Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97.407
Filtrar
1.
Nat Commun ; 15(1): 6673, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107302

RESUMO

Allosteric regulation of inosine 5'-monophosphate dehydrogenase (IMPDH), an essential enzyme of purine metabolism, contributes to the homeostasis of adenine and guanine nucleotides. However, the precise molecular mechanism of IMPDH regulation in bacteria remains unclear. Using biochemical and cryo-EM approaches, we reveal the intricate molecular mechanism of the IMPDH allosteric regulation in mycobacteria. The enzyme is inhibited by both GTP and (p)ppGpp, which bind to the regulatory CBS domains and, via interactions with basic residues in hinge regions, lock the catalytic core domains in a compressed conformation. This results in occlusion of inosine monophosphate (IMP) substrate binding to the active site and, ultimately, inhibition of the enzyme. The GTP and (p)ppGpp allosteric effectors bind to their dedicated sites but stabilize the compressed octamer by a common mechanism. Inhibition is relieved by the competitive displacement of GTP or (p)ppGpp by ATP allowing IMP-induced enzyme expansion. The structural knowledge and mechanistic understanding presented here open up new possibilities for the development of allosteric inhibitors with antibacterial potential.


Assuntos
Guanosina Trifosfato , IMP Desidrogenase , IMP Desidrogenase/metabolismo , IMP Desidrogenase/química , IMP Desidrogenase/antagonistas & inibidores , Regulação Alostérica , Guanosina Trifosfato/metabolismo , Microscopia Crioeletrônica , Domínio Catalítico , Modelos Moleculares , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Guanosina Pentafosfato/metabolismo , Inosina Monofosfato/metabolismo , Inosina Monofosfato/química , Ligação Proteica , Trifosfato de Adenosina/metabolismo , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/metabolismo
2.
Commun Biol ; 7(1): 949, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107377

RESUMO

The limitations of TB treatment are the long duration and immune-dampening effects of anti-tuberculosis therapy. The Cell wall plays a crucial role in survival and virulence; hence, enzymes involved in its biosynthesis are good therapeutic targets. Here, we identify Mycobacterium tuberculosis (Mtb) GlmM, (GlmMMtb) engaged in the UDP-GlcNAc synthesis pathway as an essential enzyme. We generated a conditional knockdown strain, Rv-glmMkD using the CRISPR interference-mediated gene silencing approach. Depletion of GlmMMtb affects the morphology and thickness of the cell wall. The Rv-glmMkD strain attenuated Mtb survival in vitro, in the host macrophages (ex vivo), and in a murine mice infection model (in vivo). Results suggest that the depletion of GlmMMtb induces M1 macrophage polarization, prompting a pro-inflammatory cytokine response, apparent from the upregulation of activation markers, including IFNÉ£ and IL-17 that resists the growth of Mtb. These observations provide a rationale for exploring GlmMMtb as a potential therapeutic target.


Assuntos
Proteínas de Bactérias , Macrófagos , Mycobacterium tuberculosis , Tuberculose , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Animais , Camundongos , Tuberculose/imunologia , Tuberculose/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Feminino , Interações Hospedeiro-Patógeno/imunologia , Modelos Animais de Doenças , Humanos
3.
Elife ; 132024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136681

RESUMO

Xanthomonas citri subsp. citri (Xcc), the causal agent of citrus canker, elicits canker symptoms in citrus plants because of the transcriptional activator-like (TAL) effector PthA4, which activates the expression of the citrus susceptibility gene CsLOB1. This study reports the regulation of the putative carbohydrate-binding protein gene Cs9g12620 by PthA4-mediated induction of CsLOB1 during Xcc infection. We found that the transcription of Cs9g12620 was induced by infection with Xcc in a PthA4-dependent manner. Even though it specifically bound to a putative TAL effector-binding element in the Cs9g12620 promoter, PthA4 exerted a suppressive effect on the promoter activity. In contrast, CsLOB1 bound to the Cs9g12620 promoter to activate its expression. The silencing of CsLOB1 significantly reduced the level of expression of Cs9g12620, which demonstrated that Cs9g12620 was directly regulated by CsLOB1. Intriguingly, PhtA4 interacted with CsLOB1 and exerted feedback control that suppressed the induction of expression of Cs9g12620 by CsLOB1. Transient overexpression and gene silencing revealed that Cs9g12620 was required for the optimal development of canker symptoms. These results support the hypothesis that the expression of Cs9g12620 is dynamically directed by PthA4 for canker formation through the PthA4-mediated induction of CsLOB1.


