Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.496
Filtrar
1.
J Neurol Sci ; 464: 123166, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39128159

RESUMO

INTRODUCTION: Gerstmann-Sträussler-Scheinker disease (GSS) is an autosomal-dominant inherited prion disease most often associated with the human prion protein gene (PRNP)-P102L mutation. Although patients manifest considerable phenotypic heterogeneity, the involvement of the nigrostriatal system has not been well-studied. METHODS: We performed dopamine transporter single-photon emission computed tomography (DAT-SPECT) using 123I-ioflupane to investigate the nigrostriatal system function in nine patients with the PRNP-P102L mutation. We also examined the pathological findings in another patient whose predominant feature was ataxia and who died 5 years after disease onset. RESULTS: Striatum uptake of 123I-ioflupane indicated by specific binding ratio (SBR) values was significantly reduced in two patients. The DAT-SPECT examination was performed 6 months after disease onset in one of these patients who manifested rapidly developing cognitive decline mimicking Creutzfeldt-Jakob disease. DAT-SPECT was also performed 9 years after disease onset in another patient who manifested the conventional features of GSS involving ataxia and dementia in the initial phase but showed akinetic mutism at the examination time. Another patient examined 2 years after disease onset who predominantly manifested ataxia showed marginally abnormal SBR values. An autopsy case showed moderate neuronal loss in the substantia nigra, and the degree of neuronal loss was similar in most other parts of the brain. CONCLUSION: Nigrostriatal system involvement may occur in patients with GSS associated with the PRNP-P102L mutation, even though parkinsonism is not the predominant feature.


Assuntos
Corpo Estriado , Doença de Gerstmann-Straussler-Scheinker , Mutação , Proteínas Priônicas , Príons , Substância Negra , Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/patologia , Doença de Gerstmann-Straussler-Scheinker/diagnóstico por imagem , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/patologia , Corpo Estriado/metabolismo , Príons/genética , Príons/metabolismo , Idoso , Substância Negra/diagnóstico por imagem , Substância Negra/patologia , Substância Negra/metabolismo , Adulto , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Nortropanos
2.
Subcell Biochem ; 104: 119-137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963486

RESUMO

Transporters of the monoamine transporter (MAT) family regulate the uptake of important neurotransmitters like dopamine, serotonin, and norepinephrine. The MAT family functions using the electrochemical gradient of ions across the membrane and comprises three transporters, dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET). MAT transporters have been observed to exist in monomeric states to higher-order oligomeric states. Structural features, allosteric modulation, and lipid environment regulate the oligomerization of MAT transporters. NET and SERT oligomerization are regulated by levels of PIP2 present in the membrane. The kink present in TM12 in the MAT family is crucial for dimer interface formation. Allosteric modulation in the dimer interface hinders dimer formation. Oligomerization also influences the transporters' function, trafficking, and regulation. This chapter will focus on recent studies on monoamine transporters and discuss the factors affecting their oligomerization and its impact on their function.


Assuntos
Multimerização Proteica , Humanos , Animais , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/genética , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Regulação Alostérica
3.
Addict Biol ; 29(6): e13420, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38898729

RESUMO

Alcohol consumption occurring in a social or solitary setting often yields different behavioural responses in human subjects. For example, social drinking is associated with positive effects while solitary drinking is linked to negative effects. However, the neurobiological mechanism by which the social environment during alcohol intake impacts on behavioural responses remains poorly understood. We investigated whether distinct social environments affect behavioural responses to ethanol and the role of the dopamine system in this phenomenon in the fruit fly Drosophila melanogaster. The wild-type Canton-S (CS) flies showed higher locomotor response when exposed to ethanol in a group setting than a solitary setting, and there was no difference in females and males. Dopamine signalling is crucial for the locomotor stimulating effect of ethanol. When subjected to ethanol exposure alone, the dopamine transport mutant flies fumin (fmn) with hyper dopamine displayed the locomotor response similar to CS. When subjected to ethanol in a group setting, however, the fmn's response to the locomotor stimulating effect was substantially augmented compared with CS, indicating synergistic interaction of dopamine signalling and social setting. To identify the dopamine signalling pathway important for the social effect, we examined the flies defective in individual dopamine receptors and found that the D1 receptor dDA1/Dop1R1 is the major receptor mediating the social effect. Taken together, this study underscores the influence of social context on the neural and behavioural responses to ethanol.


