RESUMO
Liver metastasis of colorectal cancer (CRC) is a leading cause of death among cancer patients. The overexpression of glucose transporter 1 (Glut1) and enhanced glucose uptake that are associated with the Warburg effect are frequently observed in CRC liver metastases, but the underlying mechanisms remain poorly understood. CKLF-like MARVEL transmembrane domain-containing protein 6 (CMTM6) regulates the intracellular trafficking of programmed death-ligand-1 (PD-L1); therefore, we investigated whether CMTM6 regulates Glut1 trafficking and the Warburg effect in CRC cells. We found that knocking down of CMTM6 by shRNA induced the lysosomal degradation of Glut1, decreased glucose uptake and glycolysis in CRC cells, and suppressed subcutaneous CRC growth in nude mice and liver metastasis in C57BL/6 mice. Mechanistically, CMTM6 forms a complex with Glut1 and Rab11 in the endosomes of CRC cells, and this complex is required for the Rab11-dependent transport of Glut1 to the plasma membrane and for the protection of Glut1 from lysosomal degradation. Multiomics revealed global transcriptomic changes in CMTM6-knockdown CRC cells that affected the transcriptomes of adjacent cancer-associated fibroblasts from CRC liver metastases. As a result of these transcriptomic changes, CMTM6-knockdown CRC cells exhibited a defect in the G2-to-M phase transition, reduced secretion of 60 cytokines/chemokines, and inability to recruit cancer-associated fibroblasts to support an immunosuppressive CRC liver metastasis microenvironment. Analysis of TCGA data confirmed that CMTM6 expression was increased in CRC patients and that elevated CMTM6 expression was associated with worse patient survival. Together, our data suggest that CMTM6 plays multiple roles in regulating the Warburg effect, transcriptome, and liver metastasis of CRC.
Assuntos
Neoplasias Colorretais , Transportador de Glucose Tipo 1 , Glicólise , Neoplasias Hepáticas , Proteínas com Domínio MARVEL , Proteínas com Domínio MARVEL/metabolismo , Proteínas com Domínio MARVEL/genética , Animais , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Humanos , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Linhagem Celular Tumoral , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Proteínas da MielinaRESUMO
Glioma, a common malignancy, is characterized by high morbidity and mortality. Promoting ferroptosis can delay tumor progression. Here, we aimed to explore the underlying mechanism of ferroptosis in glioma. In vitro and in vivo experiments were conducted using glioma cells and nude mice. The expression of genes and proteins was evaluated by RT-qPCR, Western blot assay, and immunohistochemical staining. Malignant activities of glioma cells were evaluated using MTT, EdU, and Transwell assays. The levels of Fe2+, lipid reactive oxygen species, and malondialdehyde were determined using commercial kits. The interplays among CMTM5, WWP2, and LATS2 were validated using Co-immunoprecipitation assay. The UALCAN database predicted downregulation of CMTM5 expression in glioma, and low expression of CMTM5 was associated with poor survival outcomes. CMTM5 overexpression inhibited cell growth and invasion and promoted ferroptosis of glioma cells. Besides, CMTM5 protein interacted with WWP2 protein and decreased WWP2 expression. WWP2 silencing attenuated LATS2 ubiquitination to enhance LATS2 expression and phosphorylation of YAP1. CMTM5 exerted a suppressive effect on cell growth and invasion and promoted ferroptosis of glioma cells by regulating the WWP2/LATS2 pathway. In the in vivo experiments, CMTM5 overexpression suppressed tumor growth and enhanced ferroptosis. CMTM5 regulated Hippo/YAP signaling to inhibit cell growth and invasion and to promote ferroptosis in glioma by regulating WWP2-mediated LATS2 ubiquitination, thereby attenuating glioma progression.
Assuntos
Ferroptose , Glioma , Proteínas com Domínio MARVEL , Proteínas Serina-Treonina Quinases , Proteínas Supressoras de Tumor , Ubiquitinação , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células , Quimiocinas/metabolismo , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Glioma/patologia , Glioma/genética , Via de Sinalização Hippo , Proteínas com Domínio MARVEL/metabolismo , Proteínas com Domínio MARVEL/genética , Camundongos Nus , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases , Proteínas de Sinalização YAP/metabolismoRESUMO
While immune checkpoint blockade (ICB) has shown promise for clinical cancer therapy, its efficacy has only been observed in a limited subset of patients and the underlying mechanisms regulating innate and acquired resistance to ICB of tumor cells remain poorly understood. Here, we identified ependymin-related protein 1 (EPDR1) as an important tumor-intrinsic regulator of PD-L1 expression and tumor immune evasion. Aberrant expression of EPDR1 in hepatocellular carcinoma is associated with immunosuppression. Mechanistically, EPDR1 binds to E3 ligase TRIM21 and disrupts its interaction with IkappaB kinase-b, suppressing its ubiquitylation and autophagosomal degradation and enhancing NF-κB-mediated transcriptional activation of PD-L1. Further, we validated through a mouse liver cancer model that EPDR1 mediates exhaustion of CD8+ T cells and promotes tumor progression. In addition, we observed a positive correlation between EPDR1 and PD-L1 expression in both human and mouse liver cancer samples. Collectively, our study reveals a previously unappreciated role of EPDR1 in orchestrating tumor immune evasion and cancer progression.