Assuntos
Proteínas de Bactérias , Citrus , Doenças das Plantas , Xanthomonas , Xanthomonas/genética , Xanthomonas/metabolismo , Doenças das Plantas/microbiologia , Citrus/microbiologia , Citrus/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas
4.
Int J Biol Sci ; 20(10): 4007-4028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113698

RESUMO

Cholesterol and Helicobacter pylori (H. pylori) are both risk factors for gastric cancer (GC). However, the relationship between cholesterol and H. pylori and their function in the progression of GC are controversial. In this study, we addressed that H. pylori could induce mitochondrial cholesterol accumulation and promote GC proliferation and protect GC cells against apoptosis via cholesterol. Metabolomic and transcriptomic sequencing were used to identify CYP11A1 responsible for H. pylori-induced cholesterol accumulation. In vitro and in vivo function experiments revealed that cholesterol could promote the proliferation of GC and inhibit apoptosis. Mechanically, the interaction of Cytotoxin-associated gene A (CagA) and CYP11A1 redistributed mitochondrial CYP11A1 outside the mitochondria and subsequently caused mitochondrial cholesterol accumulation. The CYP11A1-knockdown upregulated cholesterol accumulation and reproduced the effect of cholesterol on GC in a cholesterol-dependent manner. Moreover, CYP11A1-knockdown or H. pylori infection inhibited mitophagy and maintained the mitochondria homeostasis. H. pylori could contribute to the progression of GC through the CagA/CYP11A1-mitoCHO axis. This study demonstrates that H. pylori can contribute to the progression of GC via cholesterol, and eradicating H. pylori is still prognostically beneficial to GC patients.


Assuntos
Colesterol , Helicobacter pylori , Mitocôndrias , Neoplasias Gástricas , Helicobacter pylori/metabolismo , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Colesterol/metabolismo , Humanos , Mitocôndrias/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Animais , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Camundongos , Apoptose , Masculino , Proliferação de Células
5.
Front Cell Infect Microbiol ; 14: 1427829, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113823

RESUMO

Introduction: The two-component signal transduction systems play an essential role in the adaptation of bacteria to changing environmental conditions. One of them is the MnoSR system involved in the regulation of methylotrophic metabolism in M. smegmatis. Methods: Mycobacterium smegmatis mutant strains ΔmnoS, ΔmnoR and ΔmnoS/R lacking functional mnoS, mnoR and both genes were generated using a homologous recombination approach. MnoR recombinant protein was purified by affinity column chromatography. The present study employs molecular biology techniques: cloning strategies, global RNA sequencing, qRT-PCR, EMSA, Microscale thermophoresis, and bioinformatics analysis. Results and discussion: The ∆mnoS, ∆mnoR, and ∆mnoS/R mutant strains were generated and cultured in the presence of defined carbon sources. Growth curve analysis confirmed that inactivation of the MnoSR impairs the ability of M. smegmatis cells to use alcohols such as 1,3-propanediol and ethanol but improves the bacterial growth on ethylene glycol, xylitol, and glycerol. The total RNA sequencing method was employed to understand the importance of MnoSR in the global responses of mycobacteria to limited carbon access and in carbon-rich conditions. The loss of MnoSR significantly affected carbon utilization in the case of mycobacteria cultured on glucose or 1,3-propanediol as sole carbon sources as it influenced the expression of multiple metabolic pathways. The numerous transcriptional changes could not be linked to the presence of evident MnoR DNA-binding sites within the promotor regions for the genes outside of the mno operon. This was confirmed by EMSA and microscale thermophoresis with mutated MnoR binding consensus region. Our comprehensive analysis highlights the system's vital role in metabolic adaptability, providing insights into its potential impact on the environmental survival of mycobacteria.