Assuntos
Dopamina , Proteínas de Drosophila , Drosophila melanogaster , Etanol , Animais , Etanol/farmacologia , Dopamina/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Masculino , Feminino , Proteínas de Drosophila/genética , Receptores de Dopamina D1/efeitos dos fármacos , Meio Social , Transdução de Sinais/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Receptores Dopaminérgicos/efeitos dos fármacos , Receptores Dopaminérgicos/metabolismo , Comportamento Animal/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Comportamento Social , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Atividade Motora/efeitos dos fármacos
4.
J Insect Physiol ; 156: 104665, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38906458

RESUMO

The dopaminergic system is involved in caste-specific behaviors in eusocial bumble bees. However, little is known about how the caste differences in dopaminergic system are formed during pupal stages in the brains of bumble bees. Thus, we investigated the levels of dopamine-related substances and expression of genes encoding enzymes involved in dopamine synthesis and metabolism, dopamine receptors, and a dopamine transporter in the brain of female Bombus ignitus. The levels of dopamine and dopamine-related substances in the brain were significantly higher in gynes than in workers from the late pupal stage to emergence, but the dynamics were similar between the castes. The relative expression levels of genes encoding enzymes involved in dopamine synthesis (BigTh and BigDdc) and dopamine metabolism (BigNat) increased significantly from pupal stage to emergence, but there were no differences in the relative expression levels of these genes between castes. A similar pattern was seen in the relative expression levels of four dopamine receptor genes (BigDop1, BigDop2, BigDop3, and BigDopEcR) and a dopamine transporter gene (BigDat). Compared with the honey bee Apis mellifera, the caste-specific dopaminergic system in the bumble bee is less differentiated, which might reflect the degree of behavioral specialization in these two species.


Assuntos
Encéfalo , Proteínas da Membrana Plasmática de Transporte de Dopamina , Dopamina , Receptores Dopaminérgicos , Animais , Abelhas/metabolismo , Abelhas/genética , Abelhas/crescimento & desenvolvimento , Dopamina/metabolismo , Feminino , Receptores Dopaminérgicos/metabolismo , Receptores Dopaminérgicos/genética , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Pupa/genética
5.
Food Funct ; 15(10): 5579-5595, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38713055

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a developmental disorder and dopaminergic dysfunction in the prefrontal cortex (PFC) may play a role. Our previous research indicated that theobromine (TB), a methylxanthine, enhances cognitive function in rodents via the PFC. This study investigates TB's effects on hyperactivity and cognitive function in stroke-prone spontaneously hypertensive rats (SHR), an ADHD animal model. Male SHRs (6-week old) received a diet containing 0.05% TB for 40 days, while control rats received normal diets. Age-matched male Wistar-Kyoto rats (WKY) served as genetic controls. During the TB administration period, we conducted open-field tests and Y-maze tasks to evaluate hyperactivity and cognitive function, then assessed dopamine concentrations and tyrosine hydroxylase (TH), dopamine receptor D1-5 (DRD1-5), dopamine transporter (DAT), vesicular monoamine transporter-2 (VMAT-2), synaptosome-associated protein-25 (SNAP-25), and brain-derived neurotrophic factor (BDNF) expressions in the PFC. Additionally, the binding affinity of TB for the adenosine receptors (ARs) was evaluated. Compared to WKY, SHR exhibited hyperactivity, inattention and working memory deficits. However, chronic TB administration significantly improved these ADHD-like behaviors in SHR. TB administration also normalized dopamine concentrations and expression levels of TH, DRD2, DRD4, SNAP-25, and BDNF in the PFC of SHR. No changes were observed in DRD1, DRD3, DRD5, DAT, and VMAT-2 expression between SHR and WKY rats, and TB intake had minimal effects. TB was found to have affinity binding to ARs. These results indicate that long-term TB supplementation mitigates hyperactivity, inattention and cognitive deficits in SHR by modulating dopaminergic nervous function and BDNF levels in the PFC, representing a potential adjunctive treatment for ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Dopamina , Memória de Curto Prazo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Teobromina , Animais , Masculino , Ratos , Teobromina/farmacologia , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Memória de Curto Prazo/efeitos dos fármacos , Dopamina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Lobo Frontal/metabolismo , Lobo Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Modelos Animais de Doenças , Proteína 25 Associada a Sinaptossoma/metabolismo
6.
J Parkinsons Dis ; 14(4): 883-888, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38788089

