Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.649
Filtrar
1.
J Mol Biol ; 436(14): 168642, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38848866

RESUMO

The heat shock response (HSR) is a gene regulatory program controlling expression of molecular chaperones implicated in aging, cancer, and neurodegenerative disease. Long presumed to be activated by toxic protein aggregates, recent work suggests a new functional paradigm for the HSR in yeast. Rather than toxic aggregates, adaptive biomolecular condensates comprised of orphan ribosomal proteins (oRP) and stress granule components have been shown to be physiological chaperone clients. By titrating away the chaperones Sis1 and Hsp70 from the transcription factor Hsf1, these condensates activate the HSR. Upon release from Hsp70, Hsf1 forms spatially distinct transcriptional condensates that drive high expression of HSR genes. In this manner, the negative feedback loop controlling HSR activity - in which Hsf1 induces Hsp70 expression and Hsp70 represses Hsf1 activity - is embedded in the biophysics of the system. By analogy to phosphorylation cascades that transmit information via the dynamic activity of kinases, we propose that the HSR is organized as a condensate cascade that transmits information via the localized activity of molecular chaperones.


Assuntos
Resposta ao Choque Térmico , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Condensados Biomoleculares/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Fosforilação
2.
Anticancer Res ; 44(7): 2815-2821, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38925843

RESUMO

BACKGROUND/AIM: The cytoprotective heat shock protein 27 (HSP27) acts as a protein chaperone, antioxidant, and apoptosis regulator and is involved in cytoskeletal remodeling in prostate cancer. This study was designed to assess the effect of prostate cancer therapeutics on HSP27 to identify drugs that may benefit from an HSP27 inhibitor combination therapy. MATERIALS AND METHODS: Cell counting was utilized to assess drug treatment efficiency. Changes in protein levels after drug treatment were assessed using western blot analysis. RESULTS: Abiraterone, cabazitaxel, docetaxel and enzalutamide significantly reduced cell proliferation in LNCaP and PC3 cells. Treatment with abiraterone and enzalutamide led to a significant reduction in HSP27 protein levels. In contrast, treatment with cabazitaxel and docetaxel did not change the HSP27 protein levels. CONCLUSION: Treatment with abiraterone and enzalutamide reduces HSP27 protein in an AR-independent manner and thus suppresses HSP27-correlated resistance mechanisms. However, docetaxel and cabazitaxel do not alter HSP27 protein levels, so that taxanes' efficacy may be enhanced by combining them with HSP27-inhibiting drugs.


Assuntos
Androstenos , Antineoplásicos , Benzamidas , Proliferação de Células , Docetaxel , Resistencia a Medicamentos Antineoplásicos , Proteínas de Choque Térmico HSP27 , Nitrilas , Feniltioidantoína , Neoplasias da Próstata , Taxoides , Humanos , Masculino , Taxoides/farmacologia , Taxoides/uso terapêutico , Docetaxel/farmacologia , Feniltioidantoína/farmacologia , Feniltioidantoína/análogos & derivados , Feniltioidantoína/uso terapêutico , Proteínas de Choque Térmico HSP27/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Androstenos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico/metabolismo
3.
J Agric Food Chem ; 72(25): 14315-14325, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38847877

RESUMO

This study aimed to investigate the mitigation effect of epigallocatechin gallate (EGCG) on aging induced by 3-monochloropropane-1,2-diol (3-MCPD) in Caenorhabditis elegans, evaluate health indicators during the process, and reveal the underlying mechanism through transcriptomics and identification of mutants. The results showed that EGCG alleviated the declined fertility, shortened lifespan, reduced body size, weakened movement, increased reactive oxygen species and lipofuscin, and damaged antioxidative stress response and excessive heat shock proteins caused by 3-MCPD. Transcriptomics study indicated that treatment with 3-MCPD and EGCG altered gene expression, and gene mutants confirmed the involvement of insulin/IGF-1 signaling pathway in mediating the process that EGCG alleviated the aging toxicity induced by 3-MCPD. The study showed that EGCG alleviated the aging toxicity induced by 3-MCPD.


Assuntos
Envelhecimento , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Catequina , Proteínas de Choque Térmico , Reprodução , alfa-Cloridrina , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Catequina/análogos & derivados , Catequina/farmacologia , Reprodução/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Envelhecimento/efeitos dos fármacos , alfa-Cloridrina/toxicidade , Transdução de Sinais/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Longevidade/efeitos dos fármacos
4.
Protein Sci ; 33(7): e5068, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38864739