Assuntos
Proteínas de Bactérias , Carbono , Regulação Bacteriana da Expressão Gênica , Glucose , Mycobacterium smegmatis , Propilenoglicóis , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Glucose/metabolismo , Propilenoglicóis/metabolismo , Propilenoglicóis/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Carbono/metabolismo , Regiões Promotoras Genéticas
6.
Microbiology (Reading) ; 170(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39115544

RESUMO

Synergistic interactions between chemical inhibitors, whilst informative, can be difficult to interpret, as chemical inhibitors can often have multiple targets, many of which can be unknown. Here, using multiplexed transcriptional repression, we have validated that the simultaneous repression of glutamate racemase and alanine racemase has a synergistic interaction in Mycobacterium tuberculosis. This confirms prior observations from chemical interaction studies and highlights the potential of targeting multiple enzymes involved in mycobacterial cell wall synthesis.


Assuntos
Alanina Racemase , Isomerases de Aminoácido , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Isomerases de Aminoácido/genética , Isomerases de Aminoácido/metabolismo , Alanina Racemase/genética , Alanina Racemase/metabolismo , Regulação Bacteriana da Expressão Gênica , Transcrição Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/farmacologia , Parede Celular/metabolismo , Parede Celular/genética
7.
Nat Commun ; 15(1): 6946, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138169

RESUMO

Hypervirulent Klebsiella pneumoniae (HvKP) is an emerging bacterial pathogen causing invasive infection in immune-competent humans. The hypervirulence is strongly linked to the overproduction of hypermucoviscous capsule, but the underlying regulatory mechanisms of hypermucoviscosity (HMV) have been elusive, especially at the post-transcriptional level mediated by small noncoding RNAs (sRNAs). Using a recently developed RNA interactome profiling approach iRIL-seq, we interrogate the Hfq-associated sRNA regulatory network and establish an intracellular RNA-RNA interactome in HvKP. Our data reveal numerous interactions between sRNAs and HMV-related mRNAs, and identify a plethora of sRNAs that repress or promote HMV. One of the strongest HMV repressors is ArcZ, which is activated by the catabolite regulator CRP and targets many HMV-related genes including mlaA and fbp. We discover that MlaA and its function in phospholipid transport is crucial for capsule retention and HMV, inactivation of which abolishes Klebsiella virulence in mice. ArcZ overexpression drastically reduces bacterial burden in mice and reduces HMV in multiple hypervirulent and carbapenem-resistant clinical isolates, indicating ArcZ is a potent RNA inhibitor of bacterial pneumonia with therapeutic potential. Our work unravels a novel CRP-ArcZ-MlaA regulatory circuit of HMV and provides mechanistic insights into the posttranscriptional virulence control in a superbug of global concern.


Assuntos
Cápsulas Bacterianas , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Infecções por Klebsiella , Klebsiella pneumoniae , RNA Bacteriano , Pequeno RNA não Traduzido , Klebsiella pneumoniae/patogenicidade , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Animais , Virulência/genética , Camundongos , Infecções por Klebsiella/microbiologia , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Humanos , Feminino , Fator Proteico 1 do Hospedeiro/metabolismo , Fator Proteico 1 do Hospedeiro/genética
8.
Commun Biol ; 7(1): 984, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138305

RESUMO

Heme trafficking is essential for cellular function, yet mechanisms of transport and/or heme interaction are not well defined. The System I and System II bacterial cytochrome c biogenesis pathways are developing into model systems for heme trafficking due to their functions in heme transport, heme stereospecific positioning, and mediation of heme attachment to apocytochrome c. Here we focus on the System II pathway, CcsBA, that is proposed to be a bi-functional heme transporter and holocytochrome c synthase. An extensive structure-function analysis of recombinantly expressed Helicobacter pylori and Campylobacter jejuni CcsBAs revealed key residues required for heme interaction and holocytochrome c synthase activity. Homologous residues were previously identified to be required for heme interaction in Helicobacter hepaticus CcsBA. This study provides direct, biochemical evidence that mechanisms of heme interaction are conserved, leading to the proposal that the CcsBA WWD heme-handling domain represents a novel target for therapeutics.