Assuntos
Antígeno B7-H1 , Carcinoma Hepatocelular , Neoplasias Hepáticas , Evasão Tumoral , Ubiquitinação , Animais , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Camundongos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Quinase I-kappa B/metabolismo , Quinase I-kappa B/genética , Proteínas com Domínio MARVEL/metabolismo , Proteínas com Domínio MARVEL/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Camundongos Endogâmicos C57BL , RibonucleoproteínasRESUMO
CKLF-like MARVEL transmembrane domain-containing 3 (CMTM3), a member of the CMTM family that is closely related to tumor occurrence and progression, plays crucial roles in the immune system, cardiovascular system, and male reproductive system. Recently, CMTM3 has emerged as a potential target for treating diseases related to bone formation. However, additional studies are needed to understand the mechanisms by which CMTM3 regulates the process of osteogenic differentiation. In this study, we observed a significant downregulation of Cmtm3 expression during the transdifferentiation of C2C12 myoblasts into osteoblasts induced by BMP4. Cmtm3 overexpression suppressed proliferation and osteogenic differentiation in BMP4-induced C2C12 cells, whereas its knockdown conversely facilitated the process. Mechanistically, Cmtm3 overexpression upregulated both the protein and mRNA levels of p53 and p21. Conversely, Cmtm3 knockdown exerted the opposite effects. Additionally, we found that Cmtm3 interacts with p53 and increases protein stability by inhibiting proteasome-mediated ubiquitination and degradation. Notably, Trp53 downregulation abrogated the inhibitory effect of Cmtm3 on BMP4-induced proliferation and osteogenic differentiation of C2C12 myoblasts. Collectively, our findings provide key insights into the role of CMTM3 in regulating myoblast proliferation and transdifferentiation into osteoblasts, highlighting its significance in osteogenesis research.
Assuntos
Proliferação de Células , Transdiferenciação Celular , Quimiocinas , Proteínas com Domínio MARVEL , Mioblastos , Osteogênese , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Proteína Morfogenética Óssea 4/metabolismo , Linhagem Celular , Quimiocinas/metabolismo , Proteínas com Domínio MARVEL/metabolismo , Proteínas com Domínio MARVEL/genética , Mioblastos/metabolismo , Mioblastos/citologia , Osteoblastos/metabolismo , Osteoblastos/citologia , Osteogênese/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/genéticaRESUMO
Chemokine like factor 1 (CKLF1) is a novel atypical chemokine, playing a crucial role in cardiovascular and cerebrovascular diseases (CCVDs) demonstrated by a growing body of works. In cardiovascular diseases including atherosclerosis and myocardial infarction, meanwhile in cerebrovascular diseases such as ischemic stroke and hemorrhagic stroke, the expression levels of CKLF1 change markedly, which triggers downstream signaling pathways by binding with its functional receptors, and then exerts multiple effects to participate in the occurrence and development of these CCVDs. The functional roles of CKLF1 are dynamic and CKLF1 may act as a double-edged sword. The CCVDs-promoting role is related to recruiting inflammatory cells, enhancing the proliferation of vascular smooth muscle cells and endothelial cells, while the CCVDs-suppressing role may correlate with migration of nerve cells and promotion of hematopoietic stem cell proliferation which contributes to disease recovery. Based on this, the paper intends to review expression shifts, potential roles, and molecular mechanisms of CKLF1 in CCVDs, and the current status of CKLF1 targeted therapeutic strategies is also included. We hope this review may provide a valuable reference for using CKLF1 as a diagnostic and prognostic biomarker for CCVDs or developing novel treatments.