RESUMO

Background: Parkinson's disease (PD) is the second most common neurodegenerative disorder, with genetic factors accounting for about 15% of cases. There is a significant challenge in tracking disease progression and treatment response, crucial for developing new therapies. Traditional methods like imaging, clinical monitoring, and biomarker analysis have not conclusively tracked disease progression or treatment response in PD. Our previous research indicated that PD patients with increased dopamine transporter (DAT) and tyrosine hydroxylase (TH) in peripheral blood mononuclear cells (PBMCs) might show disease progression and respond to levodopa treatment. Objective: This study evaluates whether DAT- and TH-expressing PBMCs can monitor motor progression in a PD patient with a heterozygous TH mutation. Methods: We conducted a longitudinal follow-up of a 46-year-old female PD patient with a TH mutation, assessing her clinical features over 18 months through DaT scans and PBMC immunophenotyping. This was compared with idiopathic PD patients (130 subjects) and healthy controls (80 age/sex-matched individuals). Results: We found an increase in DAT+ immune cells concurrent with worsening motor scores (UPDRS-III). Following levodopa therapy, unlike idiopathic PD patients, TH+ immune cell levels in this patient remained high even as her motor scores improved. Conclusions: Longitudinal immunophenotyping in this PD patient suggests DAT+ and TH+ PBMCs as potential biomarkers for tracking PD progression and treatment efficacy, supporting further exploration of this approach in PD research.


Assuntos
Progressão da Doença , Proteínas da Membrana Plasmática de Transporte de Dopamina , Imunofenotipagem , Leucócitos Mononucleares , Doença de Parkinson , Tirosina 3-Mono-Oxigenase , Humanos , Doença de Parkinson/genética , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/diagnóstico , Doença de Parkinson/sangue , Feminino , Pessoa de Meia-Idade , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Leucócitos Mononucleares/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Mutação , Estudos Longitudinais , Seguimentos
7.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791173

RESUMO

Astrocytes actively participate in neurotransmitter homeostasis by bidirectional communication with neuronal cells, a concept named the tripartite synapse, yet their role in dopamine (DA) homeostasis remains understudied. In the present study, we investigated the kinetic and molecular mechanisms of DA transport in cultured striatal astrocytes of adult rats. Kinetic uptake experiments were performed using radiolabeled [3H]-DA, whereas mRNA expression of the dopamine, norepinephrine, organic cation and plasma membrane monoamine transporters (DAT, NET, OCTs and PMAT) and DA receptors D1 and D2 was determined by qPCR. Additionally, astrocyte cultures were subjected to a 24 h treatment with the DA receptor agonist apomorphine, the DA receptor antagonist haloperidol and the DA precursor L-DOPA. [3H]-DA uptake exhibited temperature, concentration and sodium dependence, with potent inhibition by desipramine, nortriptyline and decynium-22, suggesting the involvement of multiple transporters. qPCR revealed prominent mRNA expression of the NET, the PMAT and OCT1, alongside lower levels of mRNA for OCT2, OCT3 and the DAT. Notably, apomorphine significantly altered NET, PMAT and D1 mRNA expression, while haloperidol and L-DOPA had a modest impact. Our findings demonstrate that striatal astrocytes aid in DA clearance by multiple transporters, which are influenced by dopaminergic drugs. Our study enhances the understanding of regional DA uptake, paving the way for targeted therapeutic interventions in dopaminergic disorders.


Assuntos
Astrócitos , Corpo Estriado , Dopamina , Animais , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Dopamina/metabolismo , Ratos , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Haloperidol/farmacologia , Cinética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Apomorfina/farmacologia , Células Cultivadas , Masculino , Receptores de Dopamina D1/metabolismo , Transporte Biológico/efeitos dos fármacos , Levodopa/farmacologia
8.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673790

RESUMO

Cognitive behavioral therapy is based on the view that maladaptive thinking is the causal mechanism of mental disorders. While this view is supported by extensive evidence, very limited work has addressed the factors that contribute to the development of maladaptive thinking. The present study aimed to uncover interactions between childhood maltreatment and multiple genetic differences in irrational beliefs. Childhood maltreatment and irrational beliefs were assessed using multiple self-report instruments in a sample of healthy volunteers (N = 452). Eighteen single-nucleotide polymorphisms were genotyped in six candidate genes related to neurotransmitter function (COMT; SLC6A4; OXTR), neurotrophic factors (BDNF), and the hypothalamic-pituitary-adrenal axis (NR3C1; CRHR1). Gene-environment interactions (G×E) were first explored in models that employed one measure of childhood maltreatment and one measure of irrational beliefs. These effects were then followed up in models in which either the childhood maltreatment measure, the irrational belief measure, or both were substituted by parallel measures. Consistent results across models indicated that childhood maltreatment was positively associated with irrational beliefs, and these relations were significantly influenced by COMT rs165774 and OXTR rs53576. These results remain preliminary until independent replication, but they represent the best available evidence to date on G×E in a fundamental mechanism of psychopathology.