Assuntos
Proteínas de Bactérias , Campylobacter jejuni , Helicobacter pylori , Heme , Heme/metabolismo , Helicobacter pylori/enzimologia , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Campylobacter jejuni/enzimologia , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Relação Estrutura-Atividade , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ligação Proteica , Modelos Moleculares , Liases
9.
Sci Rep ; 14(1): 18795, 2024 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138320

RESUMO

Siderophores are specialized molecules produced by bacteria and fungi to scavenge iron, a crucial nutrient for growth and metabolism. Catecholate-type siderophores are mainly produced by bacteria, while hydroxamates are mostly from fungi. This study investigates the capacity of nine hydroxamate-type siderophores from fungi and Streptomyces to facilitate iron acquisition by the human pathogen Pseudomonas aeruginosa. Growth assays under iron limitation and 55Fe incorporation tests showed that all nine siderophores promoted bacterial growth and iron transport. The study also aimed to identify the TonB-dependent transporters (TBDTs) involved in iron import by these siderophores. Using mutant strains lacking specific TBDT genes, it was found that iron is imported into P. aeruginosa cells by FpvB for coprogen, triacetylfusarinine, fusigen, ferrirhodin, and ferrirubin. Iron complexed by desferioxamine G is transported by FpvB and FoxA, ferricrocin-Fe and ferrichrycin-Fe by FpvB and FiuA, and rhodotoluric acid-Fe by FpvB, FiuA, and another unidentified TBDT. These findings highlight the effectiveness of hydroxamate-type siderophores in iron transport into P. aeruginosa and provide insights into the complex molecular mechanisms involved, which are important for understanding microbial interactions and ecological balance.


Assuntos
Proteínas de Bactérias , Ácidos Hidroxâmicos , Ferro , Pseudomonas aeruginosa , Sideróforos , Sideróforos/metabolismo , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/genética , Ferro/metabolismo , Ácidos Hidroxâmicos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Ferricromo/metabolismo , Ferricromo/análogos & derivados , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas da Membrana Bacteriana Externa , Proteínas de Membrana , Receptores de Superfície Celular
10.
Sci Rep ; 14(1): 18781, 2024 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138326

RESUMO

Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight in rice. Polyhydroxyalkanoates (PHAs) consitute a diverse group of biopolyesters synthesized by bacteria under nutrient-limited conditions. The phaC gene is important for PHA polymerization. We investigated the effects of phaC gene mutagensis in Xoo strain PXO99A. The phaC gene knock-out mutant exhibited reduced swarming ability relative to that of the wild-type. Under conditions where glucose was the sole sugar source, extracellular polysaccharide (EPS) production by ΔphaC declined by 44.8%. ΔphaC showed weak hypersensitive response (HR) induction in the leaves of non-host Nicotiana tabacum, concomitant with downregulation of hpa1 gene expression. When inoculated in rice leaves by the leaf-clipping method, ΔphaC displayed reduced virulence in terms of lesion length compared with the wild-type strain. The complemented strain showed no significant difference from the wild-type strain, suggesting that the deletion of phaC in Xoo induces significant alterations in various physiological and biological processes. These include bacterial swarming ability, EPS production, transcription of hrp genes, and glucose metabolism. These changes are intricately linked to the energy utilization and virulence of Xoo during plant infection. These findings revealed involvement of phaC in Xoo is in the maintaining carbon metabolism by functioning in the PHA metabolic pathway.


