RESUMO
Hepatitis B virus (HBV), particularly through the HBx protein, induces oxidative stress during liver infections. This study reveals that HBx increases reactive oxygen species (ROS) via two distinct mechanisms. The first mechanism is p53-independent, likely involving mitochondrial dysfunction, as demonstrated by elevated ROS levels in p53-deficient Hep3B cells and p53-knocked-down HepG2 cells after HBx expression or HBV infection. The increase in ROS persisted even when p53 transcriptional activity was inhibited by pifithrin-α (PFT-α), a p53 inhibitor. The second mechanism is p53-dependent, wherein HBx activates p53, which then amplifies ROS production through a feedback loop involving ROS and p53. The ability of HBx to elevate ROS levels was higher in HepG2 than in Hep3B cells. Knocking down p53 in HepG2 cells lowered ROS levels, while ectopic p53 expression in Hep3B cells raised ROS. HBx-activated p53 downregulated catalase and upregulated manganese-dependent superoxide dismutase, contributing to ROS amplification. The transcriptional activity of p53 was crucial for these effects, as cells with a p53 R175H mutation or those treated with PFT-α generated less ROS. Additionally, HBx variants with Ser-101 increased p53 and ROS levels, whereas variants with Pro-101 did not. These dual mechanisms of HBx-induced ROS generation are likely significant in the pathogenesis of HBV and may contribute to liver diseases, including hepatocellular carcinoma.
Assuntos
Carcinoma Hepatocelular , Vírus da Hepatite B , Neoplasias Hepáticas , Espécies Reativas de Oxigênio , Transativadores , Proteína Supressora de Tumor p53 , Proteínas Virais Reguladoras e Acessórias , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Espécies Reativas de Oxigênio/metabolismo , Transativadores/metabolismo , Transativadores/genética , Células Hep G2 , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Estresse Oxidativo , Catalase/metabolismo , Catalase/genética , Tolueno/análogos & derivados , BenzotiazóisRESUMO
The genome of Hepatitis B virus (HBV) persists in infected hepatocytes as a nuclear episome (cccDNA) that is responsible for the transcription of viral genes and viral rebound, following antiviral treatment arrest in chronically infected patients. There is currently no clinically approved therapeutic strategy able to efficiently target cccDNA (Lucifora J 2016). The development of alternative strategies aiming at permanently abrogating HBV RNA production requires a thorough understanding of cccDNA transcriptional and post-transcriptional regulation. In a previous study, we discovered that 1C8, a compound that inhibits the phosphorylation of some cellular RNA-binding proteins, could decrease the level of HBV RNAs. Here, we aimed at identifying kinases responsible for this effect. Among the kinases targeted by 1C8, we focused on DYRK1A, a dual-specificity kinase that controls the transcription of cellular genes by phosphorylating transcription factors, histones, chromatin regulators as well as RNA polymerase II. The results of a combination of genetic and chemical approaches using HBV-infected hepatocytes, indicated that DYRK1A positively regulates the production of HBV RNAs. In addition, we found that DYRK1A associates with cccDNA, and stimulates the production of HBV nascent RNAs. Finally, reporter gene assays showed that DYRK1A up-regulates the activity of the HBV enhancer 1/X promoter in a sequence-dependent manner. Altogether, these results indicate that DYRK1A is a proviral factor that may participate in the HBV life cycle by stimulating the production of HBx, a viral factor absolutely required to trigger the complete cccDNA transcriptional program.
Assuntos
Quinases Dyrk , Genoma Viral , Vírus da Hepatite B , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , RNA Viral , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , RNA Viral/genética , RNA Viral/metabolismo , Hepatócitos/virologia , Hepatócitos/metabolismo , Células Hep G2 , Replicação Viral/genética , DNA Circular/metabolismo , DNA Circular/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , TransativadoresRESUMO
BACKGROUND: Hepatitis B virus (HBV) infection is a persistent global public health problem, and curing for chronic hepatitis B (CHB) through the application of existing antiviral drugs is beset by numerous challenges. The viral protein HBx is a critical regulatory factor in the life cycle of HBV. Targeting HBx is a promising possibility for the development of novel therapeutic strategies. METHODS: The Nano-Glo® HiBiT Lysis Detection System was used to screen the herbal monomer compound library for compounds that inhibit HBx expression. Western blotting was used to examine proteins expression. Southern blotting or Northern blotting were used to detect HBV DNA or HBV RNA. ELISA was performed to detect the HBsAg level. The effect of asiatic acid on HBV in vivo was investigated by using recombinant cccDNA mouse model. RESULTS: Asiatic acid, an extract of Centella asiatica, significantly reduced the HBx level. Mechanistic studies demonstrated that asiatic acid may promote the degradation of HBx in an autophagy pathway-dependent manner. Subsequently, asiatic acid was found to reduce the amount of HBx bound to covalently closed circular DNA (cccDNA) microchromosomes, and repressive chromatin modifications then occurred, ultimately inhibiting cccDNA transcriptional activity. Moreover, in HBV-infected cells and a mouse model of persistent HBV infection, asiatic acid exhibited potent anti-HBV activity, as evidenced by decreased levels of HBV RNAs, HBV DNA and HBsAg. CONCLUSIONS: Asiatic acid was identified as a compound that targets HBx, revealing its potential for application as an anti-HBV agent.