Assuntos
Interação Gene-Ambiente , Polimorfismo de Nucleotídeo Único , Receptores de Glucocorticoides , Receptores de Ocitocina , Humanos , Feminino , Masculino , Adulto , Receptores de Ocitocina/genética , Receptores de Hormônio Liberador da Corticotropina/genética , Maus-Tratos Infantis/psicologia , Pessoa de Meia-Idade , Experiências Adversas da Infância/psicologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Adulto Jovem , Criança
9.
Neuroimage Clin ; 42: 103600, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38599001

RESUMO

Several genetic pathogenic variants increase the risk of Parkinson's disease (PD) with pathogenic variants in the leucine-rich repeat kinase 2 (LRRK2) gene being among the most common. A joint pattern analysis based on multi-set canonical correlation analysis (MCCA) was utilized to extract PD and LRRK2 pathogenic variant-specific spatial patterns in relation to healthy controls (HCs) from multi-tracer Positron Emission Tomography (PET) data. Spatial patterns were extracted for individual subject cohorts, as well as for pooled subject cohorts, to explore whether complementary spatial patterns of dopaminergic denervation are different in the asymptomatic and symptomatic stages of PD. The MCCA results are also compared to the traditional univariate analysis, which serves as a reference. We identified PD-induced spatial distribution alterations common to DAT and VMAT2 in both asymptomatic LRRK2 pathogenic variant carriers and PD subjects. The inclusion of HCs in the analysis demonstrated that the dominant common PD-induced pattern is related to an overall dopaminergic terminal density denervation, followed by asymmetry and rostro-caudal gradient with deficits in the less affected side still being the best marker of disease progression. The analysis was able to capture a trend towards PD-related patterns in the LRRK2 pathogenic variant carrier cohort with increasing age in line with the known increased risk of this patient cohort to develop PD as they age. The advantage of this method thus resides in its ability to identify not only regional differences in tracer binding between groups, but also common disease-related alterations in the spatial distribution patterns of tracer binding, thus potentially capturing more complex aspects of disease induced alterations.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Tomografia por Emissão de Pósitrons , Humanos , Doença de Parkinson/genética , Doença de Parkinson/diagnóstico por imagem , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Tomografia por Emissão de Pósitrons/métodos , Pessoa de Meia-Idade , Feminino , Masculino , Idoso , Adulto , Heterozigoto , Encéfalo/diagnóstico por imagem , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética
10.
Br J Pharmacol ; 181(16): 2794-2809, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38644533

RESUMO

BACKGROUND AND PURPOSE: Methamphetamine (METH) use disorder has risen dramatically over the past decade, and there are currently no FDA-approved medications due, in part, to gaps in our understanding of the pharmacological mechanisms related to METH action in the brain. EXPERIMENTAL APPROACH: Here, we investigated whether transient receptor potential ankyrin 1 (TRPA1) mediates each of several METH abuse-related behaviours in rodents: self-administration, drug-primed reinstatement, acquisition of conditioned place preference, and hyperlocomotion. Additionally, METH-induced molecular (i.e., neurotransmitter and protein) changes in the brain were compared between wild-type and TRPA1 knock-out mice. Finally, the relationship between TRPA1 and the dopamine transporter was investigated through immunoprecipitation and dopamine reuptake assays. KEY RESULTS: TRPA1 antagonism blunted METH self-administration and drug-primed reinstatement of METH-seeking behaviour. Further, development of METH-induced conditioned place preference and hyperlocomotion were inhibited by TRPA1 antagonist treatment, effects that were not observed in TRPA1 knock-out mice. Similarly, molecular studies revealed METH-induced increases in dopamine levels and expression of dopamine system-related proteins in wild-type, but not in TRPA1 knock-out mice. Furthermore, pharmacological blockade of TRPA1 receptors reduced the interaction between TRPA1 and the dopamine transporter, thereby increasing dopamine reuptake activity by the transporter. CONCLUSION AND IMPLICATIONS: This study demonstrates that TRPA1 is involved in the abuse-related behavioural effects of METH, potentially through its modulatory role in METH-induced activation of dopaminergic neurotransmission. Taken together, these data suggest that TRPA1 may be a novel therapeutic target for treating METH use disorder.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Metanfetamina , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canal de Cátion TRPA1 , Animais , Metanfetamina/farmacologia , Metanfetamina/administração & dosagem , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/antagonistas & inibidores , Masculino , Camundongos , Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Autoadministração , Ratos Sprague-Dawley , Estimulantes do Sistema Nervoso Central/farmacologia
11.
Eur J Neurosci ; 59(10): 2465-2482, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38487941