Assuntos
Proteínas de Bactérias , Carbono , Oryza , Doenças das Plantas , Polissacarídeos Bacterianos , Xanthomonas , Xanthomonas/patogenicidade , Xanthomonas/genética , Xanthomonas/metabolismo , Oryza/microbiologia , Carbono/metabolismo , Doenças das Plantas/microbiologia , Virulência/genética , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Regulação Bacteriana da Expressão Gênica , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/metabolismo , Nicotiana/microbiologia , Folhas de Planta/microbiologia
11.
Open Biol ; 14(8): 240060, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39139050

RESUMO

Successful colonization by the opportunistic pathogen Staphylococcus aureus depends on its ability to interact with other microorganisms. Staphylococcus aureus strains harbour a T7b subtype of type VII secretion system (T7SSb), a protein secretion system found in a wide variety of Bacillota, which functions in bacterial antagonism and virulence. Assessment of T7SSb activity in S. aureus has been hampered by low secretion activity under laboratory conditions and the lack of a sensitive assay to measure secretion. Here, we have utilized NanoLuc binary technology to develop a simple assay to monitor protein secretion via detection of bioluminescence. Fusion of the 11 amino acid NanoLuc fragment to the conserved substrate EsxA permits its extracellular detection upon supplementation with the large NanoLuc fragment and luciferase substrate. Following miniaturization of the assay to 384-well format, we use high-throughput analysis to demonstrate that T7SSb-dependent protein secretion differs across strains and growth temperature. We further show that the same assay can be used to monitor secretion of the surface-associated toxin substrate TspA. Using this approach, we identify three conserved accessory proteins required to mediate TspA secretion. Co-purification experiments confirm that all three proteins form a complex with TspA.


Assuntos
Proteínas de Bactérias , Staphylococcus aureus , Sistemas de Secreção Tipo VII , Staphylococcus aureus/metabolismo , Staphylococcus aureus/genética , Sistemas de Secreção Tipo VII/metabolismo , Sistemas de Secreção Tipo VII/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ensaios de Triagem em Larga Escala/métodos , Medições Luminescentes/métodos
12.
Arch Microbiol ; 206(9): 377, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141120

RESUMO

The high content and quality of protein in Andean legumes make them valuable for producing protein hydrolysates using proteases from bacteria isolated from extreme environments. This study aimed to carry out a single-step purification of a haloprotease from Micrococcus sp. PC7 isolated from Peru salterns. In addition, characterize and apply the enzyme for the production of bioactive protein hydrolysates from underutilized Andean legumes. The PC7 protease was fully purified using only tangential flow filtration (TFF) and exhibited maximum activity at pH 7.5 and 40 °C. It was characterized as a serine protease with an estimated molecular weight of 130 kDa. PC7 activity was enhanced by Cu2+ (1.7-fold) and remained active in the presence of most surfactants and acetonitrile. Furthermore, it stayed completely active up to 6% NaCl and kept Ì´ 60% of its activity up to 8%. The protease maintained over 50% of its activity at 25 °C and 40 °C and over 70% at pH from 6 to 10 for up to 24 h. The determined Km and Vmax were 0.1098 mg mL-1 and 273.7 U mL-1, respectively. PC7 protease hydrolyzed 43%, 22% and 11% of the Lupinus mutabilis, Phaseolus lunatus and Erythrina edulis protein concentrates, respectively. Likewise, the hydrolysates from Lupinus mutabilis and Erythrina edulis presented the maximum antioxidant and antihypertensive activities, respectively. Our results demonstrated the feasibility of a simple purification step for the PC7 protease and its potential to be applied in industrial and biotechnological processes. Bioactive protein hydrolysates produced from Andean legumes may lead to the development of nutraceuticals and functional foods contributing to address some United Nations Sustainable Development Goals (SDGs).