Assuntos
Doenças Cardiovasculares , Transtornos Cerebrovasculares , Proteínas com Domínio MARVEL , Humanos , Proteínas com Domínio MARVEL/metabolismo , Proteínas com Domínio MARVEL/genética , Animais , Doenças Cardiovasculares/metabolismo , Transtornos Cerebrovasculares/metabolismo , Quimiocinas/metabolismo , Transdução de Sinais , BiomarcadoresRESUMO
There have been notable irregularities in CMTM6 expression observed in hepatocellular carcinoma (HCC), with an evident correlation between CMTM6 dysregulation and patient prognosis. The cell cycle progression came to a halt at the G2/M phase. In-depth RNA-sequencing analysis of CMTM6 knockdown Hep3B cells revealed that the most prominent effect of CMTM6 perturbation was on the expression of CXCL8, a chemokine involved in immune responses, particularly through the interleukin-17F (IL-17F) signaling pathway. By carefully examining the RNA-sequencing data obtained from CMTM6 knockdown Hep3B cells and cross-referencing it with the TCGA-LIHC database, we were able to discern that CMTM6 and programmed death-ligand 1 (PD-L1) collaboratively partake in immune regulation within T cells. Furthermore, CMTM6 exerted an influential role in modulating the infiltration of CD4+ and CD8+ T cells in the HCC microenvironment, thereby impacting the overall immune response. Our investigation found that HCC cases characterized by an elevated co-expression of CMTM6 and PD-L1, along with augmented CD4+ T cell infiltration, demonstrated comparatively longer overall and progression-free survival rates when contrasted with those displaying lower CD4+ T cell infiltration.
Assuntos
Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Proteínas com Domínio MARVEL , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Proteínas com Domínio MARVEL/genética , Proteínas com Domínio MARVEL/metabolismo , Prognóstico , Linhagem Celular Tumoral , Proteínas da Mielina/genética , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Masculino , Feminino , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismoRESUMO
The dysfunction of innate immunity components is one of the major drivers for ulcerative colitis (UC), and increasing reports indicate that the gut microbiome serves as an intermediate between genetic mutations and UC development. Here, we find that the IL-17 receptor subunit, CMTM4, is reduced in UC patients and dextran sulfate sodium (DSS)-induced colitis. The deletion of CMTM4 (Cmtm4-/-) in mice leads to a higher susceptibility to DSS-induced colitis than in wild-type, and the gut microbiome significantly changes in composition. The causal role of the gut microbiome is confirmed with a cohousing experiment. We further identify that S100a8/9 is significantly up-regulated in Cmtm4-/- colitis, with the block of its receptor RAGE that reverses the phenotype associated with the CMTM4 deficiency. CMTM4 deficiency rather suppresses S100a8/9 expression in vitro via the IL17 pathway, further supporting that the elevation of S100a8/9 in vivo is most likely a result of microbial dysbiosis. Taken together, the results suggest that CMTM4 is involved in the maintenance of intestinal homeostasis, suppression of S100a8/9, and prevention of colitis development. Our study further shows CMTM4 as a crucial innate immunity component, confirming its important role in UC development and providing insights into potential targets for the development of future therapies.
Assuntos
Calgranulina A , Calgranulina B , Colite , Sulfato de Dextrana , Disbiose , Microbioma Gastrointestinal , Proteínas com Domínio MARVEL , Animais , Feminino , Humanos , Masculino , Camundongos , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Colite/genética , Colite/microbiologia , Colite/induzido quimicamente , Colite/patologia , Colite Ulcerativa/microbiologia , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Colite Ulcerativa/imunologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Sulfato de Dextrana/toxicidade , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Disbiose/microbiologia , Disbiose/genética , Disbiose/imunologia , Proteínas com Domínio MARVEL/genética , Proteínas com Domínio MARVEL/metabolismo , Camundongos KnockoutRESUMO
BACKGROUND: Glioblastoma multiforme (GBM) is identified as one of the most prevalent and malignant brain tumors, characterized by poor treatment outcomes and a limited prognosis. CMTM6, a membrane protein, has been found to upregulate the expression of programmed cell death 1 ligand 1 protein (PD-L1) and acts as an immune checkpoint inhibitor by inhibiting the programmed death 1 protein/PD-L1 signaling pathway. Recent research has demonstrated a high expression of CMTM6 in GBM, suggesting its potential role in influencing the pathogenesis and progression of GBM, as well as its association with immune cell infiltration in the tumor microenvironment. However, the underlying mechanism of CMTM6 in GBM requires further investigation. METHODS: Data from cancer patients in The Cancer Genome Atlas, Gene Expression Omnibus and Chinese Glioma Genome Atlas cohorts were consolidated for the current study. Through multi-omics analysis, the study systematically examined the expression profile of CMTM6, epigenetic modifications, prognostic significance, biological functions, potential mechanisms of action and alterations in