Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.355
Filtrar
1.
Subcell Biochem ; 104: 485-501, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963497

RESUMO

Valosin-containing protein (VCP), also known as p97, is an evolutionarily conserved AAA+ ATPase essential for cellular homeostasis. Cooperating with different sets of cofactors, VCP is involved in multiple cellular processes through either the ubiquitin-proteasome system (UPS) or the autophagy/lysosomal route. Pathogenic mutations frequently found at the interface between the NTD domain and D1 ATPase domain have been shown to cause malfunction of VCP, leading to degenerative disorders including the inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD), amyotrophic lateral sclerosis (ALS), and cancers. Therefore, VCP has been considered as a potential therapeutic target for neurodegeneration and cancer. Most of previous studies found VCP predominantly exists and functions as a hexamer, which unfolds and extracts ubiquitinated substrates from protein complexes for degradation. However, recent studies have characterized a new VCP dodecameric state and revealed a controlling mechanism of VCP oligomeric states mediated by the D2 domain nucleotide occupancy. Here, we summarize our recent knowledge on VCP oligomerization, regulation, and potential implications of VCP in cellular function and pathogenic progression.


Assuntos
Proteína com Valosina , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/química , Humanos , Multimerização Proteica , Animais , Mutação , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/química , Osteíte Deformante/genética , Osteíte Deformante/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Miosite de Corpos de Inclusão/genética , Miosite de Corpos de Inclusão/metabolismo , Distrofia Muscular do Cíngulo dos Membros
2.
Commun Biol ; 7(1): 881, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030299

RESUMO

DNA-loop extrusion is considered to be a universal principle of structural maintenance of chromosome (SMC) proteins with regard to chromosome organization. Despite recent advancements in structural dynamics studies that involve the use of cryogenic-electron microscopy (Cryo-EM), atomic force microscopy (AFM), etc., the precise molecular mechanism underlying DNA-loop extrusion by SMC proteins remains the subject of ongoing discussions. In this context, we propose a scrunching model that incorporates the anisotropic motion of SMC folding with a baton-pass mechanism, offering a potential explanation of how a "DNA baton" is transferred from the hinge domain to a DNA pocket via an anisotropic hinge motion. This proposed model provides insights into how SMC proteins unidirectionally extrude DNA loops in the direction of loop elongation while also maintaining the stability of a DNA loop throughout the dynamic process of DNA-loop extrusion.


Assuntos
DNA , DNA/química , DNA/genética , Anisotropia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Conformação de Ácido Nucleico , Modelos Moleculares , Microscopia Crioeletrônica , Microscopia de Força Atômica
3.
Nucleic Acids Res ; 52(12): 7337-7353, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38828772

RESUMO

In vertebrates, the BRCA2 protein is essential for meiotic and somatic homologous recombination due to its interaction with the RAD51 and DMC1 recombinases through FxxA and FxPP motifs (here named A- and P-motifs, respectively). The A-motifs present in the eight BRC repeats of BRCA2 compete with the A-motif of RAD51, which is responsible for its self-oligomerization. BRCs thus disrupt RAD51 nucleoprotein filaments in vitro. The role of the P-motifs is less studied. We recently found that deletion of Brca2 exons 12-14 encoding one of them (the prototypical 'PhePP' motif), disrupts DMC1 but not RAD51 function in mouse meiosis. Here we provide a mechanistic explanation for this phenotype by solving the crystal structure of the complex between a BRCA2 fragment containing the PhePP motif and DMC1. Our structure reveals that, despite sharing a conserved phenylalanine, the A- and P-motifs bind to distinct sites on the ATPase domain of the recombinases. The P-motif interacts with a site that is accessible in DMC1 octamers and nucleoprotein filaments. Moreover, we show that this interaction also involves the adjacent protomer and thus increases the stability of the DMC1 nucleoprotein filaments. We extend our analysis to other P-motifs from RAD51AP1 and FIGNL1.