Assuntos
Fabaceae , Micrococcus , Hidrolisados de Proteína , Micrococcus/metabolismo , Micrococcus/enzimologia , Concentração de Íons de Hidrogênio , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Peso Molecular , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/isolamento & purificação , Peru , Temperatura , Serina Proteases/metabolismo , Serina Proteases/isolamento & purificação , Serina Proteases/química , Estabilidade Enzimática , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Hidrólise , Cinética
13.
Arch Microbiol ; 206(9): 380, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143366

RESUMO

Haloalkane dehalogenase, LinB, is a member of the α/ß hydrolase family of enzymes. It has a wide range of halogenated substrates, but, has been mostly studied in context of degradation of hexachlorocyclohexane (HCH) isomers, especially ß-HCH (5-12% of total HCH isomers), which is the most recalcitrant and persistent among all the HCH isomers. LinB was identified to directly act on ß-HCH in a one or two step transformation which decreases its toxicity manifold. Thereafter, many studies focused on LinB including its structure determination using X-ray crystallographic studies, structure comparison with other haloalkane dehalogenases, substrate specificity and kinetic studies, protein engineering and site-directed mutagenesis studies in search of better catalytic activity of the enzyme. LinB was mainly identified and characterized in bacteria belonging to sphingomonads. Detailed sequence comparison of LinB from different sphingomonads further revealed the residues critical for its activity and ability to catalyze either one or two step transformation of ß-HCH. Association of LinB with IS6100 elements is also being discussed in detail in sphingomonads. In this review, we summarized vigorous efforts done by different research groups on LinB for developing better bioremediation strategies against HCH contamination. Also, kinetic studies, protein engineering and site directed mutagenesis studies discussed here forms the basis of further exploration of LinB's role as an efficient enzyme in bioremediation projects.


Assuntos
Hexaclorocicloexano , Hidrolases , Hidrolases/metabolismo , Hidrolases/genética , Hidrolases/química , Hexaclorocicloexano/metabolismo , Especificidade por Substrato , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Cinética , Biodegradação Ambiental , Cristalografia por Raios X , Mutagênese Sítio-Dirigida , Sphingomonas/enzimologia , Sphingomonas/genética , Sphingomonas/metabolismo
14.
Nat Commun ; 15(1): 7062, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152136

RESUMO

Post-translational addition of O-linked N-acetylglucosamine (O-GlcNAc) to proteins is commonly associated with a variety of stress responses and cellular processes in eukaryotes, but its potential roles in bacteria are unclear. Here, we show that protein HmwC acts as an O-GlcNAc transferase (OGT) responsible for O-GlcNAcylation of multiple proteins in Yersinia pestis, a flea-borne pathogen responsible for plague. We identify 64 O-GlcNAcylated proteins (comprising 65 sites) with differential abundance under conditions mimicking the mammalian host (Mh) and flea vector (Fv) environments. Deletion of hmwC, encoding a putative OGT, structurally distinct from any existing member of the GT41 family, results in reduced O-GlcNAcylation, reduced growth, and alterations in virulence properties and survival under stress. Purified HmwC can modify target proteins in vitro using UDP-GlcNAc as sugar donor. One of the target proteins, OsdY, promotes Y. pestis survival under oxidative stress conditions. Thus, our results support that regulation of antioxidative responses through O-GlcNAcylation may be a conserved process shared by prokaryotes and eukaryotes.


Assuntos
Proteínas de Bactérias , N-Acetilglucosaminiltransferases , Yersinia pestis , Yersinia pestis/metabolismo , Yersinia pestis/genética , Yersinia pestis/patogenicidade , Yersinia pestis/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética , Animais , Virulência , Acetilglucosamina/metabolismo , Camundongos , Antioxidantes/metabolismo , Processamento de Proteína Pós-Traducional , Peste/microbiologia , Peste/metabolismo , Estresse Oxidativo , Glicosilação
15.
Sci Rep ; 14(1): 19026, 2024 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152186