the immune microenvironment. Additionally, the study investigated CMTM6 expression in GBM cell lines and normal cells using reverse transcription PCR and western blot analysis. The impact of CMTM6 on GBM cell proliferation, migration and invasion was evaluated using a combination of cell counting kit-8 assay, clone formation assay, 5-ethynyl-2'-deoxyuridine incorporation assay, wound healing assay and Transwell assay. In order to explore the mechanism of CMTM6, the Wnt/ß-catenin signaling pathway and autophagy-related genes were further verified through western blot analysis. RESULTS: CMTM6 is highly expressed in multiple tumors, particularly GBM. CMTM6 has been shown to be a valuable diagnostic and prognostic biomarker by various bioinformatics approaches. Additionally, CMTM6 plays a pivotal role in the pathogenesis of cancer, specifically GBM, by modulating various biological processes such as DNA methyltransferase expression, RNA modification, copy number variation, genomic heterogeneity, tumor stemness and DNA methylation. The findings of the experiment indicate a significant correlation between elevated CMTM6 expression and the proliferation, invasion, migration and autophagy of GBM cells, with potential key roles mediated through the Wnt/ß-catenin signaling pathway. Furthermore, CMTM6 is implicated in modulating tumor immune cell infiltration and is closely linked to the expression of various immune checkpoint inhibitors and immune modulators, particularly within the context of GBM. High levels of CMTM6 expression also enhance the responsiveness of GBM patients to radiotherapy and chemotherapy, thereby offering valuable insights for guiding treatment strategies for GBM. CONCLUSIONS: Autophagy-related CMTM6 is highly expressed in various types of cancer, especially GBM, and it can regulate GBM progression through the Wnt/ß-catenin signaling pathway and is capable of being used as an underlying target for the diagnosis, treatment selection and prognosis of patients with GBM.
Assuntos
Autofagia , Biomarcadores Tumorais , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Proteínas com Domínio MARVEL , Microambiente Tumoral , Via de Sinalização Wnt , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Proteínas com Domínio MARVEL/metabolismo , Proteínas com Domínio MARVEL/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Autofagia/genética , Prognóstico , Proliferação de Células , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Movimento Celular/genética , beta Catenina/metabolismo , beta Catenina/genéticaRESUMO
Upper tract urothelial carcinoma (UTUC) accounts for 5-10% of all UCs. Immune checkpoint inhibitors (ICIs) have been established for UCs. The prognostic and predictive potential of programmed cell death ligand 1 (PD-L1) expression to stratify patients benefiting from ICIs is not fully understood, and additional markers influencing the impact of PD-L1-mediated ICI response are needed. Previously, the chemokine-like MARVEL transmembrane domain-containing protein 6 (CMTM6) was identified as a positive regulator of PD-L1. Our aim was to investigate the expression profiles and impact of PD-L1 and CMTM6 protein status on the prognostic parameters and survival of UTUC patients. In this retrospective study, the combined positive score (CPS), tumor proportion score (TPS), and immune cell score (ICS) for PD-L1 and CMTM6 were determined. High PD-L1 CPS, ICS, and TPS were found in 77.4%, 58.3%, and 45.2% of cases, and high CMTM6 CPS, ICS, and TPS were seen in 52.5%, 51.5%, and 55.5% of cases, respectively. The scores of both markers had a significant positive correlation. High PD-L1 and CMTM6 expression was coupled with higher pT status, WHO grade, necrosis, and metastasis (p < 0.05, respectively). In the univariate survival analysis, patients with a PD-L1 ICS high and higher degree of intratumoral inflammation showed significantly longer overall survival. Compared to other studies on UC, our study shows a substantially higher rate of PD-L1-positive tumors. CMTM6 was associated with more aggressive tumors.
Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Carcinoma de Células de Transição/metabolismo , Antígeno B7-H1 , Prognóstico , Estudos Retrospectivos , Ligantes , Apoptose , Biomarcadores , Quimiocinas , Proteínas com Domínio MARVEL/genéticaRESUMO
The chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing (CMTM) family includes CMTM1-8 and CKLF, and they play key roles in the hematopoietic, immune, cardiovascular, and male reproductive systems, participating in the physiological functions, cancer, and other diseases associated with these systems. CMTM family members activate and chemoattract immune cells to affect the proliferation and invasion of tumor cells through a similar mechanism, the structural characteristics typical of chemokines and transmembrane 4 superfamily (TM4SF). In this review, we discuss each CMTM family member's chromosomal location, involved signaling pathways, expression patterns, and potential roles, and mechanisms of action in pancreatic, breast, gastric and liver cancers. Furthermore, we discuss several clinically applied tumor therapies targeted at the CMTM family, indicating that CMTM family members could be novel immune checkpoints and potential targets effective in tumor treatment.