Assuntos
Motivos de Aminoácidos , Proteína BRCA2 , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Ligação Proteica , Rad51 Recombinase , Rad51 Recombinase/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/química , Proteína BRCA2/metabolismo , Proteína BRCA2/química , Proteína BRCA2/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/química , Camundongos , Humanos , Sítios de Ligação , Modelos Moleculares , Cristalografia por Raios X , Recombinação Homóloga , Proteínas de Ligação a Fosfato
4.
Biochem Biophys Res Commun ; 727: 150307, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917618

RESUMO

The testis-specific histone variant H3T plays a crucial role in chromatin reorganization during spermatogenesis by destabilizing nucleosomes. However, the structure basis for the nucleosome instability driven by H3T is not fully understand. In this study, we determinate the crystal structure of H3T-H4 in complex with histone chaperone ASF1a at 2.8 Å resolution. Our findings reveal that H3T-H4 binds ASF1a similarly to the conventional H3.1-H4 complex. However, significant structural differences are observed in the H3 α1 helix, the N- and C-terminal region of α2, and N-terminal region of L2. These differences are driven by H3T-specific residues, particularly Val111. Unlike the smaller Ala111 in H3.1, we find that bulkier residue Val111 fits well within the ASF1-H3T-H4 complex, but is difficult to arrange in nucleosome structure. Given that H3.1-Ala111/H3T-Val111 is located at the DNA binding and tetramerization interface of H3-H4, it is likely that Ala111Val substitution will lead to the instability of the corresponding area in nucleosome, contributing to instability of H3T-containing nucleosome. These structural findings may elucidate the role of H3T in chromatin reorganization during spermatogenesis.


Assuntos
Histonas , Nucleossomos , Nucleossomos/metabolismo , Nucleossomos/química , Histonas/metabolismo , Histonas/química , Histonas/genética , Humanos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Cristalografia por Raios X , Ligação Proteica , Conformação Proteica , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética
5.
Biochemistry (Mosc) ; 89(4): 585-600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38831498

RESUMO

Accurate duplication and separation of long linear genomic DNA molecules is associated with a number of purely mechanical problems. SMC complexes are key components of the cellular machinery that ensures decatenation of sister chromosomes and compaction of genomic DNA during division. Cohesin, one of the essential eukaryotic SMC complexes, has a typical ring structure with intersubunit pore through which DNA molecules can be threaded. Capacity of cohesin for such topological entrapment of DNA is crucial for the phenomenon of post-replicative association of sister chromatids better known as cohesion. Recently, it became apparent that cohesin and other SMC complexes are, in fact, motor proteins with a very peculiar movement pattern leading to formation of DNA loops. This specific process has been called loop extrusion. Extrusion underlies multiple functions of cohesin beyond cohesion, but molecular mechanism of the process remains a mystery. In this review, we summarized the data on molecular architecture of cohesin, effect of ATP hydrolysis cycle on this architecture, and known modes of cohesin-DNA interactions. Many of the seemingly disparate facts presented here will probably be incorporated in a unified mechanistic model of loop extrusion in the not-so-distant future.


Assuntos
Coesinas , DNA , Animais , Humanos , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Cromátides/metabolismo , Cromátides/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Coesinas/química , Coesinas/metabolismo , DNA/metabolismo , DNA/química
6.
Biochemistry (Mosc) ; 89(4): 601-625, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38831499

RESUMO

The most prominent representatives of multisubunit SMC complexes, cohesin and condensin, are best known as structural components of mitotic chromosomes. It turned out that these complexes, as well as their bacterial homologues, are molecular motors, the ATP-dependent movement of these complexes along DNA threads leads to the formation of DNA loops. In recent years, we have witnessed an avalanche-like accumulation of data on the process of SMC dependent DNA looping, also known as loop extrusion. This review briefly summarizes the current understanding of the place and role of cohesin-dependent extrusion in cell physiology and presents a number of models describing the potential molecular mechanism of extrusion in a most compelling way. We conclude the review with a discussion of how the capacity of cohesin to extrude DNA loops may be mechanistically linked to its involvement in sister chromatid cohesion.