RESUMO

Polypeptide chains experience mechanical tension while translocating through cellular tunnels, which are subsequently folded by molecular chaperones. However, interactions between tunnel-associated chaperones and these emerging polypeptides under force is not completely understood. Our investigation focused on mechanical chaperone activity of two tunnel-associated chaperones, BiP and ERdj3 both with and without mechanical constraints and comparing them with their cytoplasmic homologs: DnaK and DnaJ. While BiP/ERdj3 have been observed to exhibit robust foldase activity under force, DnaK/DnaJ showed holdase function. Importantly, the tunnel-associated chaperones (BiP/ERdj3) transitioned to a holdase state in the absence of force, indicating a force-dependent chaperone behavior. This chaperone-driven folding event in the tunnel generated an additional mechanical energy of up to 54 zJ, potentially aiding protein translocation. Our findings align with strain theory, where chaperones with higher intrinsic deformability act as mechanical foldases (BiP, ERdj3), while those with lower deformability serve as holdases (DnaK and DnaJ). This study thus elucidates the differential mechanically regulated chaperoning activity and introduces a novel perspective on co-translocational protein folding.


Assuntos
Proteínas de Escherichia coli , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Dobramento de Proteína , Escherichia coli/genética , Escherichia coli/metabolismo , Chaperona BiP do Retículo Endoplasmático/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética
5.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891798

RESUMO

Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease characterized by self-immune tolerance breakdown and the production of autoantibodies, causing the deposition of immune complexes and triggering inflammation and immune-mediated damage. SLE pathogenesis involves genetic predisposition and a combination of environmental factors. Clinical manifestations are variable, making an early diagnosis challenging. Heat shock proteins (Hsps), belonging to the chaperone system, interact with the immune system, acting as pro-inflammatory factors, autoantigens, as well as immune tolerance promoters. Increased levels of some Hsps and the production of autoantibodies against them are correlated with SLE onset and progression. The production of these autoantibodies has been attributed to molecular mimicry, occurring upon viral and bacterial infections, since they are evolutionary highly conserved. Gut microbiota dysbiosis has been associated with the occurrence and severity of SLE. Numerous findings suggest that proteins and metabolites of commensal bacteria can mimic autoantigens, inducing autoimmunity, because of molecular mimicry. Here, we propose that shared epitopes between human Hsps and those of gut commensal bacteria cause the production of anti-Hsp autoantibodies that cross-react with human molecules, contributing to SLE pathogenesis. Thus, the involvement of the chaperone system, gut microbiota dysbiosis, and molecular mimicry in SLE ought to be coordinately studied.


Assuntos
Disbiose , Microbioma Gastrointestinal , Lúpus Eritematoso Sistêmico , Mimetismo Molecular , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/microbiologia , Lúpus Eritematoso Sistêmico/metabolismo , Humanos , Mimetismo Molecular/imunologia , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/imunologia , Proteínas de Choque Térmico/imunologia , Proteínas de Choque Térmico/metabolismo , Autoanticorpos/imunologia , Animais , Autoantígenos/imunologia , Autoantígenos/metabolismo , Autoimunidade
6.
Food Chem Toxicol ; 189: 114773, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823497

RESUMO

Fluoride, a ubiquitous environmental compound, carries significant health risks at excessive levels. This study investigated the reproductive toxicity of fluoride exposure during puberty in mice, focusing on its impact on testicular development, spermatogenesis, and underlying mechanisms. The results showed that fluoride exposure during puberty impaired testicular structure, induced germ cell apoptosis, and reduced sperm counts in mice. Additionally, the SOD activity and GSH content were significantly decreased, while MDA content was significantly elevated in the NaF group. Immunohistochemistry showed an increase in the number of cells positive for GRP78, a key ER stress marker. Moreover, qRT-PCR and Western blot analyses confirmed the upregulation of both Grp78 mRNA and protein expression, as well as increased mRNA expression of other ER stress-associated genes (Grp94, chop, Atf6, Atf4, and Xbp1) and enhanced protein expression of phosphorylated PERK, IRE1α, eIF2α, JNK, XBP-1, ATF-6α, ATF-4, and CHOP. In conclusion, our findings demonstrate that fluoride exposure during puberty impairs testicular structure, induces germ cell apoptosis, and reduces sperm counts in mice. ER stress may participate in testicular cell apoptosis, and contribute to the testicular damage and decreased sperm counts induced by fluoride.


Assuntos
Apoptose , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Fluoretos , Testículo , Animais , Masculino , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Fluoretos/toxicidade , Camundongos , Maturidade Sexual/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Contagem de Espermatozoides , Espermatogênese/efeitos dos fármacos
7.
J Zhejiang Univ Sci B ; 25(6): 485-498, 2024 May 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38910494