Assuntos
DNA Circular , Vírus da Hepatite B , Triterpenos Pentacíclicos , Transativadores , Proteínas Virais Reguladoras e Acessórias , Animais , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Triterpenos Pentacíclicos/farmacologia , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Camundongos , Transativadores/metabolismo , Transativadores/genética , Humanos , DNA Circular/genética , DNA Circular/metabolismo , Antivirais/farmacologia , DNA Viral/genética , Transcrição Gênica/efeitos dos fármacos , Modelos Animais de Doenças , Replicação Viral/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Hepatite B/virologia , Hepatite B/tratamento farmacológicoRESUMO
Despite recent advances in systemic therapy for hepatocellular carcinoma (HCC), the prognosis of hepatitis B virus (HBV)-induced HCC patients remains poor. By screening a sgRNA library targeting human deubiquitinases, we find that ubiquitin-specific peptidase 26 (USP26) deficiency impairs HBV-positive HCC cell proliferation. Genetically engineered murine models with Usp26 knockout confirm that Usp26 drives HCC tumorigenesis. Mechanistically, we find that the HBV-encoded protein HBx binds to the promoter and induces the production of USP26, which is an X-linked gene exclusively expressed in the testis. HBx consequently promotes the association of USP26 with SIRT1 to synergistically stabilize SIRT1 by deubiquitination, which promotes cell proliferation and impedes cell apoptosis to accelerate HCC tumorigenesis. In patients with HBV-positive HCC, USP26 is robustly induced, and its levels correlate with SIRT1 levels and poor prognosis. Collectively, our study highlights a causative link between HBV infection, deubiquitinase induction and development of HCC, identifying a druggable target, USP26.
Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Epigênese Genética , Vírus da Hepatite B , Neoplasias Hepáticas , Sirtuína 1 , Transativadores , Proteínas Virais Reguladoras e Acessórias , Animais , Humanos , Masculino , Camundongos , Apoptose/genética , Carcinogênese/genética , Carcinoma Hepatocelular/virologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética , Enzimas Desubiquitinantes/metabolismo , Enzimas Desubiquitinantes/genética , Regulação Neoplásica da Expressão Gênica , Hepatite B/virologia , Hepatite B/complicações , Hepatite B/genética , Hepatite B/metabolismo , Vírus da Hepatite B/genética , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Sirtuína 1/metabolismo , Sirtuína 1/genética , Transativadores/metabolismo , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias/metabolismoRESUMO
Despite the efficacy of highly active antiretroviral therapy in controlling the incidence and mortality of AIDS, effective interventions for HIV-1-induced neurological damage and cognitive impairment remain elusive. In this study, we found that HIV-1 infection can induce proteolytic cleavage and aberrant aggregation of TAR DNA-binding protein 43 (TDP-43), a pathological protein associated with various severe neurological disorders. The HIV-1 accessory protein Vpu was found to be responsible for the cleavage of TDP-43, as ectopic expression of Vpu alone was sufficient to induce TDP-43 cleavage, whereas HIV-1 lacking Vpu failed to cleave TDP-43. Mechanistically, the cleavage of TDP-43 at Asp89 by HIV-1 relies on Vpu-mediated activation of Caspase 3, and pharmacological inhibition of Caspase 3 activity effectively suppressed the HIV-1-induced aggregation and neurotoxicity of TDP-43. Overall, these results suggest that TDP-43 is a conserved host target of HIV-1 Vpu and provide evidence for the involvement of TDP-43 dysregulation in the neural pathogenesis of HIV-1.