Assuntos
Fenômenos Fisiológicos Celulares , Coesinas , Animais , Humanos , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Coesinas/metabolismo , DNA/metabolismo , DNA/química , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/química
7.
Open Biol ; 14(6): 240025, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38862021

RESUMO

Faithful transmission of genetic material is crucial for the survival of all organisms. In many eukaryotes, a feedback control mechanism called the spindle checkpoint ensures chromosome segregation fidelity by delaying cell cycle progression until all chromosomes achieve proper attachment to the mitotic spindle. Kinetochores are the macromolecular complexes that act as the interface between chromosomes and spindle microtubules. While most eukaryotes have canonical kinetochore proteins that are widely conserved, kinetoplastids such as Trypanosoma brucei have a seemingly unique set of kinetochore proteins including KKT1-25. It remains poorly understood how kinetoplastids regulate cell cycle progression or ensure chromosome segregation fidelity. Here, we report a crystal structure of the C-terminal domain of KKT14 from Apiculatamorpha spiralis and uncover that it is a pseudokinase. Its structure is most similar to the kinase domain of a spindle checkpoint protein Bub1. In addition, KKT14 has a putative ABBA motif that is present in Bub1 and its paralogue BubR1. We also find that the N-terminal part of KKT14 interacts with KKT15, whose WD40 repeat beta-propeller is phylogenetically closely related to a direct interactor of Bub1/BubR1 called Bub3. Our findings indicate that KKT14-KKT15 are divergent orthologues of Bub1/BubR1-Bub3, which promote accurate chromosome segregation in trypanosomes.


Assuntos
Cinetocoros , Proteínas de Protozoários , Cinetocoros/metabolismo , Cinetocoros/química , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Modelos Moleculares , Sequência de Aminoácidos , Filogenia , Ligação Proteica , Cristalografia por Raios X , Segregação de Cromossomos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética
8.
Biochem Soc Trans ; 52(3): 1061-1069, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38695730

RESUMO

The RAF kinases are required for signal transduction through the RAS-RAF-MEK-ERK pathway, and their activity is frequently up-regulated in human cancer and the RASopathy developmental syndromes. Due to their complex activation process, developing drugs that effectively target RAF function has been a challenging endeavor, highlighting the need for a more detailed understanding of RAF regulation. This review will focus on recent structural and biochemical studies that have provided 'snapshots' into the RAF regulatory cycle, revealing structures of the autoinhibited BRAF monomer, active BRAF and CRAF homodimers, as well as HSP90/CDC37 chaperone complexes containing CRAF or BRAFV600E. In addition, we will describe the insights obtained regarding how BRAF transitions between its regulatory states and examine the roles that various BRAF domains and 14-3-3 dimers play in both maintaining BRAF as an autoinhibited monomer and in facilitating its transition to an active dimer. We will also address the function of the HSP90/CDC37 chaperone complex in stabilizing the protein levels of CRAF and certain oncogenic BRAF mutants, and in serving as a platform for RAF dephosphorylation mediated by the PP5 protein phosphatase. Finally, we will discuss the regulatory differences observed between BRAF and CRAF and how these differences impact the function of BRAF and CRAF as drivers of human disease.


Assuntos
Proteínas de Choque Térmico HSP90 , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Multimerização Proteica , Quinases raf/metabolismo , Quinases raf/química , Animais , Chaperoninas/metabolismo , Chaperoninas/química , Transdução de Sinais , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/química , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/química , Modelos Moleculares
9.
Cell Rep ; 43(6): 114262, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38776225

RESUMO

The anaphase-promoting complex/cyclosome (APC/C) is a critical and tightly regulated E3 ligase that orchestrates the cellular life cycle by controlling the degradation of cell cycle regulators. An intriguing feature of this complex is an autoinhibition mechanism: an intrinsically disordered loop domain, Apc1-300L, blocks Cdc20 coactivator binding, yet phosphorylation of Apc1-300L counteracts this autoinhibition. Many such disordered loops within APC/C remain unexplored. Our systematic analysis of loop-deficient APC/C mutants uncovered a pivotal role for Apc8's C-terminal loop (Apc8-L) in mitotic activation. Apc8-L directly recruits the CDK adaptor protein, Xe-p9/Cks2, positioning the Xe-p9-CDK-CycB complex near Apc1-300L. This stimulates the phosphorylation and removal of Apc1-300L, prompting the formation of active APC/CCdc20. Strikingly, without both Apc8-L and Apc3-L, the APC/C is rendered inactive during mitosis, highlighting Apc8-L's synergistic role with other loops and kinases. This study broadens our understanding of the intricate dynamics in APC/C regulation and provides insights on the regulation of macromolecular complexes.