RESUMO

End-stage liver diseases, such as cirrhosis and liver cancer caused by hepatitis B, are often combined with hepatic encephalopathy (HE); ammonia poisoning is posited as one of its main pathogenesis mechanisms. Ammonia is closely related to autophagy, but the molecular mechanism of ammonia's regulatory effect on autophagy in HE remains unclear. Sialylation is an essential form of glycosylation. In the nervous system, abnormal sialylation affects various physiological processes, such as neural development and synapse formation. ST3 ß|-galactoside α2,|3-sialyltransferase 6 (ST3GAL6) is one of the significant glycosyltransferases responsible for adding α2,3-linked sialic acid to substrates and generating glycan structures. We found that the expression of ST3GAL6 was upregulated in the brains of mice with HE and in astrocytes after ammonia induction, and the expression levels of α2,3-sialylated glycans and autophagy-related proteins microtubule-associated protein light chain 3 (LC3) and Beclin-1 were upregulated in ammonia-induced astrocytes. These findings suggest that ST3GAL6 is related to autophagy in HE. Therefore, we aimed to determine the regulatory relationship between ST3GAL6 and autophagy. We found that silencing ST3GAL6 and blocking or degrading α2,3-sialylated glycans by way of Maackia amurensis lectin-II (MAL-II) and neuraminidase can inhibit autophagy. In addition, silencing the expression of ST3GAL6 can downregulate the expression of heat shock protein ß8 (HSPB8) and Bcl2-associated athanogene 3 (BAG3). Notably, the overexpression of HSPB8 partially restored the reduced autophagy levels caused by silencing ST3GAL6 expression. Our results indicate that ST3GAL6 regulates autophagy through the HSPB8-BAG3 complex.


Assuntos
Proteínas Reguladoras de Apoptose , Autofagia , Encéfalo , Encefalopatia Hepática , Polissacarídeos , Sialiltransferases , Sialiltransferases/metabolismo , Sialiltransferases/genética , Animais , Camundongos , Polissacarídeos/metabolismo , Encefalopatia Hepática/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Encéfalo/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Amônia/metabolismo , Astrócitos/metabolismo , Masculino , beta-Galactosídeo alfa-2,3-Sialiltransferase , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Inativação Gênica , Proteínas Associadas aos Microtúbulos/metabolismo , Camundongos Endogâmicos C57BL
8.
J Appl Biomed ; 22(2): 99-106, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38912865

RESUMO

Resveratrol (RSV) is a polyphenol antioxidant that has been shown to have neuroprotective effects. We sought molecular mechanisms that emphasize the anti-inflammatory activity of RSV in traumatic brain injury (TBI) in mice associated with endoplasmic reticulum stress (ERS). After establishing three experimental groups (sham, TBI, and TBI+RSV), we explored the results of RSV after TBI on ERS and caspase-12 apoptotic pathways. The expression levels of C/EBP homologous protein (CHOP), glucose regulated protein 78kD (GRP78), caspase-3, and caspase-12 in cortical brain tissues were assessed by western blotting. The qPCR analysis was also performed on mRNA expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1ß in cortical brain tissue. In addition, the expression of GRP78 in microglia (ionized calcium binding adaptor molecule 1; Iba-1) and neurons (neuronal nuclei; NeuN) was identified by immunofluorescence staining. The neurological function of mice was assessed by modified neurological severity scores (mNSS). After drug treatment, the expression of CHOP, GRP78, caspase-3 and caspase-12 decreased, and qPCR results showed that TNF-α and IL-1ß were down-regulated. Immunofluorescence staining showed down-regulation of Iba-1+/GRP78+ and NeuN+/GRP78+ cells after RSV treatment. The mNSS analysis confirmed improvement after RSV treatment. RSV improved apoptosis by downregulating the ERS signaling pathway and improved neurological prognosis in mice with TBI.


Assuntos
Lesões Encefálicas Traumáticas , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Resveratrol , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/metabolismo , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Masculino , Apoptose/efeitos dos fármacos , Prognóstico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Caspase 12/metabolismo , Caspase 12/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , Morte Celular/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/genética
9.
Biomol Concepts ; 15(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38872399

RESUMO

Coronavirus disease 2019 (COVID-19) is a novel disease that had devastating effects on human lives and the country's economies worldwide. This disease shows similar parasitic traits, requiring the host's biomolecules for its survival and propagation. Spike glycoproteins severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 spike protein) located on the surface of the COVID-19 virus serve as a potential hotspot for antiviral drug development based on their structure. COVID-19 virus calls into action the chaperonin system that assists the attacker, hence favoring infection. To investigate the interaction that occurs between SARS-CoV-2 spike protein and human molecular chaperons (HSPA8 and sHSP27), a series of steps were carried out which included sequence attainment and analysis, followed by multiple sequence alignment, homology modeling, and protein-protein docking which we performed using Cluspro to predict the interactions between SARS-CoV-2 spike protein and human molecular chaperones of interest. Our findings depicted that SARS-CoV-2 spike protein consists of three distinct chains, chains A, B, and C, which interact forming hydrogen bonds, hydrophobic interactions, and electrostatic interactions with both human HSPA8 and HSP27 with -828.3 and -827.9 kcal/mol as binding energies for human HSPA8 and -1166.7 and -1165.9 kcal/mol for HSP27.