Assuntos
Caspase 3 , Proteínas de Ligação a DNA , HIV-1 , Proteínas do Vírus da Imunodeficiência Humana , Proteólise , Proteínas Virais Reguladoras e Acessórias , Humanos , Caspase 3/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Células HEK293 , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Infecções por HIV/tratamento farmacológico , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/genética , Neurônios/metabolismo , Neurônios/virologia , Proteínas Virais Reguladoras e Acessórias/metabolismoRESUMO
Hepatitis B virus (HBV) infection remains a major public health concern worldwide, with approximately 296 million individuals chronically infected. The HBV-encoded X protein (HBx) is a regulatory protein of 17 kDa, reportedly responsible for a broad range of functions, including viral replication and oncogenic processes. In this review, we summarize the state of knowledge on the mechanisms underlying HBx functions in viral replication, the antiviral effect of therapeutics directed against HBx, and the role of HBx in liver cancer development (including a hypothetical model of hepatocarcinogenesis). We conclude by highlighting major unanswered questions in the field and the implications of their answers.
Assuntos
Vírus da Hepatite B , Neoplasias Hepáticas , Transativadores , Proteínas Virais Reguladoras e Acessórias , Replicação Viral , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Humanos , Transativadores/metabolismo , Transativadores/genética , Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/genética , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/metabolismo , Animais , Carcinogênese , Carcinoma Hepatocelular/virologia , Carcinoma Hepatocelular/metabolismo , Hepatite B/virologia , Hepatite B/complicações , Hepatite B Crônica/virologia , Hepatite B Crônica/complicaçõesRESUMO
INTRODUCTION AND OBJECTIVES: Blood glucose fluctuates severely in the diabetes (DM) and tumor microenvironment. Our previous works have found Hepatitis B virus X protein (HBx) differentially regulated metastasis and apoptosis of hepatoma cells depending on glucose concentration. We here aimed to explore whether HBx played dual roles in the angiogenesis of hepatocellular carcinoma varying on different glucose levels. MATERIALS AND METHODS: We collected conditioned medium from HBx-overexpressing cells cultured with two solubilities of glucose, and then applied to EA.hy926 cells. Alternatively, a co-culture cell system was established with hepatoma cells and EA.hy926 cells. We analyzed the angiogenesis of EA.hy926 cells with CCK8, wound-healing, transwell-migartion and tube formation experiment. ELISA was conducted to detect the secretion levels of angiogenesis-related factors. siRNAs were used to detect the P53-VEGF axis. RESULTS: HBx expressed in hepatoma cells suppressed VEGF secretion, and subsequently inhibited the proliferation, migration and tube formation of EA.hy926 cells in a high glucose condition, while attenuating these in the lower glucose condition. Furthermore, the p53-VEGF axis was required for the dual role of HBx in angiogenesis. Additionally, HBx mainly regulated the nuclear p53. CONCLUSIONS: These data suggest that the dual roles of HBx confer hepatoma cells to remain in a glucose-rich environment and escape from the glucose-low milieu through tumor vessels, promoting liver tumor progression overall. We exclusively revealed the dual role of HBx on the angiogenesis of liver tumors, which may shed new light on the mechanism and management strategy of HBV- and DM-related hepatocellular carcinoma.
Assuntos
Carcinoma Hepatocelular , Movimento Celular , Proliferação de Células , Glucose , Neoplasias Hepáticas , Neovascularização Patológica , Transdução de Sinais , Transativadores , Proteína Supressora de Tumor p53 , Fator A de Crescimento do Endotélio Vascular , Proteínas Virais Reguladoras e Acessórias , Humanos , Carcinoma Hepatocelular/virologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Transativadores/metabolismo , Transativadores/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Glucose/metabolismo , Linhagem Celular Tumoral , Células Hep G2 , Técnicas de Cocultura , Vírus da Hepatite B/genética , Microambiente Tumoral , AngiogêneseRESUMO
The Human Immunodeficiency Virus (HIV) encodes several proteins that contort the host cell environment to promote viral replication and spread. This is often accomplished through the hijacking of cellular ubiquitin ligases. These reprogrammed complexes initiate or enhance the ubiquitination of cellular proteins that may otherwise act to restrain viral replication. Ubiquitination of target proteins may alter protein function or initiate proteasome-dependent destruction. HIV Viral Protein R (Vpr) and the related HIV-2 Viral Protein X (Vpx), engage the CRL4-DCAF1 ubiquitin ligase complex to target numerous cellular proteins. In this review we describe the CRL4-DCAF1 ubiquitin ligase complex and its interactions with HIV Vpr and Vpx. We additionally summarize the cellular proteins targeted by this association as well as the observed or hypothesized impact on HIV.