Assuntos
Quimiocinas , Proteínas com Domínio MARVEL , Neoplasias , Humanos , Quimiocinas/genética , Proteínas com Domínio MARVEL/genética , Transdução de Sinais , Neoplasias/genéticaRESUMO
Thyroid cancer is the most common type of endocrine cancer. Chemokine-like factor (CKLF)-like MARVEL transmembrane domain containing 6 (CMTM6) is recognized as one of its potential immunotherapy targets. The purpose of this study was to investigate the role and molecular mechanism of CMTM6 in regulating the development of thyroid cancer cells. In this study, expression levels of CMTM6 and the sodium/iodide symporter (NIS) were detected by qRT-PCR. Additionally, colony formation assay and flow cytometry were used to detect cell proliferation and apoptosis, while expression levels of various proteins were assessed using Western blotting. Further, the apoptosis and invasion capacity of cells were investigated by scratch and transwell experiments. Finally, the effect of CMTM6 on the epithelial-mesenchymal transition (EMT) of thyroid cancer cells was determined by immunofluorescence assay, which measured the expression levels of epithelial and mesenchymal phenotypic markers. The results of qRT-PCR experiments showed that CMTM6 was highly expressed in thyroid cancer tissues and cells. In addition, knockdown of CMTM6 expression significantly increased NIS expression. Function experiments demonstrated that small interfering (si)-CMTM6 treatment inhibited the proliferation, migration, invasion, and EMT of thyroid cancer cells, while promoting apoptosis of FTC133 cells. Furthermore, mechanistic studies showed that mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) phosphorylation were inhibited by si-CMTM6, as demonstrated by Western blot experiments. In conclusion, our findings demonstrated the role of CMTM6 in the metastasis of thyroid cancer. Briefly, CMTM6 exerts its tumor-promoting effect through the MAPK signaling pathway and could potentially be used as a valuable biomarker for thyroid cancer diagnosis and prognosis.
Assuntos
Proteínas com Domínio MARVEL , Proteínas da Mielina , Simportadores , Neoplasias da Glândula Tireoide , Humanos , Linhagem Celular Tumoral , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Simportadores/genética , Simportadores/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Proteínas com Domínio MARVEL/genética , Proteínas com Domínio MARVEL/metabolismo , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismoRESUMO
In this research, polyethylenimine-functionalized gold nanoclusters (PEI-AuNCs) were synthesized for the delivery of plasmid CMTM5 (pCMTM5) to prostate cancer (PCa) cells, with the objective of elucidating the mechanism underlying its anticancer efficacy. The PEI-AuNCs loaded with pCMTM5 (PEI-AuNCs@pCMTM5) tumor-targeting drug delivery system was established. Subsequently, both the obtained PEI-AuNCs and PEI-AuNCs@pCMTM5 underwent characterization through a transmission electron microscope (TEM) and dynamic light scattering (DLS). Employing RT-qPCR, western blot, flow cytometry, immunofluorescence, and co-immunoprecipitation (co-IP) assays, the consequences of CMTM5 overexpression on the expression of EGFR were investigated. Moreover, the influence of PEI-AuNCs@pCMTM5 on PC-3 cells was assessed through CCK-8, wound healing assay, and Transwell experiments. As a result, the PEI-AuNCs and PEI-AuNCs@pCMTM5 were presented as uniformly dispersed spherical with stable particle sizes and positive charges, showcasing favorable dispersion within the solution. In comparison to Lip2000, the PEI-AuNCs demonstrated superior transfection efficiency and lower cellular toxicity. Following the overexpression of CMTM5, the proliferative capacity of PC-3 cells was markedly suppressed, while both migratory and invasive abilities exhibited noteworthy reduction, with the efficacy of PEI-AuNCs@pCMTM5 consistently outperforming that of free pCMTM5. Subsequent mechanistic investigations unveiled that CMTM5 does not directly inhibit the synthesis of EGFR or facilitate its degradation, but rather influences the endocytic process of EGFR. In conclusion, the PEI-AuNCs nano-delivery system exhibits good biocompatibility and efficaciously conveys pCMTM5 to PCa cells. Crucially, pCMTM5 does not directly interact with EGFR, and CMTM5 governs the malignant progression of PC3 cells by promoting EGFR endocytosis.