Assuntos
COVID-19 , Simulação de Acoplamento Molecular , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/química , COVID-19/virologia , COVID-19/metabolismo , Animais , Ligação Proteica , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico Pequenas/metabolismo , Proteínas de Choque Térmico Pequenas/química , Sequência de Aminoácidos
10.
Int J Biol Macromol ; 272(Pt 2): 132870, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38844291

RESUMO

Colorectal cancer (CRC) is the second most deadly cancer worldwide. Although various treatments for CRC have made progress, they have limitations. Therefore, the search for new effective molecular targets is important for the treatment of CRC. p20BAP31 induces apoptosis through diverse pathways and exhibits greater sensitivity in CRC. Therefore, a comprehensive exploration of the molecular functions of p20BAP31 is important for its application in anti-tumor therapy. In this study, we showed that exogenous p20BAP31 was still located in the ER and significantly activated the unfolded protein response (UPR) through the PERK pathway. The activation of the PERK pathway is prominent in p20BAP31-induced reactive oxygen species (ROS) accumulation and apoptosis. We found, for the first time, that p20BAP31 leads to ER stress and markedly attenuates tumor cell growth in vivo. Importantly, mechanistic investigations indicated that p20BAP31 competitively binds to GRP78 from PERK and causes hyperactivation of the UPR. Furthermore, p20BAP31 upregulates the expression of GRP78 by promoting HSF1 nuclear translocation and enhancing its binding to the GRP78 promoter. These findings reveal p20BAP31 as a regulator of ER stress and a potential target for tumor therapy, and elucidate the underlying mechanism by which p20BAP31 mediates signal transduction between ER and mitochondria.


Assuntos
Apoptose , Neoplasias Colorretais , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico , Espécies Reativas de Oxigênio , Transdução de Sinais , Resposta a Proteínas não Dobradas , eIF-2 Quinase , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Apoptose/efeitos dos fármacos , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Animais , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Proliferação de Células , Ligação Proteica , Regulação Neoplásica da Expressão Gênica
11.
Neoplasia ; 54: 101008, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823209

RESUMO

Successful treatment of glioblastoma multiforme (GBM), an aggressive form of primary brain neoplasm, mandates the need to develop new therapeutic strategies. In this study, we investigated the potential of PBI-05204 in targeting GBM stem cells (GSCs) and the underlying mechanisms. Treatment with PBI-05204 significantly reduced both the number and size of tumor spheres derived from patient-derived GSCs (GBM9, GSC28 and TS543), and suppressed the tumorigenesis of GBM9 xenografts. Moreover, PBI-05204 treatment led to a significant decrease in the expression of CD44 and NANOG, crucial markers of progenitor stem cells, in GBM9 and GSC28 GSCs. This treatment also down-regulated GRP78 expression in both GSC types. Knocking down GRP78 expression through GRP78 siRNA transfection in GBM9 and GSC28 GSCs also resulted in reduced spheroid size and CD44 expression. Combining PBI-05204 with GRP78 siRNA further decreased spheroid numbers compared to GRP78 siRNA treatment alone. PBI-05204 treatment led to increased expression of pRIP1K and pRIP3K, along with enhanced binding of RIPK1/RIPK3 in GBM9 and GSC28 cells, resembling the effects observed in GRP78-silenced GSCs, suggesting that PBI-05204 induced necroptosis in these cells. Furthermore, oleandrin, a principle active cardiac glycoside component of PBI-05204, showed the ability to inhibit the self-renewal capacity in GSCs. These findings highlight the potential of PBI-05204 as a promising candidate for the development of novel therapies that target GBM stem cells.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Glioblastoma , Proteínas de Choque Térmico , Células-Tronco Neoplásicas , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Camundongos , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Necroptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética
12.
Am J Physiol Heart Circ Physiol ; 327(1): H1-H11, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38700493