Assuntos
Ubiquitina-Proteína Ligases , Ubiquitinação , Proteínas Virais Reguladoras e Acessórias , Replicação Viral , Produtos do Gene vpr do Vírus da Imunodeficiência Humana , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Interações Hospedeiro-Patógeno , HIV-1/fisiologia , HIV-1/genética , Proteínas Serina-Treonina Quinases , Receptores de Interleucina-17RESUMO
Hepatitis B virus (HBV) X protein (HBx) plays a key role in hepatocellular carcinoma (HCC). HBx may alter the expression of multiple microRNAs (miRs), which are important in hepatocarcinogenesis. This study aimed to investigate the importance of HBx protein in the expression of miR-21, miR-22, miR-122, miR-132, and miR-222. A recombinant vector expressing HBx was developed. The Huh-7 cell line was transfected with the HBx-pcDNA3.1+ recombinant plasmid. A Real-Time Polymerase Chain Reaction was used to evaluate the expression of miR-21, miR-22, miR-122, miR-132, and miR-222 in the cell line. It was found that the expression of miR-21 and miR-222 was upregulated at all points of time after HBx transfection. The expression of miR-21 was 4.24-fold 72 h after transfection. The miR-22 had a 7.69-fold downregulation after 24 h, and the miR-122 had a significant downregulation after 48 h (10-fold). The miR-132 expression reached its lowest rate 12 h after HBx transfection (8.33-fold), and the miR-222 expression was upregulated in transfected cells but was not significantly different (1.18- to 2.45-fold). The significant downregulation of miR-22, miR-122, and miR-132 implicates their inhibitory roles in the progression of HBV-associated HCC. The expression of these microRNAs could be used as a prognostic marker for the progression of HBV-associated liver disease.
Assuntos
MicroRNAs , Transativadores , Proteínas Virais Reguladoras e Acessórias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Transativadores/genética , Transativadores/metabolismo , Linhagem Celular Tumoral , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/virologia , Carcinoma Hepatocelular/genética , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologiaRESUMO
BACKGROUND: Human T cell lymphotropic virus type 1 (HTLV-1) infection remains a largely neglected public health problem, particularly in resource-poor areas with high burden of communicable and non-communicable diseases, such as some remote populations in Central Australia where an estimated 37% of adults are infected with HTLV-1. Most of our understanding of HTLV-1 infection comes from studies of the globally spread subtype-A (HTLV-1a), with few molecular studies reported with the Austral-Melanesian subtype-C (HTLV-1c) predominant in the Indo-Pacific and Oceania regions. RESULTS: Using a primer walking strategy and direct sequencing, we constructed HTLV-1c genomic consensus sequences from 22 First Nations participants living with HTLV-1c in Central Australia. Phylogenetic and pairwise analysis of this subtype-C proviral gDNA showed higher levels of genomic divergence in comparison to previously published HTLV-1a genomes. While the overall genomic homology between subtypes was 92.5%, the lowest nucleotide and amino acid sequence identity occurred near the 3' end of the proviral genome coding regulatory genes, especially overlapping hbz (85.37%, 77.46%, respectively) and orf-I product p12 (82.00%, 70.30%, respectively). Strikingly, the HTLV-1c genomic consensus sequences uniformly showed a defective translation start codon for the immune regulatory proteins p12/p8 encoded by the HTLV-1A orf-I. Deletions in the proviral genome were detected in many subjects, particularly in the structural gag, pol and env genes. Similarly, using a droplet digital PCR assay measuring the copies of gag and tax per reference host genome, we quantitatively confirmed that provirus retains the tax gene region at higher levels than gag. CONCLUSIONS: Our genomic analysis of HTLV-1c in Central Australia in conjunction with earlier Melanesian HTLV-1c sequences, elucidate substantial differences with respect to the globally spread HTLV-1a. Future studies should address the impact these genomic differences have on infection and the regionally distinctive frequency of associated pulmonary disease. Understanding the host and virus subtype factors which contribute to the differential morbidity observed, is crucial for the development of much needed therapeutics and vaccine strategies against this highly endemic infection in remote First Nations communities in Central Australia.