Assuntos
Polietilenoimina , Neoplasias da Próstata , Masculino , Humanos , Ouro , Neoplasias da Próstata/patologia , Plasmídeos , Transfecção , Endocitose , Receptores ErbB/genética , Receptores ErbB/metabolismo , Quimiocinas/metabolismo , Proteínas com Domínio MARVEL/genética , Proteínas com Domínio MARVEL/metabolismoRESUMO
Purpose: To investigate the impact of transmembrane protein CMTM6 on the pathogenesis of dry eye disease (DED) and elucidate its potential mechanisms. Methods: CMTM6 expression was confirmed by database analysis, real-time polymerase chain reaction (RT-PCR), western blot, and immunohistochemistry. Tear secretion was measured using the phenol red thread test. Immune cell infiltration was assessed through flow cytometry. Barrier function was evaluated by fluorescein sodium staining, immunofluorescence staining of zonula occludens 1 (ZO-1), and electric cell-substrate impedance sensing (ECIS) assessment. For silencing CMTM6 expression, siRNA and shRNA were employed, along with lentiviral vector-mediated overexpression of CMTM6. Proinflammatory cytokine levels were analyzed by RT-PCR and cytometric bead array (CBA) analysis. Results: CMTM6 showed high expression in healthy human and mouse corneal and conjunctival epithelium but was notably reduced in DED. Notably, this downregulation was correlated with disease severity. Cmtm6-/- dry eye (DE) mice displayed reduced tear secretion, severe corneal epithelial defects, decreased conjunctival goblet cell density, and upregulated inflammatory response. Additionally, Cmtm6-/- DE mice and CMTM6 knockdown human corneal epithelial cell-transformed (HCE-T) cells showed more severe barrier disruption and reduced expression of ZO-1. Knockdown of CMTM6 in HCE-T cells increased inflammatory responses induced by hyperosmotic stress, which was significantly mitigated by CMTM6 overexpression. Moreover, the level of phospho-p65 in hyperosmolarity-stimulated HCE-T cells increased after silencing CMTM6. Nuclear factor kappa B (NF-κB) p65 inhibition (JSH-23) reversed the excessive inflammatory responses caused by hyperosmolarity in CMTM6 knockdown HCE-T cells. Conclusions: The reduction in CMTM6 expression on the ocular surface contributes to the pathogenesis of DED. The CMTM6-NF-κB p65 signaling pathway may serve as a promising therapeutic target for DED.
Assuntos
Síndromes do Olho Seco , Epitélio Corneano , Proteínas com Domínio MARVEL , Proteínas da Mielina , Animais , Humanos , Camundongos , Córnea/metabolismo , Síndromes do Olho Seco/metabolismo , Epitélio Corneano/metabolismo , NF-kappa B/metabolismo , Proteínas com Domínio MARVEL/genética , Proteínas com Domínio MARVEL/metabolismo , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismoRESUMO
BACKGROUND: The chemokine-like factor (CKLF)-like Marvel transmembrane structural domain (CMTM) family is widely expressed in the tumor and immune systems and is essential in human cancer progression. However, the multi-omic profile of CMTM family genes and their role in tumor patient prognosis and immune microenvironment have not been explored. METHODS: We collected data from 33 cancers and 33 non-cancers and then comprehensively analyzed the basal expression levels of CMTM family genes in normal human tissues as well as abnormal expression in diseases, genomic alterations, diagnostic and prognostic roles, subcellular localization, pathway enrichment, the immune microenvironment, associations with immune checkpoints, and drug sensitivities as well as to predict the immunotherapeutic response of patients to ICIs and targeting of small molecule drugs, the above results were validated by immunohistochemical staining, pathology sections and experiments. We also performed protein docking of immune checkpoints binding to CMTM6 and screening of small molecule drugs targeting CMTM6 based on mass spectrometry results and molecular docking techniques. Finally, we experimentally confirmed the role of CMTM6 in bladder cancer. RESULTS: We found differential expression and diagnostic biomarker value of the CMTMs family in diseases (cancer and non-cancer). CMTMs were also found to play a key role in pan-cancer with the tumor microenvironment. CMTMs were closely associated with common immune checkpoints, TMB and MSI, so we scored CMTMs based on CMTMs expression in patients undergoing ICI, and patients with lower scores had better survival and showed higher immunotherapy response after immunotherapy. Finally, molecular docking was used to identify small molecule inhibitors that could target CMTM6 and binding poses of CMTM6 to other immune checkpoint genes. Finally, it was determined experimentally that knockdown of CMTM6 gene expression inhibited the proliferation and invasion of bladder cancer cells. CONCLUSIONS: Our findings provide a valuable strategy to guide the diagnostic and therapeutic direction of CMTM family genes in disease.