RESUMO

Although the unfolded protein response (UPR) contributes to survival by removing misfolded proteins, endoplasmic reticulum (ER) stress also activates proapoptotic pathways. Changed sensitivity to normal developmental stimuli may underlie observed cardiomyocyte apoptosis in the healthy perinatal heart. We determined in vitro sensitivity to thapsigargin in sheep cardiomyocytes from four perinatal ages. In utero cardiac activation of ER stress and apoptotic pathways was determined at these same ages. Thapsigargin-induced phosphorylation of eukaryotic initiation factor 2 (EIF2A) was decreased by 72% between 135 and 143 dGA (P = 0.0096) and remained low at 1 dPN (P = 0.0080). Conversely, thapsigargin-induced caspase cleavage was highest around the time of birth: cleaved caspase 3 was highest at 1 dPN (3.8-fold vs. 135 dGA, P = 0.0380; 7.8-fold vs. 5 dPN, P = 0.0118), cleaved caspase 7 and cleaved caspase 12 both increased between 135 and 143 dGA (25-fold and 6.9-fold respectively, both P < 0.0001) and remained elevated at 1 dPN. Induced apoptosis, measured by TdT-mediated dUTP nick-end labeling (TUNEL) assay, was highest around the time of birth (P < 0.0001). There were changes in myocardial ER stress pathway components in utero. Glucose (78 kDa)-regulated protein (GRP78) protein levels were high in the fetus and declined after birth (P < 0.0001). EIF2A phosphorylation was profoundly depressed at 1 dPN (vs. 143 dGA, P = 0.0113). In conclusion, there is dynamic regulation of ER proteostasis, ER stress, and apoptosis cascade in the perinatal heart. Apoptotic signaling is more readily activated in fetal cardiomyocytes near birth, leading to widespread caspase cleavage in the newborn heart. These pathways are important for the regulation of normal maturation in the healthy perinatal heart.NEW & NOTEWORTHY Cardiomyocyte apoptosis occurs even in the healthy, normally developing perinatal myocardium. As cardiomyocyte number is a critical contributor to heart health, the sensitivity of cardiomyocytes to endoplasmic reticulum stress leading to apoptosis is an important consideration. This study suggests that the heart has less robust protective mechanisms in response to endoplasmic reticulum stress immediately before and after birth, and that more cardiomyocyte death can be induced by stress in this period.


Assuntos
Animais Recém-Nascidos , Apoptose , Miócitos Cardíacos , Tapsigargina , Animais , Apoptose/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ovinos , Tapsigargina/farmacologia , Feminino , Fator de Iniciação 2 em Eucariotos/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fosforilação , Chaperona BiP do Retículo Endoplasmático , Gravidez , Resposta a Proteínas não Dobradas , Células Cultivadas , Proteínas de Choque Térmico/metabolismo , Transdução de Sinais , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos
13.
Zhongguo Zhen Jiu ; 44(5): 555-64, 2024 May 12.
Artigo em Chinês | MEDLINE | ID: mdl-38764106

RESUMO

OBJECTIVE: To observe the effect of acupotomy on heat shock protein A family member 5 (HSPA5)/glutathione peroxidase 4 (GPX4) signaling pathway in the chondrocytes of the rabbits with knee osteoarthritis (KOA) and explore the mechanism of acupotomy on chondrocyte ferroptosis in KOA. METHODS: Twenty-seven New Zealand rabbits were randomly divided into a normal group, a model group and an acupotomy group, with 9 rabbits in each group. The left hind limb was fixed by the modified Videman method for 6 weeks to establish KOA model. After modeling, acupotomy was given in the acupotomy group, once a week and for consecutive 3 weeks. Using Lequesne MG score, the local symptoms, physical signs and functions of knee joint were evaluated. With HE staining and saffrane-solid green staining adopted, the morphology of chondrocytes and cartilage tissue was observed. Under transmission electron microscope, the mitochondrial structure of chondrocytes was observed. The iron content of cartilage tissue was detected by iron ion kit. The mitochondrial membrane potential (Δψm) and the reactive oxygen species (ROS) level in cartilage tissue were determined by flow cytometry, and the mitochondrial damage rate was calculated. The mRNA expression of HSPA5, GPX4, type Ⅱ collagen α1 chain (COL2A1), matrix metalloproteinases (MMP) 3 and MMP13 was detected by the real-time quantitative PCR; and the protein expression of HSPA5, GPX4, type Ⅱ collagen (COL-Ⅱ), MMP3 and MMP13 was detected by Western blot. The mean flourscence intensity of HSPA5 and GPX4 in cartilage tissue was determined by immunofluorescence. RESULTS: Before intervention, compared with the normal group, the Lequesne MG scores were increased in the model group and the acupotomy group (P<0.01). After intervention, the Lequesne MG score in the acupotomy group was decreased when compared with that in the model group. In comparison with that in the normal group, the number of chondrocytes was reduced and the cells were disarranged; the layers of cartilage structure were unclear, the tide lines disordered and blurred; the mitochondria were wrinkled and the mitochondrial crista decreased or even disappeared in the model group. Compared with the model group, the number of chondrocytes was increased, the layers of cartilage structure were clear, the tide lines recovered, the number of mitochondria elevated, with normal structure and more crista in the acupotomy group. The iron content of cartilage tissue was increased (P<0.01), the Δψm of chondrocytes was declined, the mitochondrial damage rate was increased (P<0.01), the average fluorescence intensity of ROS was increased (P<0.01); the mRNA and corresponding protein expression of HSPA5, GPX4 and COL2A1 was decreased (P<0.01), the mRNA and protein expression of MMP3 and MMP13 was increased (P<0.01) and the average fluorescence intensity of HSPA5, GPX4 was decreased (P<0.01) in the model group when compared with those in the normal group. Compared with the model group, the iron content in cartilage tissue was reduced (P<0.01), the Δψm of chondrocytes was increased, the mitochondrial damage rate was decreased (P<0.01), and the average fluorescence intensity of ROS was decreased (P<0.01); the mRNA and corresponding protein expression of HSPA5, GPX4 and COL2A1 was higher (P<0.01), and the mRNA and protein expression of MMP3 and MMP13 was lower, and the average fluorescence intensity of HSPA5, GPX4 was increased (P<0.01) in the acupotomy group. CONCLUSION: Acupotomy can alleviate cartilage injury of KOA rabbits, and its mechanism may be related to the regulation of HSPA5/GPX4 signaling pathway to maintain iron homeostasis in articular cartilage, thus inhibiting chondrocyte ferroptosis and relieving extracellular matrix degradation.