Assuntos
Infecções por HTLV-I , Vírus Linfotrópico T Tipo 1 Humano , Filogenia , Proteínas dos Retroviridae , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/classificação , Humanos , Infecções por HTLV-I/virologia , Austrália , Proteínas dos Retroviridae/genética , Variação Genética , Adulto , Genoma Viral , Proteínas Virais Reguladoras e Acessórias/genética , Análise de Sequência de DNA , Masculino , Feminino , Pessoa de Meia-Idade , DNA Viral/genética , Proteínas Virais/genética , Fatores de Transcrição de Zíper de Leucina BásicaRESUMO
VP30 and VP40 proteins of Ebola and Marburg viruses have been recognized as potential targets for antiviral drug development due to their essential roles in the viral lifecycle. Targeting these proteins could disrupt key stages of the viral replication process, inhibiting the viruses' ability to propagate and cause disease. The current study aims to perform molecular docking and virtual screening on deep-sea fungal metabolites targeting Marburg virus VP40 Dimer, matrix protein VP40 from Ebola virus Sudan, Ebola VP35 Interferon Inhibitory Domain, and VP35 from Marburg virus. The top ten compounds for each protein target were chosen using the glide score. All the compounds obtained indicate a positive binding interaction. Furthermore, AdmetSAR was utilized to investigate the pharmacokinetics of the inhibitors chosen. Gliotoxin was used as a ligand with Marburg virus VP40 Dimer, Austinol with matrix protein VP40 from Ebola virus Sudan, Ozazino-cyclo-(2,3-dihydroxyl-trp-tyr) with Ebola VP35 Interferon Inhibitory Domain, and Dehydroaustinol with VP35 from Marburg virus. MD modeling and MMPBSA studies were used to provide a better understanding of binding behaviors. Pre-clinical experiments can assist validate our in-silico studies and assess whether the molecule can be employed as an anti-viral drug.
Assuntos
Antivirais , Ebolavirus , Marburgvirus , Simulação de Acoplamento Molecular , Ebolavirus/efeitos dos fármacos , Ebolavirus/metabolismo , Marburgvirus/efeitos dos fármacos , Marburgvirus/metabolismo , Antivirais/farmacologia , Antivirais/química , Proteínas da Matriz Viral/metabolismo , Proteínas da Matriz Viral/antagonistas & inibidores , Proteínas da Matriz Viral/química , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/virologia , Humanos , Simulação por Computador , Simulação de Dinâmica Molecular , Proteínas Virais Reguladoras e AcessóriasRESUMO
Knowledge of the molecular pathogenesis of acute myeloid leukemia has advanced in recent years. Despite novel treatment options, acute myeloid leukemia remains a survival challenge for elderly patients. We have recently shown that the triphosphohydrolase SAMHD1 is one of the factors determining resistance to Ara-C treatment. Here, we designed and tested novel and simpler virus-like particles incorporating the lentiviral protein Vpx to efficiently and transiently degrade SAMHD1 and increase the efficacy of Ara-C treatment. The addition of minute amounts of lentiviral Rev protein during production enhanced the generation of virus-like particles. In addition, we found that our 2nd generation of virus-like particles efficiently targeted and degraded SAMHD1 in AML cell lines with high levels of SAMHD1, thereby increasing Ara-CTP levels and response to Ara-C treatment. Primary AML blasts were generally less responsive to VLP treatment. In summary, we have been able to generate novel and simpler virus-like particles that can efficiently deliver Vpx to target cells.
Assuntos
Citarabina , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Citarabina/farmacologia , Citarabina/uso terapêutico , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Linhagem Celular Tumoral , Lentivirus/genéticaRESUMO
BACKGROUND: Podocytes, as intrinsic renal cells, can also express MHC-II and costimulatory molecules under inflammatory conditions, suggesting that they may act as antigen-presenting cells (APCs) to activate immune cell responses and then lead to immune-mediated renal injury. They are already recognized as main targets in the pathogenic mechanism of hepatitis B virus (HBV)-associated glomerulonephritis (HBV-GN). Previous studies also have indicated that inflammatory cells infiltration and immune-mediated tissue injury are evident in the kidney samples of patients with HBV-GN. However, the role of podocytes immune disorder in the pathogenic mechanism of HBV-GN remains unclear. METHODS: Renal function and inflammatory cells infiltration were measured in HBV transgenic (HBV-Tg) mice. In vitro, podocytes/CD4+ T cells or macrophages co-culture system was established. Then, the expression of HBx, CD4, and CD68 was determined by immunohistochemistry, while the expression of MHC-II, CD40, and CD40L was determined by immunofluorescence. Co-stimulatory molecules expression was examined by flow cytometry. The levels of inflammatory factors were detected by ELISA. RESULTS: In vivo, renal function was obviously impaired in HBV-Tg mice. HBx was significantly upregulated and immune cells infiltrated in the glomerulus of HBV-Tg mice. Expression of MHC-II and costimulatory molecule CD40 increased in the podocytes of HBV-Tg mice; CD4+ T cells exhibited increased CD40L expression in glomerulus. In vitro, CD40 expression was markedly elevated in HBx-podocytes. In co-culture systems, HBx-podocytes stimulated CD4+ T cells activation and caused the imbalance between IFN-γ and IL-4. HBx-podocytes also enhanced the adhesion ability of macrophages and induced the release of proinflammatory mediators. CONCLUSION: Taken together, these podocyte-related immune disorder may be involved in the pathogenic mechanism of HBV-GN.