RESUMO

Condensins play important roles in maintaining bacterial chromatin integrity. In mycobacteria, three types of condensins have been characterized: a homolog of SMC and two MksB-like proteins, the recently identified MksB and EptC. Previous studies suggest that EptC contributes to defending against foreign DNA, while SMC and MksB may play roles in chromosome organization. Here, we report for the first time that the condensins, SMC and MksB, are involved in various DNA transactions during the cell cycle of Mycobacterium smegmatis (currently named Mycolicibacterium smegmatis). SMC appears to be required during the last steps of the cell cycle, where it contributes to sister chromosome separation. Intriguingly, in contrast to other bacteria, mycobacterial MksB follows replication forks during chromosome replication and hence may be involved in organizing newly replicated DNA.


Assuntos
Adenosina Trifosfatases , Proteínas de Bactérias , Replicação do DNA , Proteínas de Ligação a DNA , Complexos Multiproteicos , Mycobacterium smegmatis , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Adenosina Trifosfatases/metabolismo , Complexos Multiproteicos/metabolismo , Cromossomos Bacterianos/metabolismo , Cromossomos Bacterianos/genética , DNA Bacteriano/metabolismo , DNA Bacteriano/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética
16.
Methods Enzymol ; 702: 147-170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39155109

RESUMO

Methyl-coenzyme M reductase (MCR) is the key enzyme in pathways for the formation and anaerobic oxidation of methane. As methane is a potent greenhouse gas and biofuel, investigations of MCR catalysis and maturation are of interest for the development of both methanogenesis inhibitors and natural gas conversion strategies. The activity of MCR is dependent on a unique, nickel-containing coenzyme F430, the most highly reduced tetrapyrrole found in nature. Coenzyme F430 is biosynthesized from sirohydrochlorin in four steps catalyzed by the CfbABCDE enzymes. Here, methods for the expression and purification of the coenzyme F430 biosynthesis enzymes are described along with conditions for the synthesis and purification of biosynthetic intermediates on the milligram scale from commercially available porphobilinogen.


Assuntos
Proteínas de Bactérias , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Metano/metabolismo , Níquel/metabolismo , Níquel/química , Metaloporfirinas , Oxirredutases
17.
Methods Enzymol ; 702: 171-187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39155110

RESUMO

Methanobactin (Mbn) is a ribosomally synthesized and post-translationally modified peptide (RiPP) natural product that binds Cu(I) with high affinity. The copper-chelating thioamide/oxazolone groups in Mbn are installed on the precursor peptide MbnA by the core enzyme complex, MbnBC, which includes the multinuclear non-heme iron-dependent oxidase (MNIO) MbnB and its RiPP recognition element-containing partner protein MbnC. For the extensively characterized Mbn biosynthetic gene cluster (BGC) from the methanotroph Methylosinus trichosporium OB3b, the tailoring aminotransferase MbnN further modifies MbnA after leader sequence cleavage by an unknown mechanism. Here we detail methods to express and purify M. trichosporium OB3b MbnBC and MbnN along with protocols for assessing MbnA modification by MbnBC and MbnN aminotransferase activity. In addition, we describe crystallization and structure determination of MbnBC. These procedures can be adapted for other MNIOs and partner proteins encoded in Mbn and Mbn-like BGCs. Furthermore, these methods provide a first step toward in vitro biosynthesis of Mbns and related natural products as potential therapeutics.


Assuntos
Imidazóis , Methylosinus trichosporium , Oligopeptídeos , Methylosinus trichosporium/enzimologia , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Imidazóis/metabolismo , Imidazóis/química , Oligopeptídeos/metabolismo , Oligopeptídeos/química , Transaminases/metabolismo , Transaminases/genética , Transaminases/química , Transaminases/isolamento & purificação , Família Multigênica , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Processamento de Proteína Pós-Traducional
18.
Methods Enzymol ; 702: 247-280, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39155115