Assuntos
Terapia por Acupuntura , Condrócitos , Ferroptose , Proteínas de Choque Térmico , Osteoartrite do Joelho , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Transdução de Sinais , Animais , Coelhos , Osteoartrite do Joelho/terapia , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/fisiopatologia , Condrócitos/metabolismo , Masculino , Humanos , Terapia por Acupuntura/instrumentação , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Chaperona BiP do Retículo Endoplasmático , Feminino
14.
PLoS One ; 19(5): e0303235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728287

RESUMO

Excitotoxicity represents the primary cause of neuronal death following spinal cord injury (SCI). While autophagy plays a critical and intricate role in SCI, the specific mechanism underlying the relationship between excitotoxicity and autophagy in SCI has been largely overlooked. In this study, we isolated primary spinal cord neurons from neonatal rats and induced excitotoxic neuronal injury by high concentrations of glutamic acid, mimicking an excitotoxic injury model. Subsequently, we performed transcriptome sequencing. Leveraging machine learning algorithms, including weighted correlation network analysis (WGCNA), random forest analysis (RF), and least absolute shrinkage and selection operator analysis (LASSO), we conducted a comprehensive investigation into key genes associated with spinal cord neuron injury. We also utilized protein-protein interaction network (PPI) analysis to identify pivotal proteins regulating key gene expression and analyzed key genes from public datasets (GSE2599, GSE20907, GSE45006, and GSE174549). Our findings revealed that six genes-Anxa2, S100a10, Ccng1, Timp1, Hspb1, and Lgals3-were significantly upregulated not only in vitro in neurons subjected to excitotoxic injury but also in rats with subacute SCI. Furthermore, Hspb1 and Lgals3 were closely linked to neuronal autophagy induced by excitotoxicity. Our findings contribute to a better understanding of excitotoxicity and autophagy, offering potential targets and a theoretical foundation for SCI diagnosis and treatment.


Assuntos
Autofagia , Galectina 3 , Aprendizado de Máquina , Neurônios , Animais , Ratos , Galectina 3/metabolismo , Galectina 3/genética , Ácido Glutâmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Neurônios/metabolismo , Mapas de Interação de Proteínas , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/genética
15.
Biol Res ; 57(1): 34, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812057

RESUMO

Studies have suggested that endoplasmic reticulum stress (ERS) is involved in neurological dysfunction and that electroacupuncture (EA) attenuates neuropathic pain (NP) via undefined pathways. However, the role of ERS in the anterior cingulate cortex (ACC) in NP and the effect of EA on ERS in the ACC have not yet been investigated. In this study, an NP model was established by chronic constriction injury (CCI) of the left sciatic nerve in rats, and mechanical and cold tests were used to evaluate behavioral hyperalgesia. The protein expression and distribution were evaluated using western blotting and immunofluorescence. The results showed that glucose-regulated protein 78 (BIP) and inositol-requiring enzyme 1α (IRE-1α) were co-localized in neurons in the ACC. After CCI, BIP, IRE-1α, and phosphorylation of IRE-1α were upregulated in the ACC. Intra-ACC administration of 4-PBA and Kira-6 attenuated pain hypersensitivity and downregulated phosphorylation of IRE-1α, while intraperitoneal injection of 4-PBA attenuated hyperalgesia and inhibited the activation of P38 and JNK in ACC. In contrast, ERS activation by intraperitoneal injection of tunicamycin induced behavioral hyperalgesia in naive rats. Furthermore, EA attenuated pain hypersensitivity and inhibited the CCI-induced overexpression of BIP and pIRE-1α. Taken together, these results demonstrate that EA attenuates NP by suppressing BIP- and IRE-1α-mediated ERS in the ACC. Our study presents novel evidence that ERS in the ACC is implicated in the development of NP and provides insights into the molecular mechanisms involved in the analgesic effect of EA.


