stabilizing its preactivated state. Our data put forward a model in which lipidation tightly couples kinase localization and regulation, a scheme that currently appears to be unique for this non-receptor tyrosine kinase.


Assuntos
Proteínas Proto-Oncogênicas c-abl , Domínios de Homologia de src , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/metabolismo , Transdução de Sinais , Simulação de Dinâmica Molecular
6.
Proc Natl Acad Sci U S A ; 120(34): e2304611120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590418

RESUMO

Selective orthosteric inhibition of kinases has been challenging due to the conserved active site architecture of kinases and emergence of resistance mutants. Simultaneous inhibition of distant orthosteric and allosteric sites, which we refer to as "double-drugging", has recently been shown to be effective in overcoming drug resistance. However, detailed biophysical characterization of the cooperative nature between orthosteric and allosteric modulators has not been undertaken. Here, we provide a quantitative framework for double-drugging of kinases employing isothermal titration calorimetry, Förster resonance energy transfer, coupled-enzyme assays, and X-ray crystallography. We discern positive and negative cooperativity for Aurora A kinase (AurA) and Abelson kinase (Abl) with different combinations of orthosteric and allosteric modulators. We find that a conformational equilibrium shift is the main principle governing cooperativity. Notably, for both kinases, we find a synergistic decrease of the required orthosteric and allosteric drug dosages when used in combination to inhibit kinase activities to clinically relevant inhibition levels. X-ray crystal structures of the double-drugged kinase complexes reveal the molecular principles underlying the cooperative nature of double-drugging AurA and Abl with orthosteric and allosteric inhibitors. Finally, we observe a fully closed conformation of Abl when bound to a pair of positively cooperative orthosteric and allosteric modulators, shedding light on the puzzling abnormality of previously solved closed Abl structures. Collectively, our data provide mechanistic and structural insights into rational design and evaluation of double-drugging strategies.


Assuntos
Aurora Quinase A , Mesilato de Imatinib , Niacinamida , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-abl , Humanos , Cristalografia por Raios X , Mesilato de Imatinib/química , Mesilato de Imatinib/farmacologia , Niacinamida/química , Niacinamida/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/química , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
7.
Angew Chem Int Ed Engl ; 61(46): e202117276, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36257909

RESUMO

Soellner published on the interplay between allosteric and adenosine triphosphate (ATP)-competitive inhibitors of ABL kinase, showing that the latter preferably binds to different conformational states of ABL compared to allosteric agents that specifically target the ABL myristate pocket (STAMP) and deducing that asciminib cannot bind to ABL simultaneously with ATP-competitive drugs. These results are to some extent in line with ours, although our analyses of dose-response matrices from combinations of asciminib with imatinib, nilotinib or dasatinib, show neither synergy nor antagonism, but suggest additive antiproliferative effects on BCR-ABL-dependent KCL22 cells. Furthermore, our X-ray crystallographic, solution nuclear magnetic resonance (NMR), and isothermal titration calorimetry studies show that asciminib can bind ABL concomitantly with type-1 or -2 ATP-competitive inhibitors to form ternary complexes. Concomitant binding of asciminib with imatinib, nilotinib, or dasatinib might translate to benefit some chronic myeloid leukaemia patients.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Humanos , Mesilato de Imatinib/farmacologia , Dasatinibe/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/metabolismo , Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Proteínas de Fusão bcr-abl , Resistencia a Medicamentos Antineoplásicos
8.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361750

RESUMO

The purpose of this work is to investigate the protein kinase inhibitory activity of constituents from Acacia auriculiformis stem bark. Column chromatography and NMR spectroscopy were used to purify and characterize betulin from an ethyl acetate soluble fraction of acacia bark. Betulin, a known inducer of apoptosis, was screened against a panel of 16 disease-related protein kinases. Betulin was shown to inhibit Abelson murine leukemia viral oncogene homolog 1 (ABL1) kinase, casein kinase 1ε (CK1ε), glycogen synthase kinase 3α/ß (GSK-3 α/ß), Janus kinase 3 (JAK3), NIMA Related Kinase 6 (NEK6), and vascular endothelial growth factor receptor 2 kinase (VEGFR2) with activities in the micromolar range for each. The effect of betulin on the cell viability of doxorubicin-resistant K562R chronic myelogenous leukemia cells was then verified to investigate its putative use as an anti-cancer compound. Betulin was shown to modulate the mitogen-activated protein (MAP) kinase pathway, with activity similar to that of imatinib mesylate, a known ABL1 kinase inhibitor. The interaction of betulin and ABL1 was studied by molecular docking, revealing an interaction of the inhibitor with the ABL1 ATP binding pocket. Together, these data demonstrate that betulin is a multi-target inhibitor of protein kinases, an activity that can contribute to the anticancer properties of the natural compound and to potential treatments for leukemia.


Assuntos
Acacia/química , Antineoplásicos Fitogênicos/farmacologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Triterpenos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Apoptose/genética , Sítios de Ligação , Caseína Quinase 1 épsilon/antagonistas & inibidores , Caseína Quinase 1 épsilon/genética , Caseína Quinase 1 épsilon/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/genética , Janus Quinase 3/metabolismo , Células K562 , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Quinases Relacionadas a NIMA/antagonistas & inibidores , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Casca de Planta/química , Extratos Vegetais/química , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/isolamento & purificação , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Transdução de Sinais , Triterpenos/química , Triterpenos/isolamento & purificação , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
Mol Divers ; 25(3): 1301-1314, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34191245

RESUMO

Abelson kinase (c-Abl) is a non-receptor tyrosine kinase involved in several biological processes essential for cell differentiation, migration, proliferation, and survival. This enzyme's activation might be an alternative strategy for treating diseases such as neutropenia induced by chemotherapy, prostate, and breast cancer. Recently, a series of compounds that promote the activation of c-Abl has been identified, opening a promising ground for c-Abl drug development. Structure-based drug design (SBDD) and ligand-based drug design (LBDD) methodologies have significantly impacted recent drug development initiatives. Here, we combined SBDD and LBDD approaches to characterize critical chemical properties and interactions of identified c-Abl's activators. We used molecular docking simulations combined with tree-based machine learning models-decision tree, AdaBoost, and random forest to understand the c-Abl activators' structural features required for binding to myristoyl pocket, and consequently, to promote enzyme and cellular activation. We obtained predictive and robust models with Matthews correlation coefficient values higher than 0.4 for all endpoints and identified characteristics that led to constructing a structure-activity relationship model (SAR).


Assuntos
Aprendizado de Máquina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-abl/química , Sítios de Ligação , Desenho de Fármacos , Humanos , Ligantes , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Relação Quantitativa Estrutura-Atividade
10.
Cell Commun Signal ; 19(1): 59, 2021 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022881

RESUMO

The ABL kinases, ABL1 and ABL2, promote tumor progression and metastasis in various solid tumors. Recent reports have shown that ABL kinases have increased expression and/or activity in solid tumors and that ABL inactivation impairs metastasis. The therapeutic effects of ABL inactivation are due in part to ABL-dependent regulation of diverse cellular processes related to the epithelial to mesenchymal transition and subsequent steps in the metastatic cascade. ABL kinases target multiple signaling pathways required for promoting one or more steps in the metastatic cascade. These findings highlight the potential utility of specific ABL kinase inhibitors as a novel treatment paradigm for patients with advanced metastatic disease. Video abstract.


Assuntos
Transição Epitelial-Mesenquimal , Proteínas Proto-Oncogênicas c-abl/metabolismo , Citoesqueleto/metabolismo , Progressão da Doença , Humanos , Terapia de Alvo Molecular , Metástase Neoplásica , Proteínas Proto-Oncogênicas c-abl/química
11.
Mol Divers ; 25(2): 1025-1050, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32328961

RESUMO

4-Thiazolidinones and phenylaminopyrimidines are known as anticancer agents. Imatinib is the pioneer phenylaminopyrimidine derivative kinase inhibitor, which is used for the treatment of chronic myeloid leukemia. With a hybrid approach, a novel series of 5-benzylidene-2-arylimino-4-thiazolidinone derivatives containing phenylaminopyrimidine core were designed, synthesized, and tested for their anticancer activity on K562 (chronic myeloid leukemia), PC3 (prostat cancer), and SHSY-5Y (neuroblastoma) cells. Since superior anticancer activity was observed on K562 cells, further biological studies of selected compounds (8, 15, and 34) were performed on K562 cells. For the synthesis of designed compounds, thiourea compounds were converted to 2-imino-1,3-thiazolidin-4-ones with α-chloroacetic acid in the presence of sodium acetate. 5-Benzylidene-2-imino-1,3-thiazolidin-4-one derivatives were obtained by Knoevenagel condensation of 2-imino-1,3-thiazolidin-4-ones with related aldehydes. Compounds 8, 15, and 34 were evaluated for cell viability, apoptosis studies, cell cycle experiments, and DNA damage assays. IC50 values of compounds 8, 15, and 34 were found as 5.26 ± 1.03, 3.52 ± 0.91, and 8.16 ± 1.27 µM, respectively, in K562 cells. Preferably, these compounds showed less toxicity towards L929 cells compared to imatinib. Furthermore, compounds 8 and 15 significantly induced early and late apoptosis in a time-dependent manner. Compounds 15 and 34 induced cell cycle arrest at G0/G1 phase and compound 8 caused cell cycle arrest at G2/M phase. Based on DNA damage assay, compounds 8 and 15 were found to be more genotoxic than imatinib towards K562 cells. To put more molecular insight, possible Abl inhibition mechanisms of most active compounds were predicted by molecular docking studies. In conclusion, a novel series of 5-benzylidene-2-arylimino-4-thiazolidinone derivatives and their promising anticancer activities were reported herein.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Pirimidinas , Tiazolidinas , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/química , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Tiazolidinas/síntese química , Tiazolidinas/química , Tiazolidinas/farmacologia
12.
Eur J Hum Genet ; 29(4): 593-603, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33223528

RESUMO

ABL1 is a proto-oncogene encoding a nonreceptor tyrosine kinase, best known in the somatic BCR-ABL fusion gene associated with chronic myeloid leukaemia. Recently, germline missense variants in ABL1 have been found to cause an autosomal dominant developmental syndrome with congenital heart disease, skeletal malformations and characteristic facies. Here, we describe a series of six new unrelated individuals with heterozygous missense variants in ABL1 (including four novel variants) identified via whole exome sequencing. All the affected individuals in this series recapitulate the phenotype of the ABL1 developmental syndrome and additionally we affirm that hearing impairment is a common feature of the condition. Four of the variants cluster in the myristoyl-binding pocket of ABL1, a region critical for auto-inhibitory regulation of the kinase domain. Bio-informatic analysis of transcript-wide conservation and germline/somatic variation reveals that this pocket region is subject to high missense constraint and evolutionary conservation. Functional work to investigate ABL1 kinase activity in vitro by transient transfection of HEK293T cells with variant ABL1 plasmid constructs revealed increased phosphorylation of ABL1-specific substrates compared to wild-type. The increased tyrosine kinase activity was suppressed by imatinib treatment. This case series of six new patients with germline heterozygous ABL1 missense variants further delineates the phenotypic spectrum of this condition and recognises microcephaly as a common finding. Our analysis supports an ABL1 gain-of-function mechanism due to loss of auto-inhibition, and demonstrates the potential for pharmacological inhibition using imatinib.


Assuntos
Deformidades do Pé/genética , Deformidades da Mão/genética , Perda Auditiva/genética , Cardiopatias Congênitas/genética , Proteínas Proto-Oncogênicas c-abl/genética , Adolescente , Adulto , Sítios de Ligação , Criança , Pré-Escolar , Feminino , Deformidades do Pé/patologia , Células HEK293 , Deformidades da Mão/patologia , Perda Auditiva/patologia , Cardiopatias Congênitas/patologia , Humanos , Masculino , Mutação de Sentido Incorreto , Ácido Mirístico/metabolismo , Fenótipo , Ligação Proteica , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/metabolismo , Síndrome
13.
Chem Commun (Camb) ; 56(87): 13409-13412, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33035286