RESUMO

The enteric nervous system (ENS) comprises a complex network of neurons whereby a subset appears to be dopaminergic although the characteristics, roles, and implications in disease are less understood. Most investigations relating to enteric dopamine (DA) neurons rely on immunoreactivity to tyrosine hydroxylase (TH)-the rate-limiting enzyme in the production of DA. However, TH immunoreactivity is likely to provide an incomplete picture. This study herein provides a comprehensive characterization of DA neurons in the gut using a reporter mouse line, expressing a fluorescent protein (tdTomato) under control of the DA transporter (DAT) promoter. Our findings confirm a unique localization of DA neurons in the gut and unveil the discrete subtypes of DA neurons in this organ, which we characterized using both immunofluorescence and single-cell transcriptomics, as well as validated using in situ hybridization. We observed distinct subtypes of DAT-tdTomato neurons expressing co-transmitters and modulators across both plexuses; some of them likely co-releasing acetylcholine, while others were positive for a slew of canonical DAergic markers (TH, VMAT2 and GIRK2). Interestingly, we uncovered a seemingly novel population of DA neurons unique to the ENS which was ChAT/DAT-tdTomato-immunoreactive and expressed Grp, Calcb, and Sst. Given the clear heterogeneity of DAergic gut neurons, further investigation is warranted to define their functional signatures and decipher their implication in disease.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Neurônios Dopaminérgicos , Sistema Nervoso Entérico , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Neurônios Dopaminérgicos/metabolismo , Camundongos , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/citologia , Camundongos Transgênicos , Tirosina 3-Mono-Oxigenase/metabolismo , Dopamina/metabolismo , Masculino , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética
12.
Behav Brain Res ; 464: 114921, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38408522

RESUMO

Dopamine (DA) is mainly involved in locomotor activity, reward processes and maternal behaviors. Rats with KO gene for dopamine transporter (DAT), coding for a truncated DAT protein, are in hyperdopaminergic conditions and thus develop stereotyped behaviors and hyperactivity. Our aim was to test the prior transgenerational modulation of wild and truncated alleles as expressed in heterozygous DAT rats: specifically, we addressed the possible sequelae due to genotype and gender of the ancestors, with regard to behavioral differences in F1, F2, F3 rats. We studied non-classical DAT heterozygotes (HETs) based on two specular lines, with putative grand-maternal vs. grand-paternal imprinting. MAT females (F1; offspring of KO male and WT female) mated with a KO male to generate MIX offspring (F2). Specularly, PAT females (F1; offspring of KO female and WT male) mated with a KO male to generate PIX offspring (F2). Similarly to PAT, we obtained MUX (F2; HET offspring of MAT sire and KO dam); we also observed the F3 (MYX: HET offspring of KO male and MUX female, thus with DAT-KO maternal grandmother like also for PIX). We studied their circadian cycle of locomotor activity and their behavior in the elevated-plus-maze (EPM). Locomotor hyper-activity occurs in F1, the opposite occurs in F2, with MYX rats appearing undistinguishable from WT ones. Open-arm preference emerged in PIX and MIX rats. Only MAT and MYX rats showed a significant vulnerability for ADHD-like inattentive symptoms (duration of rearing in the EPM; Viggiano et al., 2002). A risk-taking profile is evident in the F2 phenotype, while inattentiveness from F1 progeny tends to be transferred to F3. We hypothesize that DAT-related phenotypes result from effective inheritance through pedigree of imprints that are dependent on grandparents, suggesting a protective role for gestation within a hyperdopaminergic uterus. For major features, similar odd (F1, F3) generations appear opposed to even (F2) ones; for minor specific features, the phenotype transfer may affect the progenies with a male but not a female DAT-KO ancestor.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Reprodução , Ratos , Masculino , Feminino , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Heterozigoto , Fenótipo , Cognição
13.
Artigo em Inglês | MEDLINE | ID: mdl-38325745

RESUMO

Functional changes in dopamine transporter (DAT) are related to various psychiatric conditions, including bipolar disorder (BD) symptoms. In experimental research, the inhibition of DAT induces behavioral alterations that recapitulate symptoms found in BD patients, including mania and depressive mood. Thus, developing novel animal models that mimic BD-related conditions by pharmacologically modulating the dopaminergic signaling is relevant. The zebrafish (Danio rerio) has been considered a suitable vertebrate system for modeling BD-like responses, due to the well-characterized behavioral responses and evolutionarily conservation of the dopaminergic system of this species. Here, we investigate whether GBR 12909, a selective inhibitor of DAT, causes neurobehavioral alterations in zebrafish similar to those observed in BD patients. Behaviors were recorded after a single intraperitoneal (i.p.) administration of GBR 12909 at different doses (3.75, 7.5, 15 and 30 mg/kg). To observe temporal effects on behavior, swim path parameters were measured immediately after the administration period during 30 min. Locomotion, anxiety-like behavior, social preference, aggression, despair-like behavior, and oxidative stress-related biomarkers in the brain were measured 30 min post administration. GBR 12909 induced prominent effects on locomotor activity and vertical exploration during the 30-min period. Hyperactivity was observed in GBR 30 group after 25 min, while all doses markedly reduced vertical drifts. GBR 12909 elicited hyperlocomotion, anxiety-like behavior, decreased social preference, aggression, and induced depressive-like behavior in a behavioral despair task. Depending on the dose, GBR 12909 also decreased SOD activity and TBARS levels, as well as increased GR activity and NPSH content. Collectively, our novel findings show that a single GBR 12909 administration evokes neurobehavioral changes that recapitulate manic- and depressive-like states observed in rodents, fostering the use of zebrafish models to explore BD-like responses in translational neuroscience research.


Assuntos
Mania , Peixe-Zebra , Animais , Humanos , Comportamento Animal , Encéfalo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Estresse Oxidativo , Fenótipo
14.
Biol Pharm Bull ; 47(2): 394-398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38325828

RESUMO

Midbrain dopaminergic neurons respond to rewards and have a crucial role in positive motivation and pleasure. Electrical stimulation of dopaminergic neurons and/or their axonal fibers and arborization has been often used to motivate animals to perform cognitive tasks. Still, the electrical stimulation is incompatible with electrophysiological recordings. In this light, optical stimulation following artificial expression of channelrhodopsin-2 (ChR2) in the cell membrane has been also used, but the expression level of ChR2 varies among researchers. Thus, we attempted to stably express ChR2 fused with a red fluorescence protein, mCherry, in dopaminergic neurons. Since dopamine transporter (DAT) gene is known as a marker for dopaminergic neurons, we inserted ChR2-mCherry into the downstream of the DAT gene locus of the rat genome by clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) genome editing and created DAT-ChR2-mCherry knock-in rats. Immunohistochemistry showed that ChR2-mCherry was expressed in dopaminergic neurons in homozygote knock-in rats, whereas whole-cell recordings revealed that ChR2-mCherry-positive neurons did not fire action potentials upon blue light stimulation, indicating that ChR2 was not functional for optogenetics. Nevertheless, fluorescent labeling of dopaminergic neurons mediated by mCherry could help characterize them physiologically and histologically.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Ratos , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteína Vermelha Fluorescente , Neurônios Dopaminérgicos/metabolismo
15.
eNeuro ; 11(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38164591

RESUMO

Dopamine transporter (DAT) controls dopamine signaling in the brain through the reuptake of synaptically released dopamine. DAT is a target of abused psychostimulants such as amphetamine (Amph). Acute Amph administration induces transient DAT endocytosis, which, among other Amph effects on dopaminergic neurons, elevates extracellular dopamine. However, the effects of repeated Amph abuse, leading to behavioral sensitization and drug addiction, on DAT are unknown. Hence, we developed a 14 d Amph-sensitization protocol in knock-in mice expressing HA-epitope-tagged DAT (HA-DAT) and investigated the effects of Amph challenge on sensitized HA-DAT animals. The Amph challenge resulted in the highest locomotor activity on Day 14 in both sexes, which was sustained for 1 h in male but not female mice. Strikingly, significant (by 30-60%) loss of the HA-DAT protein in the striatum was caused by the Amph challenge of sensitized males but not females. Amph also reduced V max of dopamine transport in the striatal synaptosomes of males without changing K m values. Consistently, immunofluorescence microscopy revealed a significant increase of HA-DAT colocalization with the endosomal protein VPS35 only in Amph-challenged males. Amph-induced loss of striatal HA-DAT in sensitized mice was blocked by chloroquine, vacuolin-1, and inhibitor of Rho-associated kinases ROCK1/2, indicative of the involvement of endocytic trafficking in the DAT protein loss. Interestingly, an apparent degradation of HA-DAT protein was observed in the nucleus accumbens and not in the dorsal striatum. We propose that Amph challenge in sensitized mice triggers Rho-mediated endocytosis and post-endocytic trafficking of DAT in a brain-region-specific and sex-dependent manner.