Assuntos
Proteínas com Domínio MARVEL , Proteínas da Mielina , Neoplasias da Bexiga Urinária , Humanos , Biologia Computacional , Células Epiteliais , Simulação de Acoplamento Molecular , Microambiente Tumoral , Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Proteínas da Mielina/genética , Proteínas com Domínio MARVEL/genéticaRESUMO
OBJECTIVES: Cardiac hypertrophy is the heart's compensatory response stimulated by various pathophysiological factors. However, prolonged cardiac hypertrophy poses a significant risk of progression to heart failure, lethal arrhythmias, and even sudden cardiac death. For this reason, it is crucial to effectively prevent the occurrence and development of cardiac hypertrophy. CMTM is a superfamily of human chemotaxis, which is involved in immune response and tumorigenesis. CMTM3 expressed widely in tissues, including the heart, but its cardiac function remains unclear. This research aims to explore the effect and mechanism of CMTM3 in the development of cardiac hypertrophy. METHODS AND RESULTS: We generated a Cmtm3 knockout mouse model (Cmtm3-/-) as the loss-of-function approach. CMTM3 deficiency induced cardiac hypertrophy and further exacerbated hypertrophy and cardiac dysfunction stimulated by Angiotensin â ¡ infusion. In Ang â ¡-infusion stimulated hypertrophic hearts and phenylephrine-induced hypertrophic neonatal cardiomyocytes, CMTM3 expression significantly increased. However, adenovirus-mediated overexpression of CMTM3 inhibited the hypertrophy of rat neonatal cardiomyocytes induced by PE stimulation. In terms of mechanism, RNA-seq data revealed that Cmtm3 knockout-induced cardiac hypertrophy was related to MAPK/ERK activation. In vitro, CMTM3 overexpression significantly inhibited the increased phosphorylation of p38 and ERK induced by PE stimulation. CONCLUSIONS: CMTM3 deficiency induces cardiac hypertrophy and aggravates hypertrophy and impaired cardiac function stimulated by angiotensin â ¡ infusion. The expression of CMTM3 increases during cardiac hypertrophy, and the increased CMTM3 can inhibit further hypertrophy of cardiomyocytes by inhibiting MAPK signaling. Thus, CMTM3 plays a negative regulatory effect in the occurrence and development of cardiac hypertrophy.
Assuntos
Cardiomegalia , Quimiocinas , Proteínas com Domínio MARVEL , Animais , Camundongos , Cardiomegalia/metabolismo , Proteínas com Domínio MARVEL/genética , Proteínas com Domínio MARVEL/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Técnicas de Inativação de Genes , Angiotensina II/metabolismo , Miócitos Cardíacos/metabolismo , Regulação para Cima , Fenilefrina , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosforilação , CoraçãoRESUMO
The Chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing (CMTM) family, comprising nine members, is involved in the tumorigenesis and progression of various cancers. However, the expression profiles and clinical significance of CMTM family members in hepatocellular carcinoma (HCC) are not fully clarified. In this study, the RNA-sequencing and clinical data were downloaded from The Cancer Genome Atlas (TCGA) databases. The Kaplan-Meier method and the Cox proportional hazards regression analysis were used to evaluate the prognostic significance of CMTM family members. Single-sample gene set enrichment analysis (ssGSEA) and ESTIMATE algorithms were employed to explore the relationship between CMTM family genes and the tumor microenvironment in HCC. Finally, the prognostic CMTM family gene expression was further validated by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical (IHC) staining in clinical HCC tissue specimens. The results indicated that, compared with normal tissues, the expression of CKLF, CMTM1, CMTM3, CMTM4, CMTM7, and CMTM8 were significantly upregulated in HCC, while the expression of CMTM2, CMTM5, and CMTM6 were significantly downregulated in HCC. Univariate and multivariate Cox regression analysis demonstrated that CKLF was an independent prognostic biomarker for the overall survival (OS) of HCC patients. In HCC, the expression of CKLF was found to be correlated with immune cell infiltration, immune-related functions, and immune checkpoint genes. The qRT-PCR and IHC confirmed that CKLF was highly expressed in HCC. Overall, this research suggested that CKLF is involved in immune cell infiltration and may serve as a critical prognostic biomarker, which provides new light on the therapeutics for HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Prognóstico , Neoplasias Hepáticas/genética , Algoritmos , Biomarcadores , Microambiente Tumoral , Quimiocinas/genética , Proteínas com Domínio MARVEL/genéticaRESUMO