RESUMO

Many commonly employed strategies to map kinase activities in live cells require expression of genetically encoded proteins (e.g. FRET sensors). In this work, we describe the development and preliminary application of a set of cell-penetrating, fluorophore labelled peptide substrates for fluorescence lifetime imaging (FLIM) of Abl and Src-family kinase activities. These probes do not rely on FRET pairs or genetically-encoded protein expression. We further demonstrate probe multiplexing and pixel-by-pixel quantification to estimate the relative proportion of modified probe, suggesting that this strategy will be useful for detailed mapping of single cell and subcellular dynamics of multiple kinases concurrently in live cells.


Assuntos
Corantes Fluorescentes/química , Imagem Óptica , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/metabolismo , Quinases da Família src/química , Quinases da Família src/metabolismo , Células HeLa , Humanos
14.
Blood Cancer J ; 10(5): 61, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457305

RESUMO

Mutations of ABL1 are the dominant mechanism of relapse in Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph + ALL). We performed highly accurate Duplex Sequencing of exons 4-10 of ABL1 on bone marrow or peripheral blood samples from 63 adult patients with previously untreated Ph + ALL who received induction with intensive chemotherapy plus a BCR-ABL1 TKI. We identified ABL1 mutations prior to BCR-ABL1 TKI exposure in 78% of patients. However, these mutations were generally present at extremely low levels (median variant allelic frequency 0.008% [range, 0.004%-3.71%] and did not clonally expand and lead to relapse in any patient, even when the pretreatment mutation was known to confer resistance to the TKI received. In relapse samples harboring a TKI-resistant ABL1 mutation, the corresponding mutation could not be detected pretreatment, despite validated sequencing sensitivity of Duplex Sequencing down to 0.005%. In samples under the selective pressure of ongoing TKI therapy, we detected low-level, emerging resistance mutations up to 5 months prior to relapse. These findings suggest that pretreatment ABL1 mutation assessment should not guide upfront TKI selection in Ph + ALL, although serial testing while on TKI therapy may allow for early detection of clinically actionable resistant clones.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Cromossomo Filadélfia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-abl/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Proteínas de Fusão bcr-abl/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/efeitos dos fármacos , Cromossomo Filadélfia/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-abl/química , Adulto Jovem
15.
Mol Med Rep ; 22(2): 612-619, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32468042

RESUMO

Tyrosine phosphorylation is an essential post­translational protein modification catalyzed by tyrosine kinases. c­Abl is a crucial non­receptor tyrosine kinase, which is most commonly activated by auto­phosphorylation, DNA damage and by interacting with other protein kinases. DNA damage response (DDR) proteins stimulated by DNA lesions or chromatin alterations recruit the DNA repair and cell cycle checkpoint machinery to restore genome integrity and cellular homeostasis. The fundamental roles of activated c­Abl tyrosine kinase in cellular response pathways have been intensively and extensively investigated and in recent years, a number of c­Abl protein binding partners have been determined; however, the functional roles of these molecules remain to be determined. The present review aimed to summarize the DDR proteins phosphorylated by c­Abl tyrosine kinase that have been identified to date, in addition to the functional outcomes of these phosphotyrosine events. Notably, it has been discovered that c­Abl tyrosine kinase can bind with and phosphorylate DDR proteins at different tyrosine sites, which serve distinct roles in various cellular contexts.


Assuntos
Dano ao DNA/fisiologia , Fosforilação/fisiologia , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Tirosina/metabolismo , Animais , Humanos , Proteínas Proto-Oncogênicas c-abl/química , Transdução de Sinais/fisiologia
16.
Biochim Biophys Acta Gen Subj ; 1864(4): 129508, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31884066

