Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 313
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 343: 122481, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39174102

RESUMO

The low solubility of pea protein isolate (PPI) greatly limits its functional properties and its wide application in food field. Thus, this study investigated the effects and mechanisms of cellulose nanocrystals (CNC) (0.1-0.4 %) and CaCl2 (0.4-1.6 mM) on the solubility of PPI. The results showed that the synergistic effect of CNC (0.3 %) and Ca2+ (1.2 mM) increased the solubility of PPI by 242.31 %. CNC and Ca2+ changed the molecular conformation of PPI, enhanced intermolecular forces, and thus induced changes in the molecular morphology of PPI. Meanwhile, the turbidity of PPI decreased, while surface hydrophobicity, the absolute zeta potential value, viscoelasticity, ß-sheet ratio, and thermal properties increased. CNC bound to PPI molecules through van der Waals force and hydrogen bond. Ca2+ could strengthen the crosslinking between CNC and PPI. In summary, it is proposed a valuable combination method to improve the solubility of PPI, and it is believed that this research is of great significance for expanding the application fields of PPI and modifying plant proteins.


Assuntos
Cálcio , Celulose , Nanopartículas , Proteínas de Ervilha , Solubilidade , Nanopartículas/química , Celulose/química , Proteínas de Ervilha/química , Cálcio/química , Pisum sativum/química , Interações Hidrofóbicas e Hidrofílicas , Cloreto de Cálcio/química , Ligação de Hidrogênio
2.
J Int Soc Sports Nutr ; 21(1): 2393368, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39166753

RESUMO

BACKGROUND: As a relatively novel approach to enhancing skeletal muscle health, mixed protein supplementation has shown similar responses to whey protein. However, no previous studies have examined its impact on golf swing performance. This study aimed to examine the effect of mixed protein supplementation on the swing performance and muscle strength of casual golfers. METHODS: Sixty participants with a handicap of less than 20 were recruited and randomly assigned to a double-blind, placebo-controlled study design. The participants were divided into two groups: a mixed protein group (MG, n = 30), and a placebo control group (CG, n = 30). They were instructed to ingest either a supplement containing casein calcium, whey protein, and isolated pea protein, or a placebo, once daily for 8 weeks. Pre- and posttests consisted of anthropometric measurements, muscle strength (isokinetic knee and trunk strength, and handgrip strength), 2-minute push-ups, balance, and golf swing performance using a driver and 7-iron. RESULTS: After the 8-week supplementation period, ANCOVA, using baseline values as covariates, revealed significant differences for driver distance (p = .004) and driver ball speed (p < .001). MG significantly increased driver distance by 5.17 ± 12.8 m (p = .046), driver ball speed by 1.36 ± 2.87 m/s (p = .021). Additionally, significantly improvements were observed in hand grip strength (+2.12 ± 3.47 kg, p = .004), two-minute push-ups (+4.89 ± 8.14 reps, p = .004), and balance score (-0.37 ± 0.69 min, p = .009). No significant differences were observed in body composition parameters (p > .05). CONCLUSION: The intake of a mixed protein containing both animal and plant proteins had positive effects on golf performance and muscle function. Therefore, mixed proteins may represent a safe and effective approach to enhancing skeletal muscle health in golf players.


Assuntos
Desempenho Atlético , Suplementos Nutricionais , Golfe , Força Muscular , Músculo Esquelético , