Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.183
Filtrar
1.
Sci Rep ; 14(1): 12949, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839839

RESUMO

Growth/differentiation factor-15 (GDF15) is considered an unfavourable prognostic biomarker for cardiovascular disease in clinical data, while experimental studies suggest it has cardioprotective potential. This study focuses on the direct cardiac effects of GDF15 during ischemia-reperfusion injury in Wistar male rats, employing concentrations relevant to patients at high cardiovascular risk. Initially, we examined circulating levels and heart tissue expression of GDF15 in rats subjected to ischemia-reperfusion and sham operations in vivo. We then evaluated the cardiac effects of GDF15 both in vivo and ex vivo, administering recombinant GDF15 either before 30 min of ischemia (preconditioning) or at the onset of reperfusion (postconditioning). We compared infarct size and cardiac contractile recovery between control and rGDF15-treated rats. Contrary to our expectations, ischemia-reperfusion did not increase GDF15 plasma levels compared to sham-operated rats. However, cardiac protein and mRNA expression increased in the infarcted zone of the ischemic heart after 24 h of reperfusion. Notably, preconditioning with rGDF15 had a cardioprotective effect, reducing infarct size both in vivo (65 ± 5% in control vs. 42 ± 6% in rGDF15 groups) and ex vivo (60 ± 4% in control vs. 45 ± 4% in rGDF15 groups), while enhancing cardiac contractile recovery ex vivo. However, postconditioning with rGDF15 did not alter infarct size or the recovery of contractile parameters in vivo or ex vivo. These novel findings reveal that the short-term exogenous administration of rGDF15 before ischemia, at physiologically relevant levels, protects the heart against ischemia-reperfusion injury in both in vivo and ex vivo settings. The ex vivo results indicate that rGDF15 operates independently of the inflammatory, endocrine and nervous systems, suggesting direct and potent cardioprotective properties against ischemia-reperfusion injury.


Assuntos
Fator 15 de Diferenciação de Crescimento , Infarto do Miocárdio , Ratos Wistar , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Animais , Masculino , Infarto do Miocárdio/metabolismo , Ratos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Miocárdio/patologia , Cardiotônicos/farmacologia , Cardiotônicos/administração & dosagem , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Precondicionamento Isquêmico Miocárdico/métodos
2.
Mol Med Rep ; 30(1)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38757335

RESUMO

Thrombin, which plays a crucial role in hemostasis, is also implicated in cancer progression. In the present study, the effects of the thrombin­targeting recombinant tyrosine­sulfated madanin­1 on cancer cell behavior and signaling pathways compared with madanin­1 wild­type (WT) were investigated. Recombinant madanin­1 2 sulfation (madanin­1 2S) and madanin­1 WT proteins were generated using Escherichia coli. SKOV3 and MDA­MB­231 cells were treated with purified recombinant proteins with or without thrombin stimulation. Migration and invasion of cells were analyzed by wound healing assay and Transwell assay, respectively. Thrombin markedly increased cell migration and invasion in both SKOV3 and MDA­MB­231 cells, which were significantly suppressed by madanin­1 2S (P<0.05). Madanin­1 2S also significantly suppressed thrombin­induced expression of phosphorylated (p)­Akt and p­extracellular signal­regulated kinase in both cell lines (P<0.05), whereas madanin­1 WT had no effect on the expression levels of these proteins in MDA­MB­231 cells. Furthermore, madanin­1 2S significantly reversed the effects of thrombin on E­cadherin, N­cadherin and vimentin expression in MDA­MB­231 cells (P<0.05), whereas madanin­1 WT did not show any effect. In conclusion, madanin­1 2S suppressed the migration and invasion of cancer cells more effectively than madanin­1 WT. It is hypothesized that inhibiting thrombin via the sulfated form of madanin­1 may be a potential candidate for enhanced cancer therapy; however, further in vivo validation is required.


Assuntos
Movimento Celular , Proteínas Recombinantes , Trombina , Humanos , Movimento Celular/efeitos dos fármacos , Trombina/farmacologia , Linhagem Celular Tumoral , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tirosina/metabolismo , Tirosina/farmacologia , Caderinas/metabolismo , Caderinas/genética
3.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 243-247, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38814208

RESUMO

Burns are the most severe type of trauma, and the resulting ischemia and hypoxia damage can promote the dysfunction and even failure of tissues and organs throughout the body, endangering patients' life safety. Recombinant human growth hormone (rhGH) has the functions of promoting protein synthesis to reverse negative nitrogen balance, accelerating wound healing, and improving immune function, which is widely used in the treatment of burns. However, the exact mechanism and pathway of rhGH's action is not yet fully understood. In this study, we observed the wound repair effect of recombinant human growth hormone (rhGH) on burned mice and further analyzed the mechanism of action, which can provide more comprehensive reference opinions for clinical practice. First, by establishing a burn mouse model and and intervening with different doses of rhGH, we found that the wound healing capacity of mice was significantly enhanced and the inflammatory and oxidative stress responses were obviously alleviated, confirming the excellent promotion of wound repair and anti-inflammatory and antioxidant effects of rhGH. Subsequently, we found that the expression of p-ERK1/2/ERK1/2, EGF, TGF-ß, and VEGF proteins was elevated in the traumatic tissues of mice after rhGH intervention, suggesting that the pathway of action of rhGH might be related to the activation of ERK pathway to promote the regeneration of traumatic capillaries.


Assuntos
Queimaduras , Hormônio do Crescimento Humano , Sistema de Sinalização das MAP Quinases , Neovascularização Fisiológica , Proteínas Recombinantes , Cicatrização , Animais , Queimaduras/tratamento farmacológico , Queimaduras/patologia , Cicatrização/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Camundongos , Hormônio do Crescimento Humano/farmacologia , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Modelos Animais de Doenças , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Camundongos Endogâmicos C57BL , Fator de Crescimento Epidérmico/farmacologia , Angiogênese
4.
Anticancer Res ; 44(6): 2359-2367, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821601

RESUMO

BACKGROUND/AIM: The alkylating agent trabectedin, which binds the minor groove of DNA, is second-line therapy for soft-tissue sarcoma but has only moderate efficacy. The aim of the present study was to determine the synergistic efficacy of recombinant methioninase (rMETase) and trabectedin on fibrosarcoma cells in vitro, compared with normal fibroblasts. MATERIALS AND METHODS: HT1080 human fibrosarcoma cells expressing green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm and Hs27 normal human fibroblasts, were used. Each cell line was cultured in vitro and divided into four groups: no-treatment control; trabectedin treated; rMETase treated; and trabectedin plus rMETase treated. The dual-color HT1080 cells were used to quantitate nuclear fragmentation in each treatment group. RESULTS: The combination of rMETase and trabectedin was highly synergistic to decrease HT1080 cell viability. In contrast, there was no synergy on Hs27 cells. Moreover, nuclear fragmentation occurred synergistically with the combination of trabectedin and rMETase on dual-color HT1080 cells. CONCLUSION: The combination treatment of trabectedin plus rMETase was highly synergistic on fibrosarcoma cells in vitro suggesting that the combination can improve the outcome of trabectedin alone in future clinical studies. The lack of synergy of rMETase and trabectedin on normal fibroblasts suggests the combination is not toxic to normal cells. Synergy of the two drugs may be due to the high rate of nuclear fragmentation on treated HT1080 cells, and the late-S/G2 cell-cycle block of cancer cells by rMETase, which is a target for trabectedin. The results of the present study suggest the future clinical potential of the combination of rMETase and trabectedin for soft-tissue sarcoma.


Assuntos
Liases de Carbono-Enxofre , Sobrevivência Celular , Dioxóis , Sinergismo Farmacológico , Fibroblastos , Fibrossarcoma , Tetra-Hidroisoquinolinas , Trabectedina , Humanos , Fibrossarcoma/tratamento farmacológico , Fibrossarcoma/patologia , Fibrossarcoma/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Trabectedina/farmacologia , Liases de Carbono-Enxofre/farmacologia , Liases de Carbono-Enxofre/administração & dosagem , Tetra-Hidroisoquinolinas/farmacologia , Dioxóis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Linhagem Celular Tumoral , Antineoplásicos Alquilantes/farmacologia , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos
5.
Int Immunopharmacol ; 134: 112188, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728880

RESUMO

Neuroinflammation is one of the extensive secondary injury processes that aggravate metabolic and cellular dysfunction and tissue loss following spinal cord injury (SCI). Thus, an anti-inflammatory strategy is crucial for modulating structural and functional restoration during the stage of acute and chronic SCI. Recombinant fibroblast growth factor 4 (rFGF4) has eliminated its mitogenic activity and demonstrated a metabolic regulator for alleviating hyperglycemia in type 2 diabetes and liver injury in non-alcoholic steatohepatitis. However, it remains to be explored whether or not rFGF4 has a neuroprotective effect for restoring neurological disorders, such as SCI. Here, we identified that rFGF4 could polarize microglia/macrophages into the restorative M2 subtype, thus exerting an anti-inflammatory effect to promote neurological functional recovery and nerve fiber regeneration after SCI. Importantly, these effects by rFGF4 were related to triggering PI3K/AKT/GSK3ß and attenuating TLR4/NF-κB signaling axes. Conversely, gene silencing of the PI3K/AKT/GSK3ß signaling or pharmacological reactivation of the TLR4/NF-κB axis aggravated inflammatory reaction. Thus, our findings highlight rFGF4 as a potentially therapeutic regulator for repairing SCI, and its outstanding effect is associated with regulating macrophage/microglial polarization.


Assuntos
Glicogênio Sintase Quinase 3 beta , Macrófagos , Microglia , NF-kappa B , Regeneração Nervosa , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Regeneração Nervosa/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , NF-kappa B/metabolismo , Proteínas Recombinantes/uso terapêutico , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos , Masculino , Axônios/metabolismo , Axônios/efeitos dos fármacos , Axônios/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fenótipo , Ratos , Humanos , Modelos Animais de Doenças , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia
6.
Stem Cell Res Ther ; 15(1): 144, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764077

RESUMO

BACKGROUND: The aim of this study was to evaluate potential synergistic effects of a single, local application of human umbilical cord MSC-derived sEVs in combination with a low dose of recombinant human rhBMP-2 to promote the regeneration of a metaphyseal femoral defect in an osteoporotic rat model. METHODS: 6 weeks after induction of osteoporosis by bilateral ventral ovariectomy and administration of a special diet, a total of 64 rats underwent a distal femoral metaphyseal osteotomy using a manual Gigli wire saw. Defects were stabilized with an adapted Y-shaped mini-locking plate and were subsequently treated with alginate only, or alginate loaded with hUC-MSC-sEVs (2 × 109), rhBMP-2 (1.5 µg), or a combination of sEVs and rhBMP-2 (n = 16 for each group). 6 weeks post-surgery, femora were evaluated by µCT, descriptive histology, and biomechanical testing. RESULTS: Native radiographs and µCT analysis confirmed superior bony union with callus formation after treatment with hUC-MSC-sEVs in combination with a low dose of rhBMP-2. This finding was further substantiated by histology, showing robust defect consolidation 6 weeks after treatment. Torsion testing of the explanted femora revealed increased stiffness after application of both, rhBMP-2 alone, or in combination with sEVs, whereas torque was only significantly increased after treatment with rhBMP-2 together with sEVs. CONCLUSION: The present study demonstrates that the co-application of hUC-MSC-sEVs can improve the efficacy of rhBMP-2 to promote the regeneration of osteoporotic bone defects.


Assuntos
Proteína Morfogenética Óssea 2 , Vesículas Extracelulares , Fêmur , Osteoporose , Proteínas Recombinantes , Cordão Umbilical , Animais , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/genética , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/genética , Osteoporose/patologia , Ratos , Feminino , Humanos , Fêmur/patologia , Fêmur/efeitos dos fármacos , Fêmur/diagnóstico por imagem , Cordão Umbilical/citologia , Vesículas Extracelulares/metabolismo , Regeneração Óssea/efeitos dos fármacos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta/farmacologia , Modelos Animais de Doenças , Microtomografia por Raio-X , Células-Tronco Mesenquimais/metabolismo
7.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1498-1508, 2024 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-38783811

RESUMO

To investigate the role of recombinant mussel mucin in wound healing, we aimed to prepare this mucin using Pichia pastoris as the host microbe. Our method involved constructing a genetically engineered strain of P. pastoris that expressed a fusion protein consisting of Mfp-3 and preCol-P peptide segments of mussel. After fermentation and purification, we obtained a pure recombinant mussel mucin product. We then conducted experiments to evaluate its effect at both the cellular and animal levels. At the cellular level, we examined its impact on the proliferation and migration of mouse fibroblast L929. At the animal level, we assessed its ability to promote wound healing after full-layer skin resection in rats. Our results showed that the recombinant mussel mucin protein has a content of 90.28% and a purity of 96.49%. The content of 3,4-dihydroxyphenylalanine (DOPA) was 0.73 wt%, and the endotoxin content was less than 0.5 EU/mg. Importantly, the recombinant mussel mucin protein significantly promoted both the migration and proliferation of mouse fibroblast, as well as the wound healing in rat skin. In conclusion, our findings demonstrate that recombinant mussel mucin has the potential to promote wound healing and can be considered a promising medical biomaterial.


Assuntos
Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Ratos , Camundongos , Mucinas/metabolismo , Mucinas/genética , Bivalves , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/farmacologia , Masculino , Ratos Sprague-Dawley , Saccharomycetales
8.
Cell Commun Signal ; 22(1): 236, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650003

RESUMO

BACKGROUND: The preservation of retinal ganglion cells (RGCs) and the facilitation of axon regeneration are crucial considerations in the management of various vision-threatening disorders. Therefore, we investigate the efficacy of interleukin-4 (IL-4), a potential therapeutic agent, in promoting neuroprotection and axon regeneration of retinal ganglion cells (RGCs) as identified through whole transcriptome sequencing in an in vitro axon growth model. METHODS: A low concentration of staurosporine (STS) was employed to induce in vitro axon growth. Whole transcriptome sequencing was utilized to identify key target factors involved in the molecular mechanism underlying axon growth. The efficacy of recombinant IL-4 protein on promoting RGC axon growth was validated through in vitro experiments. The protective effect of recombinant IL-4 protein on somas of RGCs was assessed using RBPMS-specific immunofluorescent staining in mouse models with optic nerve crush (ONC) and N-methyl-D-aspartic acid (NMDA) injury. The protective effect on RGC axons was evaluated by anterograde labeling of cholera toxin subunit B (CTB), while the promotion of RGC axon regeneration was assessed through both anterograde labeling of CTB and immunofluorescent staining for growth associated protein-43 (GAP43). RESULTS: Whole-transcriptome sequencing of staurosporine-treated 661 W cells revealed a significant upregulation in intracellular IL-4 transcription levels during the process of axon regeneration. In vitro experiments demonstrated that recombinant IL-4 protein effectively stimulated axon outgrowth. Subsequent immunostaining with RBPMS revealed a significantly higher survival rate of RGCs in the rIL-4 group compared to the vehicle group in both NMDA and ONC injury models. Axonal tracing with CTB confirmed that recombinant IL-4 protein preserved long-distance projection of RGC axons, and there was a notably higher number of surviving axons in the rIL-4 group compared to the vehicle group following NMDA-induced injury. Moreover, intravitreal delivery of recombinant IL-4 protein substantially facilitated RGC axon regeneration after ONC injury. CONCLUSION: The recombinant IL-4 protein exhibits the potential to enhance the survival rate of RGCs, protect RGC axons against NMDA-induced injury, and facilitate axon regeneration following ONC. This study provides an experimental foundation for further investigation and development of therapeutic agents aimed at protecting the optic nerve and promoting axon regeneration.


Assuntos
Axônios , Interleucina-4 , Regeneração Nervosa , Células Ganglionares da Retina , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Animais , Interleucina-4/farmacologia , Axônios/efeitos dos fármacos , Axônios/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Traumatismos do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/tratamento farmacológico , N-Metilaspartato/farmacologia , Estaurosporina/farmacologia , Fármacos Neuroprotetores/farmacologia , Proteínas Recombinantes/farmacologia
9.
Clin Appl Thromb Hemost ; 30: 10760296241247558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656136

RESUMO

INTRODUCTION: Andexanet alfa (AA) - zhzo, recombinant coagulation factor Xa, is an approved antidote for oral Xa inhibitors (apixaban and rivaroxaban). Unfractionated heparin (UFH) is commonly used for therapeutic, interventional, and surgical indications. Protamine sulfate (PrSO4) is frequently used to neutralize UFH. This study aimed to investigate the comparative neutralization profiles of AA and PrSO4 for heparins of bovine, ovine, and porcine origin. MATERIALS AND METHODS: The neutralization effect of PrSO4 at 25 µg/ml and AA at 100 µg/ml was studied on an approximate surgical/interventional concentration of heparin by supplementing whole blood with each of the heparins at 25 µg/ml. For the clotting profile (activated partial thromboplastin time: aPTT), amidolytic (anti-Xa and anti-IIa), and thrombin generation assay each of the heparin were supplemented from -10-0.62 µg/ml. RESULTS: In the whole blood ACT studies, all three heparins produced strong anti-coagulant effects (400-450 seconds) compared to saline (130-150 seconds). Both AA and PrSO4 almost fully neutralized the anti-coagulant effects of heparins (140-160 seconds). Both antidotes completely reversed the anticoagulant effects of all three heparins in the aPTT and thrombin generation assay. However, PrSO4 was more effective in neutralizing the anti-Xa, and anti-IIa effects than AA, which only partially neutralized these effects. CONCLUSION: Andexanet alfa at 100 µg/ml effectively neutralizes the therapeutic and surgical/interventional concentrations of heparins in in-vitro settings. While differences in the anti-Xa, and anti-IIa effects between heparins were noted, anti-coagulant effect of these agents in the aPTT assay were comparable. A similar neutralization profile was observed in the ACT and thrombin generation assays by both agents.


Assuntos
Anticoagulantes , Fator Xa , Heparina , Protaminas , Proteínas Recombinantes , Animais , Bovinos , Protaminas/farmacologia , Heparina/farmacologia , Ovinos , Fator Xa/metabolismo , Proteínas Recombinantes/farmacologia , Anticoagulantes/farmacologia , Suínos , Humanos , Coagulação Sanguínea/efeitos dos fármacos , Inibidores do Fator Xa/farmacologia
10.
ACS Biomater Sci Eng ; 10(5): 3188-3202, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38592024

RESUMO

Chronic wound repair is a clinical treatment challenge. The development of multifunctional hydrogels is of great significance in the key aspects of treating chronic wounds, including reducing oxidative stress, promoting angiogenesis, and improving the natural remodeling of extracellular matrix and immune regulation. In this study, we prepared a composite hydrogel, sodium alginate (SA)@MnO2/recombinant humanized collagen III (RHC)/mesenchymal stem cells (MSCs), composed of SA, MnO2 nanoparticles, RHC, and MSCs. The hydrogel has high mechanical properties and good biocompatibility. In vitro, SA@MnO2/RHC/MSCs hydrogel effectively enhanced the formation of intricate tubular structures and angiogenesis and showed synergistic effects on cell proliferation and migration. In vivo, the SA@MnO2/RHC/MSCs hydrogel enhanced diabetes wound healing, rapid re-epithelization, favorable collagen deposition, and abundant wound angiogenesis. These findings demonstrated that the combined effects of SA, MnO2, RHC, and MSCs synergistically accelerate healing, resulting in a reduced healing time. These observed healing effects demonstrated the potential of this multifunctional hydrogel to transform chronic wound care and improve patient outcomes.


Assuntos
Hidrogéis , Compostos de Manganês , Células-Tronco Mesenquimais , Óxidos , Cicatrização , Cicatrização/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Animais , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Humanos , Óxidos/química , Óxidos/farmacologia , Diabetes Mellitus Experimental , Proliferação de Células/efeitos dos fármacos , Colágeno/química , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Alginatos/química , Alginatos/farmacologia , Masculino , Camundongos
11.
Int J Biol Macromol ; 267(Pt 2): 131610, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621565

RESUMO

Brain-derived neurotrophic factor (BDNF) is a neurotrophic protein that promotes neuronal survival, increases neurotransmitter synthesis, and has potential therapeutic effects in neurodegenerative and psychiatric diseases, but its drug development has been limited by the fact that recombinant proteins of BDNF are unstable and do not penetrate the blood-brain barrier (BBB). In this study, we fused a TAT membrane-penetrating peptide with BDNF to express a recombinant protein (TBDNF), which was then PEG-modified to P-TBDNF. Protein characterization showed that P-TBDNF significantly improved the stability of the recombinant protein and possessed the ability to penetrate the BBB, and in cellular experiments, P-TBDNF prevented MPTP-induced nerve cell oxidative stress damage, apoptosis and inflammatory response, and its mechanism of action was closely related to the activation of tyrosine kinase B (TrkB) receptor and inhibition of microglia activation. In animal experiments, P-TBDNF improved motor and cognitive deficits in MPTP mice and inhibited pathological changes in Parkinson's disease (PD). In conclusion, this paper is expected to reveal the mechanism of action of P-TBDNF in inhibiting neurotoxicity, provide a new way for treating PD, and lay the foundation for the future development of recombinant P-TBDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Fármacos Neuroprotetores , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Fator Neurotrófico Derivado do Encéfalo/genética , Camundongos , Fármacos Neuroprotetores/farmacologia , Proteínas Recombinantes/farmacologia , Barreira Hematoencefálica/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Humanos , Apoptose/efeitos dos fármacos , Receptor trkB/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Camundongos Endogâmicos C57BL
12.
Int J Biol Macromol ; 266(Pt 2): 131276, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561117

RESUMO

Skin aging, a complex physiological progression marked by collagen degradation, poses substantial challenges in dermatology. Recombinant collagen emerges as a potential option for skin revitalization, yet its application is constrained by difficulties in forming hydrogels. We have for the first time developed a highly bioactive Tetrakis(hydroxymethyl) phosphonium chloride (THPC)-crosslinked recombinant collagen hydrogel implant for aging skin rejuvenation. THPC demonstrated superior crosslinking efficiency compared to traditional agents such as EDC/NHS and BDDE, achieving complete recombinant collagen crosslinking at minimal concentrations and effectively inducing hydrogel formation. THPC's four reactive hydroxymethyl groups facilitate robust crosslinking with triple helical recombinant collagen, producing hydrogels with enhanced mechanical strength, excellent injectability, increased stability, and greater durability. Moreover, the hydrogel exhibited remarkable biocompatibility and bioactivity, significantly promoting the proliferation, adhesion, and migration of human foreskin fibroblast-1. In photoaged mice skin models, the THPC-crosslinked collagen hydrogel implant notably improved dermal density, skin elasticity, and reduced transepidermal water loss, creating a conducive environment for fibroblast activity and healthy collagen regeneration. Additionally, it elevated superoxide dismutase (SOD) activity and displayed substantial anti-calcification properties. The THPC-crosslinked recombinant collagen hydrogel implant presents an innovative methodology in combating skin aging, offering significant promise in dermatology and tissue engineering.


Assuntos
Colágeno , Hidrogéis , Rejuvenescimento , Envelhecimento da Pele , Hidrogéis/química , Animais , Colágeno/química , Envelhecimento da Pele/efeitos dos fármacos , Camundongos , Humanos , Reagentes de Ligações Cruzadas/química , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Fibroblastos/efeitos dos fármacos , Pele/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia
13.
Res Vet Sci ; 173: 105274, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38669867

RESUMO

A systematic review and meta-analysis were conducted to assess the impact of recombinant bovine somatotropin (rbST) on lactation performance, feed efficiency, and blood metabolites in dairy cows. In the systematic review, articles were selected based on the following criteria: (1) Data focusing on the influence of bovine somatotropin doses on milk production; (2) Submission of original data; (3) Articles published in journals; and (4) Articles in English or Portuguese. The analysis of variance was used with a completely randomized design and mixed models methodology. Polynomial regression was applied to significant fixed effects (rbST dose). The use of rbST resulted in increased milk yield and 4% fat-corrected milk yield, while fat, protein, and lactose contents remained unaffected. Dry matter and metabolizable energy intakes, as well as milk/feed efficiency, exhibited a linear increase, but body condition score (BCS) was negatively impacted. The administration of rbST led to higher blood concentrations of triglycerides and insulin. Cows treated with rbST showed a 23% increase in non-esterified fatty acid (NEFA) concentrations compared to non-treated cows. Additionally, growth factors IGF-1 and IGF-2 displayed a linear increase with rbST treatment. In summary, rbST administration increased milk yield and fat-corrected milk yield without affecting milk components. However, despite increasing intake, it resulted in BCS losses and alterations in blood parameters such as NEFA, IGF-1, and IGF-2.


Assuntos
Hormônio do Crescimento , Lactação , Animais , Lactação/efeitos dos fármacos , Bovinos/fisiologia , Feminino , Hormônio do Crescimento/sangue , Hormônio do Crescimento/farmacologia , Hormônio do Crescimento/administração & dosagem , Leite/química , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/administração & dosagem , Ração Animal/análise
14.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673749

RESUMO

The anticancer potential of Levilactobacillus brevis KU15176 against the stomach cancer cell line AGS has been reported previously. In this study, we aimed to analyze the genome of L. brevis KU15176 and identify key genes that may have potential anticancer properties. Among potential anticancer molecules, the role of arginine deiminase (ADI) in conferring an antiproliferative functionality was confirmed. In vitro assay against AGS cell line confirmed that recombinant ADI from L. brevis KU15176 (ADI_br, 5 µg/mL), overexpressed in E. coli BL21 (DE3), exerted an inhibitory effect on AGS cell growth, resulting in a 65.32% reduction in cell viability. Moreover, the expression of apoptosis-related genes, such as bax, bad, caspase-7, and caspase-3, as well as the activity of caspase-9 in ADI_br-treated AGS cells, was higher than those in untreated (culture medium-only) cells. The cell-scattering behavior of ADI_br-treated cells showed characteristics of apoptosis. Flow cytometry analyses of AGS cells treated with ADI_br for 24 and 28 h revealed apoptotic rates of 11.87 and 24.09, respectively, indicating the progression of apoptosis in AGS cells after ADI_br treatment. This study highlights the potential of ADI_br as an effective enzyme for anticancer applications.


Assuntos
Apoptose , Proliferação de Células , Hidrolases , Levilactobacillus brevis , Neoplasias Gástricas , Humanos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Hidrolases/metabolismo , Hidrolases/genética , Hidrolases/farmacologia , Levilactobacillus brevis/genética , Levilactobacillus brevis/enzimologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
15.
Stem Cell Res Ther ; 15(1): 124, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679735

RESUMO

BACKGROUND: Recombinant human bone morphogenetic protein 2 (rhBMP-2) and human bone marrow mesenchymal stromal cells (hBM-MSCs) have been thoroughly studied for research and translational bone regeneration purposes. rhBMP-2 induces bone formation in vivo, and hBM-MSCs are its target, bone-forming cells. In this article, we studied how rhBMP-2 drives the multilineage differentiation of hBM-MSCs both in vivo and in vitro. METHODS: rhBMP-2 and hBM-MSCs were tested in an in vivo subcutaneous implantation model to assess their ability to form mature bone and undergo multilineage differentiation. Then, the hBM-MSCs were treated in vitro with rhBMP-2 for short-term or long-term cell-culture periods, alone or in combination with osteogenic, adipogenic or chondrogenic media, aiming to determine the role of rhBMP-2 in these differentiation processes. RESULTS: The data indicate that hBM-MSCs respond to rhBMP-2 in the short term but fail to differentiate in long-term culture conditions; these cells overexpress the rhBMP-2 target genes DKK1, HEY-1 and SOST osteogenesis inhibitors. However, in combination with other differentiation signals, rhBMP-2 acts as a potentiator of multilineage differentiation, not only of osteogenesis but also of adipogenesis and chondrogenesis, both in vitro and in vivo. CONCLUSIONS: Altogether, our data indicate that rhBMP-2 alone is unable to induce in vitro osteogenic terminal differentiation of hBM-MSCs, but synergizes with other signals to potentiate multiple differentiation phenotypes. Therefore, rhBMP-2 triggers on hBM-MSCs different specific phenotype differentiation depending on the signalling environment.


Assuntos
Proteína Morfogenética Óssea 2 , Diferenciação Celular , Células-Tronco Mesenquimais , Osteogênese , Proteínas Recombinantes , Humanos , Adipogenia/efeitos dos fármacos , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Condrogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia
16.
J Physiol ; 602(9): 1939-1951, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38606903