Assuntos
Mitose , Animais , Feminino , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Subunidade Apc8 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Fosforilação , Ligação Proteica , Domínios Proteicos , Xenopus laevis
10.
FEBS Lett ; 598(12): 1453-1464, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811347

RESUMO

Microtubules are a major component of the cytoskeleton and can accumulate a plethora of modifications. The microtubule detyrosination cycle is one of these modifications; it involves the enzymatic removal of the C-terminal tyrosine of α-tubulin on assembled microtubules and the re-ligation of tyrosine on detyrosinated tubulin dimers. This modification cycle has been implicated in cardiac disease, neuronal development, and mitotic defects. The vasohibin and microtubule-associated tyrosine carboxypeptidase enzyme families are responsible for microtubule detyrosination. Their long-sought discovery allows to review and summarise differences and similarities between the two enzymes families and discuss how they interplay with other modifications and functions of the tubulin code.


Assuntos
Carboxipeptidases , Microtúbulos , Tubulina (Proteína) , Tirosina , Microtúbulos/metabolismo , Humanos , Animais , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Carboxipeptidases/metabolismo , Carboxipeptidases/genética , Carboxipeptidases/química , Tirosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/química , Processamento de Proteína Pós-Traducional
11.
Proc Natl Acad Sci U S A ; 121(21): e2401494121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38753513

RESUMO

In mammalian cells, the cohesin protein complex is believed to translocate along chromatin during interphase to form dynamic loops through a process called active loop extrusion. Chromosome conformation capture and imaging experiments have suggested that chromatin adopts a compact structure with limited interpenetration between chromosomes and between chromosomal sections. We developed a theory demonstrating that active loop extrusion causes the apparent fractal dimension of chromatin to cross-over between two and four at contour lengths on the order of 30 kilo-base pairs. The anomalously high fractal dimension [Formula: see text] is due to the inability of extruded loops to fully relax during active extrusion. Compaction on longer contour length scales extends within topologically associated domains (TADs), facilitating gene regulation by distal elements. Extrusion-induced compaction segregates TADs such that overlaps between TADs are reduced to less than 35% and increases the entanglement strand of chromatin by up to a factor of 50 to several Mega-base pairs. Furthermore, active loop extrusion couples cohesin motion to chromatin conformations formed by previously extruding cohesins and causes the mean square displacement of chromatin loci during lag times ([Formula: see text]) longer than tens of minutes to be proportional to [Formula: see text]. We validate our results with hybrid molecular dynamics-Monte Carlo simulations and show that our theory is consistent with experimental data. This work provides a theoretical basis for the compact organization of interphase chromatin, explaining the physical reason for TAD segregation and suppression of chromatin entanglements which contribute to efficient gene regulation.


Assuntos
Proteínas de Ciclo Celular , Cromatina , Proteínas Cromossômicas não Histona , Coesinas , Interfase , Cromatina/metabolismo , Cromatina/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Humanos , Animais , Segregação de Cromossomos/fisiologia
12.
J Chem Inf Model ; 64(11): 4553-4569, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38771194

RESUMO

Cosolvent molecular dynamics (MD) simulations have proven to be powerful in silico tools to predict hotspots for binding regions on protein surfaces. In the current study, the method was adapted and applied to two Tudor domain-containing proteins, namely Spindlin1 (SPIN1) and survival motor neuron protein (SMN). Tudor domains are characterized by so-called aromatic cages that recognize methylated lysine residues of protein targets. In the study, the conformational transitions from closed to open aromatic cage conformations were investigated by performing MD simulations with cosolvents using six different probe molecules. It is shown that a trajectory clustering approach in combination with volume and atomic distance tracking allows a reasonable discrimination between open and closed aromatic cage conformations and the docking of inhibitors yields very good reproducibility with crystal structures. Cosolvent MDs are suitable to capture the flexibility of aromatic cages and thus represent a promising tool for the optimization of inhibitors.