Assuntos
Modelos Animais de Doenças , Eletroacupuntura , Estresse do Retículo Endoplasmático , Giro do Cíngulo , Neuralgia , Ratos Sprague-Dawley , Animais , Eletroacupuntura/métodos , Giro do Cíngulo/metabolismo , Neuralgia/terapia , Masculino , Estresse do Retículo Endoplasmático/fisiologia , Ratos , Western Blotting , Proteínas de Choque Térmico/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Hiperalgesia/terapia , Chaperona BiP do Retículo Endoplasmático
16.
mSystems ; 9(6): e0084723, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38809013

RESUMO

Bacterial phage shock protein (PSP) systems stabilize the bacterial cell membrane and protect against envelope stress. These systems have been associated with virulence, but despite their critical roles, PSP components are not well characterized outside proteobacteria. Using comparative genomics and protein sequence-structure-function analyses, we systematically identified and analyzed PSP homologs, phyletic patterns, domain architectures, and gene neighborhoods. This approach underscored the evolutionary significance of the system, revealing that its core protein PspA (Snf7 in ESCRT outside bacteria) was present in the last universal common ancestor and that this ancestral functionality has since diversified into multiple novel, distinct PSP systems across life. Several novel partners of the PSP system were identified: (i) the Toastrack domain, likely facilitating assembly of sub-membrane stress-sensing and signaling complexes, (ii) the newly defined HTH-associated α-helical signaling domain-PadR-like transcriptional regulator pair system, and (iii) multiple independent associations with ATPase, CesT/Tir-like chaperone, and Band-7 domains in proteins thought to mediate sub-membrane dynamics. Our work also uncovered links between the PSP components and other domains, such as novel variants of SHOCT-like domains, suggesting roles in assembling membrane-associated complexes of proteins with disparate biochemical functions. Results are available at our interactive web app, https://jravilab.org/psp.IMPORTANCEPhage shock proteins (PSP) are virulence-associated, cell membrane stress-protective systems. They have mostly been characterized in Proteobacteria and Firmicutes. We now show that a minimal PSP system was present in the last universal common ancestor that evolved and diversified into newly identified functional contexts. Recognizing the conservation and evolution of PSP systems across bacterial phyla contributes to our understanding of stress response mechanisms in prokaryotes. Moreover, the newly discovered PSP modularity will likely prompt new studies of lineage-specific cell envelope structures, lifestyles, and adaptation mechanisms. Finally, our results validate the use of domain architecture and genetic context for discovery in comparative genomics.


Assuntos
Proteínas de Bactérias , Evolução Molecular , Proteínas de Choque Térmico , Estresse Fisiológico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/química , Estresse Fisiológico/genética , Filogenia , Domínios Proteicos , Membrana Celular/metabolismo
17.
Environ Toxicol Pharmacol ; 108: 104473, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759846

RESUMO

The most recent dam rupture in Brazil released tons of mining tailings into the upper course of the Paraopeba River, affecting this river in an unprecedented way. The present study aimed to evaluate the influence of heavy metals on Prochilodus costatus, an important commercial species in Brazil, four years after the dam colapse. To this end, biomarkers of heavy metals, oxidative stress, and environmental stress were analyzed, and histological analyses of target organs were performed. The results demonstrated critical contamination of fish from the Paraopeba River. Increased expression of Metallothioneins - MTs, Heat Shock Protein - HSP70, and inducible nitric oxide synthase - iNOS, as well as greater rates of histological changes in the liver, spleen, and gonads, were observed in P. costatus. These findings demonstrate that, despite past contamination, the metals present in mining tailings have significantly increased the contamination of the Paraopeba River basin.


Assuntos
Fígado , Metalotioneína , Metais Pesados , Óxido Nítrico Sintase Tipo II , Rios , Poluentes Químicos da Água , Animais , Metalotioneína/metabolismo , Poluentes Químicos da Água/toxicidade , Metais Pesados/toxicidade , Óxido Nítrico Sintase Tipo II/metabolismo , Brasil , Fígado/efeitos dos fármacos , Fígado/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo , Caraciformes/metabolismo , Masculino , Gônadas/efeitos dos fármacos , Gônadas/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Peixes/metabolismo , Feminino
18.
J Virol ; 98(6): e0026824, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38775480