Assuntos
Anfetamina , Estimulantes do Sistema Nervoso Central , Feminino , Camundongos , Masculino , Animais , Anfetamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Corpo Estriado/metabolismo
16.
Sci Total Environ ; 917: 170408, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38281643

RESUMO

Exposure to perfluorooctanoic acid (PFOA) during early embryonic development is associated with the increased risk of developmental neurotoxicity and neurobehavioral disorders in children. In our previous study, we demonstrated that exposure to PFOA affected locomotor activity and disrupted dopamine-related gene expression in zebrafish larvae. Consequently, we continue to study the dopaminergic system with a focus on dopamine levels and dopamine's effect on behaviors in relation to PFOA exposure. In the present study, we found a decrease in dopamine levels in larval zebrafish. We studied the dopamine transporter (DAT) protein, which is responsible for regulating dopamine levels through the reuptake of dopamine in neuronal cells. We demonstrated that exposure to PFOA disrupted the glycosylation process of DAT, inhibited its uptake function, and induced endoplasmic reticulum (ER) stress in dopaminergic cells. Besides, we conducted a light-dark preference test on larval zebrafish and observed anxiety/depressive-like behavioral changes following exposure to PFOA. Dopamine is one of the most prominent neurotransmitters that significantly influences human behavior, with low dopamine levels being associated with impairments such as anxiety and depression. The anxiety-like response in zebrafish larvae exposure to PFOA implies the link with the reduced dopamine levels. Taken together, we can deduce that glycosylation changes in DAT lead to dysfunction of DAT to regulate dopamine levels, which in turn alters behavior in larval zebrafish. Therefore, alternation in dopamine levels may play a pivotal role in the development of anxiety/depressive-like behavioral changes induced by PFOA.


Assuntos
Caprilatos , Fluorocarbonos , Comportamento Problema , Peixe-Zebra , Animais , Gravidez , Feminino , Criança , Humanos , Dopamina , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/farmacologia , Larva , Glicosilação
17.
Basic Clin Pharmacol Toxicol ; 134(2): 206-218, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37987120

RESUMO

Aberrant dopamine (DA) signalling has been implicated in various neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), schizophrenia, bipolar disorder (BPD) and addiction. The availability of extracellular DA is sculpted by the exocytotic release of vesicular DA and subsequent transporter-mediated clearance, rendering the presynaptic DA transporter (DAT) a crucial regulator of DA neurotransmission. D2-type DA autoreceptors (D2ARs) regulate multiple aspects of DA homeostasis, including (i) DA synthesis, (ii) vesicular release, (iii) DA neuron firing and (iv) the surface expression of DAT and DAT-mediated DA clearance. The DAT Val559 variant, identified in boys with ADHD or ASD, as well as in a girl with BPD, supports anomalous DA efflux (ADE), which we have shown drives tonic activation of D2ARs. Through ex vivo and in vivo studies of the DAT Val559 variant using transgenic knock-in mice, we have uncovered a circuit and sex-specific capacity of D2ARs to regulate DAT, which consequently disrupts DA signalling and behaviour differently in males and females. Our studies reveal the ability of the construct-valid DAT Val559 model to elucidate endogenous mechanisms that support DA signalling, findings that may be of translational and/or therapeutic importance.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Humanos , Masculino , Camundongos , Animais , Feminino , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Transtorno do Deficit de Atenção com Hiperatividade/genética , Camundongos Transgênicos , Transdução de Sinais
18.
Mol Neurobiol ; 61(1): 42-54, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37578679