Assuntos
Glomerulonefrite , Vírus da Hepatite B , Camundongos Transgênicos , Podócitos , Transativadores , Proteínas Virais Reguladoras e Acessórias , Animais , Podócitos/imunologia , Podócitos/patologia , Podócitos/metabolismo , Camundongos , Transativadores/metabolismo , Transativadores/genética , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Glomerulonefrite/virologia , Vírus da Hepatite B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Hepatite B/imunologia , Hepatite B/complicações , Humanos , Técnicas de Cocultura , Masculino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BLRESUMO
Antiviral signaling, immune response and cell metabolism are dysregulated by SARS-CoV-2, the causative agent of COVID-19. Here, we show that SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10 induce a significant mitochondrial and metabolic reprogramming in A549 lung epithelial cells. While ORF9b, ORF9c and ORF10 induced largely overlapping transcriptomes, ORF3a induced a distinct transcriptome, including the downregulation of numerous genes with critical roles in mitochondrial function and morphology. On the other hand, all four ORFs altered mitochondrial dynamics and function, but only ORF3a and ORF9c induced a marked alteration in mitochondrial cristae structure. Genome-Scale Metabolic Models identified both metabolic flux reprogramming features both shared across all accessory proteins and specific for each accessory protein. Notably, a downregulated amino acid metabolism was observed in ORF9b, ORF9c and ORF10, while an upregulated lipid metabolism was distinctly induced by ORF3a. These findings reveal metabolic dependencies and vulnerabilities prompted by SARS-CoV-2 accessory proteins that may be exploited to identify new targets for intervention.
Assuntos
COVID-19 , Mitocôndrias , SARS-CoV-2 , Proteínas Virais , Humanos , Células A549 , COVID-19/metabolismo , COVID-19/virologia , COVID-19/patologia , Mitocôndrias/metabolismo , Fases de Leitura Aberta , SARS-CoV-2/genética , Transcriptoma , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Viroporinas/metabolismoRESUMO
Natural Killer (NK) cells have the potential to eliminate HIV-1-infected cells by antibody-dependent cellular cytotoxicity (ADCC). NK cell activation is tightly regulated by the engagement of its inhibitory and activating receptors. The activating receptor CD16 drives ADCC upon binding to the Fc portion of antibodies; NK cell activation is further sustained by the co-engagement of activating receptors NTB-A and 2B4. During HIV-1 infection, Nef and Vpu accessory proteins contribute to ADCC escape by downregulating the ligands of NTB-A and 2B4. HIV-1 also evades ADCC by keeping its envelope glycoproteins (Env) in a "closed" conformation which effectively masks epitopes recognized by non-neutralizing antibodies (nnAbs) which are abundant in the plasma of people living with HIV. To achieve this, the virus uses its accessory proteins Nef and Vpu to downregulate the CD4 receptor, which otherwise interacts with Env and exposes the epitopes recognized by nnAbs. Small CD4-mimetic compounds (CD4mc) have the capacity to expose these epitopes, thus sensitizing infected cells to ADCC. Given the central role of NK cell co-activating receptors NTB-A and 2B4 in Fc-effector functions, we studied their contribution to CD4mc-mediated ADCC. Despite the fact that their ligands are partially downregulated by HIV-1, we found that both co-activating receptors significantly contribute to CD4mc sensitization of HIV-1-infected cells to ADCC.
Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Anti-HIV , Infecções por HIV , HIV-1 , Células Matadoras Naturais , Família de Moléculas de Sinalização da Ativação Linfocitária , Humanos , Citotoxicidade Celular Dependente de Anticorpos/imunologia , HIV-1/imunologia , Células Matadoras Naturais/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Antígenos CD4/imunologia , Antígenos CD4/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/imunologia , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/imunologia , Proteínas Virais Reguladoras e Acessórias/genética , Anticorpos Neutralizantes/imunologia , Proteínas ViroporinasRESUMO
Hepatitis B Virus (HBV) infection significantly elevates the risk of hepatocellular carcinoma (HCC), with the HBV X protein (HBx) playing a crucial role in cancer progression. Sorafenib, the primary therapy for advanced HCC, shows limited effectiveness in HBV-infected patients due to HBx-related resistance. Numerous studies have explored combination therapies to overcome this resistance. Sodium diethyldithiocarbamate (DDC), known for its anticancer effects and its inhibition of superoxide dismutase 1 (SOD1), is hypothesized to counteract sorafenib (SF) resistance in HBV-positive HCCs. Our research demonstrates that combining DDC with SF significantly reduces HBx and SOD1 expressions in HBV-positive HCC cells and human tissues. This combination therapy disrupts the PI3K/Akt/mTOR signalling pathway and promotes apoptosis by increasing reactive oxygen species (ROS) levels. These cellular changes lead to reduced tumour viability and enhanced sensitivity to SF, as evidenced by the synergistic suppression of tumour growth in xenograft models. Additionally, DDC-mediated suppression of SOD1 further enhances SF sensitivity in HBV-positive HCC cells and xenografted animals, thereby inhibiting cancer progression more effectively. These findings suggest that the DDC-SF combination could serve as a promising strategy for overcoming SF resistance in HBV-related HCC, potentially optimizing therapy outcomes.
Assuntos
Carcinoma Hepatocelular , Vírus da Hepatite B , Neoplasias Hepáticas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Transdução de Sinais , Sorafenibe , Superóxido Dismutase-1 , Serina-Treonina Quinases TOR , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/virologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/genética , Animais , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Vírus da Hepatite B/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Apoptose/efeitos dos fármacos , Hepatite B/complicações , Hepatite B/tratamento farmacológico , Hepatite B/virologia , Ditiocarb/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Camundongos Nus , Proliferação de Células/efeitos dos fármacos , Transativadores , Proteínas Virais Reguladoras e AcessóriasRESUMO
Although antiviral drugs can effectively inhibit hepatitis B virus (HBV) replication, the maintenance of chronic inflammation in the liver is still considered to be an important cause for the progression of HBV-related liver disease to liver fibrosis and advanced liver disease. As an endogenous inhibitory receptor of IL-1R and TLR signaling pathways, single immunoglobulin interleukin-1-related receptor (SIGIRR) has been proven to reduce inflammation in tissues to maintain system homeostasis. However, the relationship between SIGIRR expression and HBV replication and inflammatory pathway activation in hepatocytes remains unclear. In this study, hepatitis B virus X protein (HBx) upregulated MyD88 in liver cells, promoting NF-κB signaling and inflammatory factor production with LPS treatment, and the cell supernatant accelerated the activation and collagen secretion of hepatic stellate cells. However, SIGIRR overexpression suppressed HBx-mediated MyD88/NF-κB inflammatory signaling activation and inflammatory cytokine production induced by LPS in hepatocytes and HBV replication hepatocytes. Although we did not find any effect of SIGIRR on HBV replication in vitro, this study investigated the role of SIGIRR in blocking the proinflammatory function of HBx, which may provide a new idea for the treatment of chronic hepatitis B.
Assuntos
Vírus da Hepatite B , Hepatócitos , Inflamação , Fator 88 de Diferenciação Mieloide , NF-kappa B , Receptores de Interleucina-1 , Transdução de Sinais , Transativadores , Proteínas Virais Reguladoras e Acessórias , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Vírus da Hepatite B/fisiologia , Transativadores/genética , Transativadores/metabolismo , Inflamação/metabolismo , Inflamação/genética , Hepatite B Crônica/virologia , Hepatite B Crônica/genética , Hepatite B Crônica/metabolismo , Replicação Viral , Lipopolissacarídeos , Células Hep G2 , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/virologiaRESUMO
Heterogeneous nuclear protein U (HNRNPU) plays a pivotal role in innate immunity by facilitating chromatin opening to activate immune genes during host defense against viral infection. However, the mechanism by which HNRNPU is involved in Hepatitis B virus (HBV) transcription regulation through mediating antiviral immunity remains unknown. Our study revealed a significant decrease in HNRNPU levels during HBV transcription, which depends on HBx-DDB1-mediated degradation. Overexpression of HNRNPU suppressed HBV transcription, while its knockdown effectively promoted viral transcription, indicating HNRNPU as a novel host restriction factor for HBV transcription. Mechanistically, HNRNPU inhibits HBV transcription by activating innate immunity through primarily the positive regulation of the interferon-stimulating factor 2'-5'-oligoadenylate synthetase 3, which mediates an ribonuclease L-dependent mechanism to enhance innate immune responses. This study offers new insights into the host immune regulation of HBV transcription and proposes potential targets for therapeutic intervention against HBV infection.