RESUMO

Enteroviruses are the causative agents associated with several human and animal diseases, posing a significant threat to human and animal health. As one of the host immune defense strategies, innate immunity plays a crucial role in defending against invading pathogens, where the host utilizes a variety of mechanisms to inhibit or eliminate the pathogen. Here, we report a new strategy for the host to repress enterovirus replication by the 78 kDa glucose-regulated protein (GRP78), also known as heat shock protein family A member 5 (HSPA5). The GRP78 recognizes the EV-encoded RNA-dependent RNA polymerases (RdRPs) 3D protein and interacts with the nuclear factor kappa B kinase complex (CHUK) and subunit beta gene (IKBKB) to facilitate the phosphorylation and nuclear translocation of NF-κB, which induces the production of inflammatory factors and leads to a broad inhibition of enterovirus replication. These findings demonstrate a new role of GRP78 in regulating host innate immunity in response to viral infection and provide new insights into the mechanism underlying enterovirus replication and NF-κB activation.IMPORTANCEGRP78 is known as a molecular chaperone for protein folding and plays a critical role in maintaining protein folding and participating in cell proliferation, cell survival, apoptosis, and metabolism. However, the functions of GRP78 to participate in enterovirus genome replication and innate immune responses are rarely documented. In this study, we explored the functions of the EV-3D-interacting protein GRP78 and found that GRP78 inhibits enterovirus replication by activating NF-κB through binding to EV-F 3D and interacting with the NF-κB signaling molecules CHUK/IKBKB. This is the first report that GRP78 interacts with CHUK/IKBKB to activate the NF-κB signaling pathway, which leads to the expression of the proinflammatory cytokines and inhibition of enterovirus replication. These results demonstrate a unique mechanism of virus replication regulation by GRP78 and provide insights into the prevention and treatment of viral infections.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico , Imunidade Inata , NF-kappa B , Replicação Viral , Humanos , NF-kappa B/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Enterovirus/fisiologia , Interações Hospedeiro-Patógeno , Células HEK293 , Infecções por Enterovirus/virologia , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/imunologia , Animais , Fosforilação , RNA Polimerase Dependente de RNA/metabolismo , Transdução de Sinais
19.
J Histochem Cytochem ; 72(5): 289-307, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38725414

RESUMO

Several types of cytotoxic insults disrupt endoplasmic reticulum (ER) homeostasis, cause ER stress, and activate the unfolded protein response (UPR). The role of ER stress and UPR activation in hypersensitivity pneumonitis (HP) has not been described. HP is an immune-mediated interstitial lung disease that develops following repeated inhalation of various antigens in susceptible and sensitized individuals. The aim of this study was to investigate the lung expression and localization of the key effectors of the UPR, BiP/GRP78, CHOP, and sXBP1 in HP patients compared with control subjects. Furthermore, we developed a mouse model of HP to determine whether ER stress and UPR pathway are induced during this pathogenesis. In human control lungs, we observed weak positive staining for BiP in some epithelial cells and macrophages, while sXBP1 and CHOP were negative. Conversely, strong BiP, sXBP1- and CHOP-positive alveolar and bronchial epithelial, and inflammatory cells were identified in HP lungs. We also found apoptosis and autophagy markers colocalization with UPR proteins in HP lungs. Similar results were obtained in lungs from an HP mouse model. Our findings suggest that the UPR pathway is associated with the pathogenesis of HP.


Assuntos
Alveolite Alérgica Extrínseca , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Células Epiteliais , Proteínas de Choque Térmico , Fator de Transcrição CHOP , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box , Animais , Alveolite Alérgica Extrínseca/patologia , Alveolite Alérgica Extrínseca/imunologia , Alveolite Alérgica Extrínseca/metabolismo , Humanos , Camundongos , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteínas de Choque Térmico/metabolismo , Fator de Transcrição CHOP/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Masculino , Pulmão/patologia , Pulmão/imunologia , Pulmão/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição de Fator Regulador X/metabolismo , Fatores de Transcrição/metabolismo , Modelos Animais de Doenças , Pessoa de Meia-Idade , Camundongos Endogâmicos C57BL , Adulto , Inflamação/patologia , Inflamação/metabolismo , Inflamação/imunologia
20.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732040

RESUMO

Currently, Mediterranean forests are experiencing the deleterious effects of global warming, which mainly include increased temperatures and decreased precipitation in the region. Relict Abies pinsapo fir forests, endemic in the southern Iberian Peninsula, are especially sensitive to these recent environmental disturbances, and identifying the genes involved in the response of this endangered tree species to climate-driven stresses is of paramount importance for mitigating their effects. Genomic resources for A. pinsapo allow for the analysis of candidate genes reacting to warming and aridity in their natural habitats. Several members of the complex gene families encoding late embryogenesis abundant proteins (LEAs) and heat shock proteins (HSPs) have been found to exhibit differential expression patterns between wet and dry seasons when samples from distinct geographical locations and dissimilar exposures to the effects of climate change were analyzed. The observed changes were more perceptible in the roots of trees, particularly in declining forests distributed at lower altitudes in the more vulnerable mountains. These findings align with previous studies and lay the groundwork for further research on the molecular level. Molecular and genomic approaches offer valuable insights for mitigating climate stress and safeguarding this endangered conifer.


Assuntos
Abies , Mudança Climática , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Estresse Fisiológico/genética , Abies/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Florestas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...