BACKGROUND: Breast cancer is the major cause of death in females globally. Chemokine-like factor like MARVEL transmembrane domain containing 7 (CMTM7) is reported as a tumor suppressor and is involved in epidermal growth factor receptor degradation and PI3K/AKT signaling in previous studies. However, other molecular mechanisms of CMTM7 remain unclear. METHODS: The expression level of CMTM7 in breast cancer cells and tissues was detected by qRT-PCR and western blot, and the methylation of CMTM7 promoter was detected by BSP sequencing. The effect of CMTM7 was verified both in vitro and in vivo, including MTT, colony formation, EdU assay, transwell assay and wound healing assay. The interaction between CMTM7 and CTNNA1 was investigated by co-IP assay. The regulation of miR-182-5p on CMTM7 and TCF3 on miR-182-5p was detected by luciferase reporter assay and ChIP analysis. RESULTS: This study detected the hypermethylation levels of the CMTM7 promoter region in breast cancer tissues and cell lines. CMTM7 was performed as a tumor suppressor both in vitro and in vivo. Furthermore, CMTM7 was a direct miR-182-5p target. Besides, we found that CMTM7 could interact with Catenin Alpha 1 (CTNNA1) and regulate Wnt/ß-catenin signaling. Finally, transcription factor 3 (TCF3) can regulate miR-182-5p. We identified a feedback loop with the composition of miR-182-5p, CMTM7, CTNNA1, CTNNB1 (ß-catenin), and TCF3, which play essential roles in breast cancer progression. CONCLUSION: These findings reveal the emerging character of CMTM7 in Wnt/ß-catenin signaling and bring new sights of gene interaction. CMTM7 and other elements in the feedback loop may serve as emerging targets for breast cancer therapy.
Assuntos
Neoplasias da Mama , MicroRNAs , Feminino , Humanos , MicroRNAs/genética , Neoplasias da Mama/genética , beta Catenina/genética , beta Catenina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Via de Sinalização Wnt/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Quimiocinas/metabolismo , Proteínas com Domínio MARVEL/genética , Proteínas com Domínio MARVEL/metabolismoRESUMO
Chemokine-like factor-like MARVEL transmembrane domain containing member/chemokine-like factor superfamily member (CMTM/CKLFSF) including CKLF and CMTM1-CMTM8 are a new family of proteins linking chemokines and transmembrane superfamilies. CMTM not only have broad chemotactic activities, but also associate with hematopoietic system, immune system, and tumor development and metastasis closely. CMTM proteins are involved in key biological processes of cancer development, which include activation and recycling of growth factor receptors, cell proliferation and metastasis, and regulation of the tumor immune microenvironment. This is a new focus of research on the relationship between CMTM and tumors, because CMTM4/CMTM6 can be considered as a regulator for programmed cell death ligand 1 (PD-L1). This paper reviews the role of CMTM family members on cancer, especially in tumor growth, metastasis and immune escape, summarize the latest findings on the relationship between CMTM and non-small cell lung cancer, and explores the potential clinical value of CMTM as a novel drug target or biomarker.â©.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas com Domínio MARVEL/genética , Proteínas com Domínio MARVEL/metabolismo , Proliferação de Células , Quimiocinas/metabolismo , Microambiente TumoralRESUMO
Human epidermal growth factor receptor 2-positive (HER2+) breast cancer is characterized by invasive growth, rapid metastasis and chemoresistance. Trastuzumab is an effective treatment for HER2+ breast cancer; however, trastuzumab resistance leads to cancer relapse and metastasis. CKLF-like MARVEL transmembrane domain-containing 6 (CMTM6) has been considered as a new immune checkpoint for tumor-induced immunosuppression. The role of CMTM6 in trastuzumab resistance remains unknown. Here, we uncover a role of CMTM6 in trastuzumab-resistant HER2+ breast cancer. CMTM6 expression was upregulated in trastuzumab-resistant HER2+ breast cancer cell. Patients with high CMTM6 expressing HER2+ breast cancer had worse overall and progression-free survival than those with low CMTM6 expression. In vitro, CMTM6 knockdown inhibited the proliferation and migration of HER2+ breast cancer cells, and promoted their apoptosis, while CMTM6 overexpression reversed these effects. CMTM6 and HER2 proteins were co-localized on the surface of breast cancer cells, and CMTM6 silencing reduced HER2 protein levels in breast cancer cells. Co-immunoprecipitation revealed that CMTM6 directly interacted with HER2 in HER2+ breast cancer cells, and CMTM6 overexpression inhibited HER2 ubiquitination. Collectively, these findings highlight that CMTM6 stabilizes HER2 protein, contributing to trastuzumab resistance and implicate CMTM6 as a potential prognostic marker and therapeutic target for overcoming trastuzumab resistance in HER2+ breast cancer.