Assuntos
2',5'-Oligoadenilato Sintetase , Vírus da Hepatite B , Imunidade Inata , Transcrição Gênica , Humanos , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/genética , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , Células Hep G2 , Hepatite B/imunologia , Hepatite B/virologia , Hepatite B/genética , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/imunologia , TransativadoresRESUMO
A unique feature of coronaviruses is their utilization of self-encoded nonstructural protein 16 (nsp16), 2'-O-methyltransferase (2'-O-MTase), to cap their RNAs through ribose 2'-O-methylation modification. This process is crucial for maintaining viral genome stability, facilitating efficient translation, and enabling immune escape. Despite considerable advances in the ultrastructure of SARS-CoV-2 nsp16/nsp10, insights into its molecular mechanism have so far been limited. In this study, we systematically characterized the 2'-O-MTase activity of nsp16 in SARS-CoV-2, focusing on its dependence on nsp10 stimulation. We observed cross-reactivity between nsp16 and nsp10 in various coronaviruses due to a conserved interaction interface. However, a single residue substitution (K58T) in SARS-CoV-2 nsp10 restricted the functional activation of MERS-CoV nsp16. Furthermore, the cofactor nsp10 effectively enhanced the binding of nsp16 to the substrate RNA and the methyl donor S-adenosyl-l-methionine (SAM). Mechanistically, His-80, Lys-93, and Gly-94 of nsp10 interacted with Asp-102, Ser-105, and Asp-106 of nsp16, respectively, thereby effectively stabilizing the SAM binding pocket. Lys-43 of nsp10 interacted with Lys-38 and Gly-39 of nsp16 to dynamically regulate the RNA binding pocket and facilitate precise binding of RNA to the nsp16/nsp10 complex. By assessing the conformational epitopes of nsp16/nsp10 complex, we further determined the critical residues involved in 2'-O-MTase activity. Additionally, we utilized an in vitro biochemical platform to screen potential inhibitors targeting 2'-O-MTase activity. Overall, our results significantly enhance the understanding of viral 2'-O methylation process and mechanism, providing valuable targets for antiviral drug development.
Assuntos
Metiltransferases , SARS-CoV-2 , Proteínas não Estruturais Virais , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , Metiltransferases/metabolismo , Metiltransferases/genética , Metiltransferases/química , Humanos , RNA Viral/genética , RNA Viral/metabolismo , COVID-19/virologia , Ligação Proteica , S-Adenosilmetionina/metabolismo , Metilação , Betacoronavirus/enzimologia , Betacoronavirus/genética , Modelos Moleculares , Coronavírus da Síndrome Respiratória do Oriente Médio/enzimologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Proteínas Virais Reguladoras e AcessóriasRESUMO
As an important protein encoded by hepatitis B virus (HBV), HBV X protein (HBx) plays an important role in the development of hepatocellular carcinoma (HCC). It has been shown that seven in absentia homologue 1 (SIAH1) could regulates the degradation of HBx through the ubiquitin-proteasome pathway. However, as a member of SIAH family, the regulatory effects of SIAH2 on HBx remain unclear. In this study, we first confirmed that SIAH2 could reduce the protein levels of HBx depending on its E3 ligase activity. Moreover, SIAH2 interacted with HBx and induced its K48-linked polyubiquitination and proteasomal degradation. Furthermore, we provided evidence that SIAH2 inhibits HBx-associated HCC cells proliferation by regulating HBx. In conclusion, our study identified a novel role for SIAH2 in promoting HBx degradation and SIAH2 exerts an inhibitory effect in the proliferation of HBx-associated HCC through inducing the degradation of HBx. Our study provides a new idea for the targeted degradation of HBx and may have great huge significance into providing novel evidence for the targeted therapy of HBV-infected HCC.