RESUMO

BACKGROUND: Kinases are a family of enzymes that catalyze the transfer of the ɤ-phosphate group from ATP to a protein's residue. Malfunctioning kinases are involved in many health problems such as cardiovascular diseases, diabetes, and cancer. Kinases transitions between multiple conformations of inactive to active forms attracted considerable interest. METHOD: A reaction coordinate is computed for the transition between the active to inactive conformation in Abl kinase with a focus on the DFG-in to DFG-out flip. The method of Rock Climbing is used to construct a path locally, which is subsequently optimized using a functional of the entire path. The discrete coordinate sets along the reaction path are used in a Milestoning calculation of the free energy landscape and the rate of the transition. RESULTS: The estimated transition times are between a few milliseconds and seconds, consistent with simulations of the kinetics and with indirect experimental data. The activation requires the transient dissociation of the salt bridge between Lys271 and Glu286. The salt bridge reforms once the DFG motif is stabilized by a locked conformation of Phe382. About ten residues are identified that contribute significantly to the process and are included as part of the reaction space. CONCLUSIONS: The transition from DFG-in to DFG-out in Abl kinase was simulated using atomic resolution of a fully solvated protein yielding detailed description of the kinetics and the mechanism of the DFG flip. The results are consistent with other computational methods that simulate the kinetics and with some indirect experimental measurements. GENERAL SIGNIFICANCE: The activation of kinases includes a conformational transition of the DFG motif that is important for enzyme activity but is not accessible to conventional Molecular Dynamics. We propose a detailed mechanism for the transition, at a timescale longer than conventional MD, using a combination of reaction path and Milestoning algorithms. The mechanism includes local structural adjustments near the binding site as well as collective interactions with more remote residues.


Assuntos
Proteínas Proto-Oncogênicas c-abl/metabolismo , Algoritmos , Humanos , Modelos Moleculares , Proteínas Proto-Oncogênicas c-abl/química
17.
Molecules ; 24(19)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31574910

RESUMO

Imatinib, an Abelson (ABL) tyrosine kinase inhibitor, is a lead molecular-targeted drug against chronic myelogenous leukemia (CML). To overcome its resistance and adverse effects, new inhibitors of ABL kinase are needed. Our previous study showed that the benzyl ester of gypsogenin (1c), a pentacyclic triterpene, has anti-ABL kinase and a subsequent anti-CML activity. To optimize its activities, benzyl esters of carefully selected triterpenes (PT1-PT6), from different classes comprising oleanane, ursane and lupane, and new substituted benzyl esters of gypsogenin (GP1-GP5) were synthesized. All of the synthesized compounds were purified and charachterized by different spectroscopic methods. Cytotoxicity of the parent triterpenes and the synthesized compounds against CML cell line K562 was examined; revealing three promising compounds PT5, GP2 and GP5 (IC50 5.46, 4.78 and 3.19 µM, respectively). These compounds were shown to inhibit extracellular signal-regulated kinase (ERK) downstream signaling, and induce apoptosis in K562 cells. Among them, PT5 was identified to have in vitro activity (IC50 = 1.44 µM) against ABL1 kinase, about sixfold of 1c, which was justified by molecular docking. The in vitro activities of GP2 and GP5 are less than PT5, hence they were supposed to possess other more mechanisms of cytotoxicity. In general, our design and derivatizations resulted in enhancing the activity against ABL1 kinase and CML cells.


Assuntos
Desenho de Fármacos , Triterpenos Pentacíclicos/síntese química , Triterpenos Pentacíclicos/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Humanos , Células K562 , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Triterpenos Pentacíclicos/química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/química , Relação Estrutura-Atividade
18.
ACS Chem Biol ; 14(10): 2264-2275, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31553563

RESUMO

The C-terminal domain (CTD) of the largest subunit in eukaryotic RNA polymerase II has a repetitive heptad sequence of Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 which is responsible for recruiting transcriptional regulatory factors. The seventh heptad residues in mammals are less conserved and subject to various post-translational modifications, but the consequences of such variations are not well understood. In this study, we use ultraviolet photodissociation mass spectrometry, kinetic assays, and structural analyses to dissect how different residues or modifications at the seventh heptad position alter Tyr1 phosphorylation. We found that negatively charged residues in this position promote phosphorylation of adjacent Tyr1 sites, whereas positively charged residues discriminate against it. Modifications that alter the charges on seventh heptad residues such as arginine citrullination negate such distinctions. Such specificity can be explained by conserved, positively charged pockets near the active sites of ABL1 and its homologues. Our results reveal a novel mechanism for variations or modifications in the seventh heptad position directing subsequent phosphorylation of other CTD sites, which can contribute to the formation of various modification combinations that likely impact transcriptional regulation.