RESUMO

Recombinant human proteoglycan 4 (rhPRG4) is a macromolecular mucin-like glycoprotein that is classically studied as a lubricant within eyes and joints. Given that endogenously produced PRG4 is present within atherosclerotic lesions and genetic PRG4 deficiency increases atherosclerosis susceptibility in mice, in the current study we investigated the anti-atherogenic potential of chronic rhPRG4 treatment. Female low-density lipoprotein receptor knockout mice were fed an atherogenic Western-type diet for 6 weeks and injected three times per week intraperitoneally with 0.5 mg rhPRG4 or PBS as control. Treatment with rhPRG4 was associated with a small decrease in plasma-free cholesterol levels, without a change in cholesteryl ester levels. A marked increase in the number of peritoneal foam cells was detected in response to the peritoneal rhPRG4 administration, which could be attributed to elevated peritoneal leukocyte MSR1 expression levels. However, rhPRG4-treated mice exhibited significantly smaller aortic root lesions of 278 ± 21 × 103 µm2 compared with 339 ± 15 × 103 µm2 in the aortic root of control mice. The overall decreased atherosclerosis susceptibility coincided with a shift in the monocyte and macrophage polarization states towards the patrolling and anti-inflammatory M2-like phenotypes, respectively. Furthermore, rhPRG4 treatment significantly reduced macrophage gene expression levels as well as plasma protein levels of the pro-inflammatory/pro-atherogenic cytokine TNF-alpha. In conclusion, we have shown that peritoneal administration and subsequent systemic exposure to rhPRG4 beneficially impacts the inflammatory state and reduces atherosclerosis susceptibility in mice. Our findings highlight that PRG4 is not only a lubricant but also acts as an anti-inflammatory agent. KEY POINTS: Endogenously produced proteoglycan 4 is found in atherosclerotic lesions and its genetic deficiency in mice is associated with enhanced atherosclerosis susceptibility. In this study we investigated the anti-atherogenic potential of chronic treatment with recombinant human PRG4 in hypercholesterolaemic female low-density lipoprotein receptor knockout mice. We show that recombinant human PRG4 stimulates macrophage foam cell formation, but also dampens the pro-inflammatory state of monocyte/macrophages, eventually leading to a significant reduction in plasma TNF-alpha levels and a lowered atherosclerosis susceptibility. Our findings highlight that peritoneal recombinant human PRG4 treatment can execute effects both locally and systemically and suggest that it will be of interest to study whether rhPRG4 treatment is also able to inhibit the progression and/or induce regression of previously established atherosclerotic lesions.


Assuntos
Aterosclerose , Inflamação , Camundongos Knockout , Proteoglicanas , Receptores de LDL , Proteínas Recombinantes , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Feminino , Proteoglicanas/farmacologia , Proteoglicanas/metabolismo , Proteoglicanas/genética , Receptores de LDL/genética , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/administração & dosagem , Camundongos , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Aorta/metabolismo , Aorta/efeitos dos fármacos , Aorta/patologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Células Espumosas/metabolismo , Células Espumosas/efeitos dos fármacos
17.
Int J Biol Macromol ; 268(Pt 1): 131723, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649072

RESUMO

Endometrial injury poses a significant challenge in tissue regeneration, with type III collagen (COL III) playing a pivotal role in maintaining endometrial integrity and facilitating repair. Our study explored the utility of recombinant human type III collagen (RHC) as an intervention for endometrial damage. To address the challenges associated with the inherent instability and rapid degradation of COL III in vivo, we developed an RHC-HA hydrogel by conjugating RHC with hyaluronic acid (HA), thus ensuring a more stable and sustained delivery. Our findings suggested that the RHC-HA hydrogel significantly promoted endometrial regeneration and restored fertility. The hydrogel facilitated prolonged retention of RHC in the uterus, leading to a substantial improvement in the repair process. The synergistic interaction between RHC and HA greatly enhances cell proliferation and adhesion, surpassing the efficacy of HA or RHC alone. Additionally, the RHC-HA hydrogel demonstrated notable anti-fibrotic effects, which are crucial for preventing abnormalities during endometrial healing. These findings suggested that the RHC-HA hydrogel presented a therapeutic strategy in the treatment of uterine endometrial injuries, which may improve female reproductive health.


Assuntos
Colágeno Tipo III , Endométrio , Matriz Extracelular , Ácido Hialurônico , Hidrogéis , Proteínas Recombinantes , Regeneração , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Feminino , Endométrio/efeitos dos fármacos , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/administração & dosagem , Animais , Colágeno Tipo III/metabolismo , Matriz Extracelular/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Materiais Biomiméticos/farmacologia , Materiais Biomiméticos/química , Ratos , Adesão Celular/efeitos dos fármacos
18.
Biomed Pharmacother ; 175: 116661, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678965