RESUMO

Attention-deficit hyperactivity disorder is a highly inherited neurodevelopmental disorder. Previous genetic research has linked ADHD to certain genes in the dopaminergic synaptic pathway. Nonetheless, research on this relationship has produced varying results across various populations. China is a multi-ethnic country with its own unique genetic characteristics. Therefore, such a population can provide useful information about the relationship between gene polymorphisms in dopaminergic synaptic pathways and ADHD. This study looked at the genetic profiles of 284 children in China's Xinjiang. In total, 142 ADHD children and 142 control subjects were enrolled. Following the extraction of DNA from oral mucosal cells, 13 SNPs for three candidate genes (SLC6A3, DRD2, and GRIN2B) in the dopaminergic synaptic pathway of ADHD were screened. Based on the results of single nucleotide polymorphism (SNP) analyses, we found that the DRD2 gene variants rs6277 and rs6275, and the SLC6A3 gene variant rs2652511, were significantly associated with ADHD in boys and girls, respectively, after adjusting for false discovery rate (FDR) in terms of allele frequencies. Furthermore, our generalized multifactorial downscaling approach identified a significant association between rs6275 and rs1012586. These findings suggest that DRD2 and SLC6A3 genes have a crucial role in ADHD susceptibility. Additionally, we observed that the interaction between GRIN2B and DRD2 genes may contribute to the susceptibility of Chinese children with ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Proteínas da Membrana Plasmática de Transporte de Dopamina , Receptores de Dopamina D2 , Receptores de N-Metil-D-Aspartato , Criança , Feminino , Humanos , Masculino , Transtorno do Deficit de Atenção com Hiperatividade/genética , Estudos de Casos e Controles , Frequência do Gene , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Receptores de Dopamina D2/genética , Receptores de N-Metil-D-Aspartato/genética
19.
Biomolecules ; 13(11)2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-38002340

RESUMO

L-DOPA is the mainstay of treatment for Parkinson's disease (PD). However, over time this drug can produce dyskinesia. A useful acute PD model for screening novel compounds for anti-parkinsonian and L-DOPA-induced dyskinesia (LID) are dopamine-depleted dopamine-transporter KO (DDD) mice. Treatment with α-methyl-para-tyrosine rapidly depletes their brain stores of DA and renders them akinetic. During sensitization in the open field (OF), their locomotion declines as vertical activities increase and upon encountering a wall they stand on one leg or tail and engage in climbing behavior termed "three-paw dyskinesia". We have hypothesized that L-DOPA induces a stereotypic activation of locomotion in DDD mice, where they are unable to alter the course of their locomotion, and upon encountering walls engage in "three-paw dyskinesia" as reflected in vertical counts or beam-breaks. The purpose of our studies was to identify a valid index of LID in DDD mice that met three criteria: (a) sensitization with repeated L-DOPA administration, (b) insensitivity to a change in the test context, and (c) stimulatory or inhibitory responses to dopamine D1 receptor agonists (5 mg/kg SKF81297; 5 and 10 mg/kg MLM55-38, a novel compound) and amantadine (45 mg/kg), respectively. Responses were compared between the OF and a circular maze (CM) that did not hinder locomotion. We found vertical counts and climbing were specific for testing in the OF, while oral stereotypies were sensitized to L-DOPA in both the OF and CM and responded to D1R agonists and amantadine. Hence, in DDD mice oral stereotypies should be used as an index of LID in screening compounds for PD.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Camundongos , Animais , Levodopa/farmacologia , Levodopa/uso terapêutico , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/uso terapêutico , Dopamina , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Discinesia Induzida por Medicamentos/tratamento farmacológico , Camundongos Knockout , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Amantadina/farmacologia
20.
J Psychopharmacol ; 37(12): 1238-1248, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37962090

RESUMO

BACKGROUND: Dopamine is implicated in the effort-based control of motivational processes; however, whether tonic dopamine regulates the effort-cost impact on motivation, is still debated. AIMS: The rats lacking the dopamine transporter (DAT), which have dramatically increased levels of the synaptic dopamine, were used in the present study to elucidate the role of the synaptic dopamine in motivational processes. METHODS: To study the reward-related processes, the progressive ratio 3 (PR3) operant schedule of food reinforcement (the ratio increases by 3 after each earned reinforcer) was performed in adult male rats (DAT knockouts (DAT-KO), heterozygotes (DAT-HT) and wild-types (DAT-WT)). RESULTS: During the PR3 session, the response rate of DAT-KO rats was gradually increased following the augmented required number of responses. In contrast, the local response rate of DAT-WT and DAT-HT decreased. d-Amphetamine sulfate salt (3 mg/kg, i.p.) altered the local response rate dynamics in DAT-WT, which became similar to that of DAT-KO. Interestingly, the reduction in response rate at low effort demands was associated with decreased rate of entries into the magazine tray in DAT-WT rats treated with amphetamine (3 mg/kg) but not in DAT-KO rats. CONCLUSIONS: Our results suggest that the elevated tonic synaptic dopamine can strongly affect motivation/effort-cost relation in rodents.


Assuntos
Anfetamina , Dopamina , Ratos , Masculino , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Motivação , Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...