RESUMO

Siderophores are essential molecules released by some bacteria and fungi in iron-limiting environments to sequester ferric iron, satisfying metabolic needs. Flavin-dependent N-hydroxylating monooxygenases (NMOs) catalyze the hydroxylation of nitrogen atoms to generate important siderophore functional groups such as hydroxamates. It has been demonstrated that the function of NMOs is essential for virulence, implicating these enzymes as potential drug targets. This chapter aims to serve as a resource for the characterization of NMO's enzymatic activities using several biochemical techniques. We describe assays that allow for the determination of steady-state kinetic parameters, detection of hydroxylated amine products, measurement of the rate-limiting step(s), and the application toward drug discovery efforts. While not exhaustive, this chapter will provide a foundation for the characterization of enzymes involved in siderophore biosynthesis, allowing for gaps in knowledge within the field to be addressed.


Assuntos
Oxigenases de Função Mista , Sideróforos , Sideróforos/metabolismo , Sideróforos/biossíntese , Oxigenases de Função Mista/metabolismo , Cinética , Hidroxilação , Ensaios Enzimáticos/métodos , Flavinas/metabolismo , Proteínas de Bactérias/metabolismo
19.
Methods Enzymol ; 702: 215-227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39155113

RESUMO

The sequencing of microbial genomes has far outpaced their functional annotation. Stable isotopic labeling can be used to link biosynthetic genes with their natural products; however, the availability of the required isotopically substituted precursors can limit the accessibility of this approach. Here, we describe a method for using inverse stable isotopic labeling (InverSIL) to link biosynthetic genes with their natural products. With InverSIL, a microbe is grown on an isotopically substituted medium to create a fully substituted culture, and subsequently, the incorporation of precursors of natural isotopic abundance can be tracked by mass spectrometry. This eliminates issues with isotopically substituted precursor availability. We demonstrate the utility of this approach by linking a luxI-type acyl-homoserine lactone synthase gene in a bacterium that grows on methanol with its quorum sensing signal products. In the future, InverSIL can also be used to link biosynthetic gene clusters hypothesized to produce siderophores with their natural products.


Assuntos
Produtos Biológicos , Marcação por Isótopo , Marcação por Isótopo/métodos , Produtos Biológicos/metabolismo , Produtos Biológicos/química , Família Multigênica , Percepção de Quorum/genética , Espectrometria de Massas/métodos , Vias Biossintéticas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Isótopos de Carbono/química
20.
Methods Enzymol ; 702: 281-315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39155116

RESUMO

Iron is a crucial secondary metabolite for bacterial proliferation, but its bioavailability under infection conditions is limited by the low solubility of ferric ion and the host's ability to sequester iron by protein chelation. In these iron limiting conditions, bacteria produce and secrete low molecular weight ferric ion chelators, siderophores, to scavenge host iron. Iron bound siderophores are recognized by surface displayed receptors and internalized by active transport preceding the liberation of the iron payload by reduction or cleavage of the siderophore. The traditional paradigms surrounding the interactions between siderophores and their corresponding receptors have relied on canonical protein-ligand binding models that do not accurately reflect the conditions experienced by siderophore binding proteins (SBPs). Research by the Raymond group suggested that a ligand displacement model does not fully describe the role of SBPs in siderophore transport where the ferric ion can be shuttled between siderophore molecules during the transport process. This work inspired further research by the Wencewicz group, which demonstrated that the Staphylococcus aureus SBP FhuD2 can catalyze the transfer of iron from the biological iron source holo-transferrin to a SBP bound iron-free siderophore. The discovery of this ferrichelatase activity represents a novel mechanism of receptor mediated active transport which raises the question: is ferrichelatase activity a unique feature of FhuD2 or a previously unappreciated hallmark of SBPs? This chapter highlights a series of protocols for the general functional characterization of SBPs and methodologies to assay ferrichelatase activity with the hopes of providing the tools to answer this question.


Assuntos
Ferro , Sideróforos , Staphylococcus aureus , Sideróforos/metabolismo , Ferro/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...