Assuntos
RNA Polimerase II/metabolismo , Tirosina/química , Motivos de Aminoácidos , Sítios de Ligação , Escherichia coli/genética , Humanos , Fosforilação , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , RNA Polimerase II/química , Alinhamento de Sequência
19.
ACS Chem Biol ; 14(9): 1888-1895, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31339688

RESUMO

We present a rapid and high-throughput yeast and flow cytometry based method for predicting kinase inhibitor resistance mutations and determining kinase peptide substrate specificity. Despite the widespread success of targeted kinase inhibitors as cancer therapeutics, resistance mutations arising within the kinase domain of an oncogenic target present a major impediment to sustained treatment efficacy. Our method, which is based on the previously reported YESS system, recapitulated all validated BCR-ABL1 mutations leading to clinical resistance to the second-generation inhibitor dasatinib, in addition to identifying numerous other mutations which have been previously observed in patients, but not yet validated as drivers of resistance. Further, we were able to demonstrate that the newer inhibitor ponatinib is effective against the majority of known single resistance mutations, but ineffective at inhibiting many compound mutants. These results are consistent with preliminary clinical and in vitro reports, indicating that mutations providing resistance to ponatinib are significantly less common; therefore, predicting ponatinib will be less susceptible to clinical resistance relative to dasatinib. Using the same yeast-based method, but with random substrate libraries, we were able to identify consensus peptide substrate preferences for the SRC and LYN kinases. ABL1 lacked an obvious consensus sequence, so a machine learning algorithm utilizing amino acid covariances was developed which accurately predicts ABL1 kinase peptide substrates.


Assuntos
Dasatinibe/farmacologia , Resistência a Medicamentos/fisiologia , Citometria de Fluxo/métodos , Imidazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Piridazinas/farmacologia , Anticorpos/química , Anticorpos/imunologia , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/metabolismo , Corantes Fluorescentes/química , Ensaios de Triagem em Larga Escala/métodos , Humanos , Aprendizado de Máquina , Mutação , Fosforilação/efeitos dos fármacos , Estudo de Prova de Conceito , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/imunologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
20.
Molecules ; 24(11)2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31181667

RESUMO

Two new complexes of Ru(II) with mixed ligands were prepared: [Ru(bpy)2smp](PF6) (1) and [Ru(phen)2smp](PF6) (2), in which smp = sulfamethoxypyridazine; bpy = 2,2'-bipyridine; phen = 1,10-phenanthroline. The complexes have been characterized by elemental and conductivity analyses; infrared, NMR, and electrospray ionization mass spectroscopies; and X-ray diffraction of single crystal. Structural analyses reveal a distorted octahedral geometry around Ru(II) that is bound to two bpy (in 1) or two phen (in 2) via their two heterocyclic nitrogens and to two nitrogen atoms from sulfamethoxypyridazine-one of the methoxypyridazine ring and the sulfonamidic nitrogen, which is deprotonated. Both complexes inhibit the growth of chronic myelogenous leukemia cells. The interaction of the complexes with bovine serum albumin and DNA is described. DNA footprinting using an oligonucleotide as substrate showed the complexes' preference for thymine base rich sites. It is worth notifying that the complexes interact with the Src homology SH3 domain of the Abl tyrosine kinase protein. Abl protein is involved in signal transduction and implicated in the development of chronic myelogenous leukemia. Nuclear magnetic resonance (NMR) studies of the interaction of complex 2 with the Abl-SH3 domain showed that the most affected residues were T79, G97, W99, and Y115.


Assuntos
Antineoplásicos/síntese química , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Compostos Organometálicos/síntese química , Rutênio/química , Sulfametoxipiridazina/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Dicroísmo Circular , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Estrutura Molecular , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Difração de Raios X , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...