Assuntos
Simulação de Dinâmica Molecular , Solventes , Solventes/química , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Fosfoproteínas/química , Domínios Proteicos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Simulação de Acoplamento Molecular , Conformação Proteica
13.
J Mol Biol ; 436(13): 168626, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810774

RESUMO

The thermodynamics of secondary p53 binding sites on MDM2 and MDMX were evaluated using p53 peptides containing residues 16-29, 17-35, and 1-73. All the peptides had large, negative heat capacity (ΔCp), consistent with the burial of p53 residues F19, W23, and L26 in the primary binding sites of MDM2 and MDMX. MDMX has a higher affinity and more negative ΔCp than MDM2 for p5317-35, which is due to MDMX stabilization and not additional interactions with the secondary binding site. ΔCp measurements show binding to the secondary site is inhibited by the disordered tails of MDM2 for WT p53 but not a more helical mutant where proline 27 is changed to alanine. This result is supported by all-atom molecular dynamics simulations showing that p53 residues 30-35 turn away from the disordered tails of MDM2 in P27A17-35 and make direct contact with this region in p5317-35. Molecular dynamics simulations also suggest that an intramolecular methionine-aromatic motif found in both MDM2 and MDMX structurally adapts to support multiple p53 binding modes with the secondary site. ΔCp measurements also show that tighter binding of the P27A mutant to MDM2 and MDMX is due to increased helicity, which reduces the energetic penalty associated with coupled folding and binding. Our results will facilitate the design of selective p53 inhibitors for MDM2 and MDMX.


Assuntos
Proteínas de Ciclo Celular , Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas c-mdm2 , Proteínas Proto-Oncogênicas , Termodinâmica , Proteína Supressora de Tumor p53 , Humanos , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
14.
Nat Commun ; 15(1): 3558, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670995

RESUMO

The E3 ligase-degron interaction determines the specificity of the ubiquitin‒proteasome system. We recently discovered that FEM1B, a substrate receptor of Cullin 2-RING ligase (CRL2), recognizes C-degrons containing a C-terminal proline. By solving several cryo-EM structures of CRL2FEM1B bound to different C-degrons, we elucidate the dimeric assembly of the complex. Furthermore, we reveal distinct dimerization states of unmodified and neddylated CRL2FEM1B to uncover the NEDD8-mediated activation mechanism of CRL2FEM1B. Our research also indicates that, FEM1B utilizes a bipartite mechanism to recognize both the C-terminal proline and an upstream aromatic residue within the substrate. These structural findings, complemented by in vitro ubiquitination and in vivo cell-based assays, demonstrate that CRL2FEM1B-mediated polyubiquitination and subsequent protein turnover depend on both FEM1B-degron interactions and the dimerization state of the E3 ligase complex. Overall, this study deepens our molecular understanding of how Cullin-RING E3 ligase substrate selection mediates protein turnover.


Assuntos
Microscopia Crioeletrônica , Proteína NEDD8 , Receptores de Interleucina-17 , Ubiquitina-Proteína Ligases , Ubiquitinação , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/química , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Prolina/metabolismo , Multimerização Proteica , Células HEK293 , Ligação Proteica , Especificidade por Substrato , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Modelos Moleculares , Proteínas Culina/metabolismo , Proteínas Culina/química , Proteínas Culina/genética , Degrons
15.
Structure ; 32(6): 690-705.e6, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38565139

RESUMO

The centromere is epigenetically marked by a histone H3 variant-CENP-A. The budding yeast CENP-A called Cse4, consists of an unusually long N-terminus that is known to be involved in kinetochore assembly. Its disordered chaperone, Scm3 is responsible for the centromeric deposition of Cse4 as well as in the maintenance of a segregation-competent kinetochore. In this study, we show that the Cse4 N-terminus is intrinsically disordered and interacts with Scm3 at multiple sites, and the complex does not gain any substantial structure. Additionally, the complex forms a synergistic association with an essential inner kinetochore component (Ctf19-Mcm21-Okp1-Ame1), and a model has been suggested to this effect. Thus, our study provides mechanistic insights into the Cse4 N-terminus-chaperone interaction and also illustrates how intrinsically disordered proteins mediate assembly of complex multiprotein networks, in general.


Assuntos
Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA , Cinetocoros , Ligação Proteica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cinetocoros/metabolismo , Cinetocoros/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Saccharomyces cerevisiae/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Modelos Moleculares , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteína Centromérica A/metabolismo , Proteína Centromérica A/química , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Proteínas do Citoesqueleto , Proteínas Associadas aos Microtúbulos
16.
Structure ; 32(7): 989-1000.e6, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38593795

RESUMO

Proteins that contain a highly conserved TLDc domain (Tre2/Bub2/Cdc16 LysM domain catalytic) offer protection against oxidative stress and are widely implicated in neurological health and disease. How this family of proteins exerts their function, however, is poorly understood. We have recently found that the yeast TLDc protein, Oxr1p, inhibits the proton pumping vacuolar ATPase (V-ATPase) by inducing disassembly of the pump. While loss of TLDc protein function in mammals shares disease phenotypes with V-ATPase defects, whether TLDc proteins impact human V-ATPase activity directly is unclear. Here we examine the effects of five human TLDc proteins, TLDC2, NCOA7, OXR1, TBC1D24, and mEAK7 on the activity of the human V-ATPase. We find that while TLDC2, TBC1D24, and the TLDc domains of OXR1 and NCOA7 inhibit V-ATPase by inducing enzyme disassembly, mEAK7 activates the pump. The data thus shed new light both on mammalian TLDc protein function and V-ATPase regulation.


Assuntos
Proteínas Ativadoras de GTPase , ATPases Vacuolares Próton-Translocadoras , Humanos , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/química , Coativadores de Receptor Nuclear/metabolismo , Coativadores de Receptor Nuclear/química , Ligação Proteica , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Modelos Moleculares , Proteínas Mitocondriais
17.
Molecules ; 29(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675678

RESUMO

Bromodomain 4 and 9 (BRD4 and BRD9) have been regarded as important targets of drug designs in regard to the treatment of multiple diseases. In our current study, molecular dynamics (MD) simulations, deep learning (DL) and binding free energy calculations are integrated to probe the binding modes of three inhibitors (H1B, JQ1 and TVU) to BRD4 and BRD9. The MD trajectory-based DL successfully identify significant functional function domains, such as BC-loop and ZA-loop. The information from the post-processing analysis of MD simulations indicates that inhibitor binding highly influences the structural flexibility and dynamic behavior of BRD4 and BRD9. The results of the MM-GBSA calculations not only suggest that the binding ability of H1B, JQ1 and TVU to BRD9 are stronger than to BRD4, but they also verify that van der Walls interactions are the primary forces responsible for inhibitor binding. The hot spots of BRD4 and BRD9 revealed by residue-based free energy estimation provide target sites of drug design in regard to BRD4 and BRD9. This work is anticipated to provide useful theoretical aids for the development of selective inhibitors over BRD family members.


Assuntos
Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular , Aprendizado Profundo , Simulação de Dinâmica Molecular , Ligação Proteica , Fatores de Transcrição , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Humanos , Sítios de Ligação , Termodinâmica , Triazóis/química , Triazóis/farmacologia , Azepinas/química , Azepinas/farmacologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Simulação de Acoplamento Molecular
18.
Nat Struct Mol Biol ; 31(6): 874-883, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38459127

RESUMO

Faithful chromosome segregation requires robust, load-bearing attachments of chromosomes to the mitotic spindle, a function accomplished by large macromolecular complexes termed kinetochores. In most eukaryotes, the constitutive centromere-associated network (CCAN) complex of the inner kinetochore recruits to centromeres the ten-subunit outer kinetochore KMN network that comprises the KNL1C, MIS12C and NDC80C complexes. The KMN network directly attaches CCAN to microtubules through MIS12C and NDC80C. Here, we determined a high-resolution cryo-EM structure of the human KMN network. This showed an intricate and extensive assembly of KMN subunits, with the central MIS12C forming rigid interfaces with NDC80C and KNL1C, augmented by multiple peptidic inter-subunit connections. We also observed that unphosphorylated MIS12C exists in an auto-inhibited state that suppresses its capacity to interact with CCAN. Ser100 and Ser109 of the N-terminal segment of the MIS12C subunit Dsn1, two key targets of Aurora B kinase, directly stabilize this auto-inhibition. Our study indicates how selectively relieving this auto-inhibition through Ser100 and Ser109 phosphorylation might restrict outer kinetochore assembly to functional centromeres during cell division.


Assuntos
Microscopia Crioeletrônica , Cinetocoros , Proteínas Associadas aos Microtúbulos , Modelos Moleculares , Proteínas Nucleares , Humanos , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/química , Fosforilação , Aurora Quinase B/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Conformação Proteica , Proteínas Cromossômicas não Histona
19.
Nat Struct Mol Biol ; 31(6): 861-873, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38459128

RESUMO

Biorientation of chromosomes during cell division is necessary for precise dispatching of a mother cell's chromosomes into its two daughters. Kinetochores, large layered structures built on specialized chromosome loci named centromeres, promote biorientation by binding and sensing spindle microtubules. One of the outer layer main components is a ten-subunit assembly comprising Knl1C, Mis12C and Ndc80C (KMN) subcomplexes. The KMN is highly elongated and docks on kinetochores and microtubules through interfaces at its opposite extremes. Here, we combine cryogenic electron microscopy reconstructions and AlphaFold2 predictions to generate a model of the human KMN that reveals all intra-KMN interfaces. We identify and functionally validate two interaction interfaces that link Mis12C to Ndc80C and Knl1C. Through targeted interference experiments, we demonstrate that this mutual organization strongly stabilizes the KMN assembly. Our work thus reports a comprehensive structural and functional analysis of this part of the kinetochore microtubule-binding machinery and elucidates the path of connections from the chromatin-bound components to the force-generating components.


Assuntos
Microscopia Crioeletrônica , Cinetocoros , Proteínas Associadas aos Microtúbulos , Modelos Moleculares , Proteínas Nucleares , Humanos , Cinetocoros/metabolismo , Cinetocoros/ultraestrutura , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/química , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/química , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Ligação Proteica , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Células HeLa
20.
Protein Sci ; 33(4): e4937, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501488

RESUMO

Cellulosomes are intricate cellulose-degrading multi-enzymatic complexes produced by anaerobic bacteria, which are valuable for bioenergy development and biotechnology. Cellulosome assembly relies on the selective interaction between cohesin modules in structural scaffolding proteins (scaffoldins) and dockerin modules in enzymes. Although the number of tandem cohesins in the scaffoldins is believed to determine the complexity of the cellulosomes, tandem dockerins also exist, albeit very rare, in some cellulosomal components whose assembly and functional roles are currently unclear. In this study, we characterized the structure and mode of assembly of a tandem bimodular double-dockerin, which is connected to a putative S8 protease in the cellulosome-producing bacterium, Clostridium thermocellum. Crystal and NMR structures of the double-dockerin revealed two typical type I dockerin folds with significant interactions between them. Interaction analysis by isothermal titration calorimetry and NMR titration experiments revealed that the double-dockerin displays a preference for binding to the cell-wall anchoring scaffoldin ScaD through the first dockerin with a canonical dual-binding mode, while the second dockerin module was unable to bind to any of the tested cohesins. Surprisingly, the double-dockerin showed a much higher affinity to a cohesin from the CipC scaffoldin of Clostridium cellulolyticum than to the resident cohesins from C. thermocellum. These results contribute valuable insights into the structure and assembly of the double-dockerin module, and provide the basis for further functional studies on multiple-dockerin modules and cellulosomal proteases, thus highlighting the complexity and diversity of cellulosomal components.


Assuntos
Clostridium thermocellum , Coesinas , Clostridium thermocellum/química , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Complexos Multienzimáticos , Proteínas de Bactérias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...