RESUMO

Alzheimer's disease (AD) is a global medical challenge. Studies have shown that neurotoxicity caused by pathological aggregation of ß-amyloid (Aß) is an important factor leading to AD. Therefore, inhibiting the pathological aggregation of Aß is the key to treating AD. The recombinant human HspB5-ACD structural domain protein (AHspB5) prepared by our group in the previous period has been shown to have anti-amyloid aggregation effects, but its inability to penetrate biological membranes has limited its development. In this study, we prepared a recombinant fusion protein (T-AHspB5) of TAT and AHspB5. In vitro experiments showed that T-AHspB5 inhibited the formation of Aß1-42 protofibrils and had the ability to penetrate the blood-brain barrier; in cellular experiments, T-AHspB5 prevented Aß1-42-induced oxidative stress damage, apoptosis, and inflammatory responses in neuronal cells, and its mechanism of action was related to microglia activation and mitochondria-dependent apoptotic pathway. In animal experiments, T-AHspB5 improved memory and cognitive dysfunction and inhibited pathological changes of AD in APP/PS1 mice. In conclusion, this paper is expected to reveal the intervention mechanism and biological effect of T-AHspB5 on pathological aggregation of Aß1-42, provide a new pathway for the treatment of AD, and lay the foundation for the future development and application of T-AHspB5.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Camundongos Transgênicos , Cadeia B de alfa-Cristalina/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Masculino , Proteínas Recombinantes/farmacologia , Domínios Proteicos , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/metabolismo
19.
Technol Health Care ; 32(S1): 321-328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38669498

RESUMO

BACKGROUND: The process of wound healing is complex, and expediting it remains a challenge. The advantages of extremely low frequency electric and magnetic fields (ELF-EMF) are its non-invasive treatment, promotes healing and promotes myogenesis of C2C12 cells. Epidermal growth factor (EGF) is known to play a vital role in promoting wound healing, so a combination of ELF-EMF and EGF can have far-reaching significance. OBJECTIVE: To study the effect of recombinant murine epidermal growth factor (rmEGF) combined with ELF-EMF on wound healing. METHODS: Thirty-six rats were randomly divided into three groups: normal control group, EGF group, and ELF-EMF+EGF group, and a 20 mm × 20 mm dorsal wound was made. The wound healing rate of rats was calculated on the 3rd, 7th, 11th and 15th day. HE staining was used to observe the micro-morphological changes during the wound healing process. RESULTS: The wound healing rate of EGF+ELF-EMF group was better than other groups. On the 15th day of wound healing, the wounds of each group were completely healed. On the 3rd, 7th, 11th and 15th day of HE staining, the early inflammatory cell infiltration, the arrangement of fibroblasts and the number of new capillaries in the wounds of EGF+ELF-EMF group were better than those of the other groups. CONCLUSIONS: rmEGF combined with ELF-EMF significantly promotes wound healing in SD rats.


Assuntos
Fator de Crescimento Epidérmico , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Ratos , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/administração & dosagem , Ratos Sprague-Dawley , Masculino , Campos Eletromagnéticos , Magnetoterapia/métodos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia
20.
Cytokine ; 179: 156598, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38583255

RESUMO

BACKGROUND: Allograft rejection remains a major obstacle to long-term graft survival. Although previous studies have demonstrated that IL-37 exhibited significant immunomodulatory effects in various diseases, research on its role in solid organ transplantation has not been fully elucidated. In this study, the therapeutic effect of recombinant human IL-37 (rhIL-37) was evaluated in a mouse cardiac allotransplantation model. METHODS: The C57BL/6 recipients mouse receiving BALB/c donor hearts were treated with rhIL-37. Graft pathological and immunohistology changes, immune cell populations, and cytokine profiles were analyzed on postoperative day (POD) 7. The proliferative capacities of Th1, Th17, and Treg subpopulations were assessed in vitro. Furthermore, the role of the p-mTOR pathway in rhIL-37-induced CD4+ cell inhibition was also elucidated. RESULTS: Compared to untreated groups, treatment of rhIL-37 achieved long-term cardiac allograft survival and effectively alleviated allograft rejection indicated by markedly reduced infiltration of CD4+ and CD11c+ cells and ameliorated graft pathological changes. rhIL-37 displayed significantly less splenic populations of Th1 and Th17 cells, as well as matured dendritic cells. The percentages of Tregs in splenocytes were significantly increased in the therapy group. Furthermore, rhIL-37 markedly decreased the levels of TNF-α and IFN-γ, but increased the level of IL-10 in the recipients. In addition, rhIL-37 inhibited the expression of p-mTOR in CD4+ cells of splenocytes. In vitro, similar to the in vivo experiments, rhIL-37 caused a decrease in the proportion of Th1 and Th17, as well as an increase in the proportion of Treg and a reduction in p-mTOR expression in CD4+ cells. CONCLUSIONS: We demonstrated that rhIL-37 effectively suppress acute rejection and induce long-term allograft acceptance. The results highlight that IL-37 could be novel and promising candidate for prevention of allograft rejection.


Assuntos
Aloenxertos , Rejeição de Enxerto , Transplante de Coração , Interleucina-1 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Recombinantes , Animais , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Humanos , Camundongos , Proteínas Recombinantes/farmacologia , Interleucina-1/metabolismo , Sobrevivência de Enxerto/efeitos dos fármacos , Sobrevivência de Enxerto/imunologia , Células Th1/imunologia , Células Th1/efeitos dos fármacos , Células Th17/imunologia , Células Th17/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Masculino , Serina-Treonina Quinases TOR/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA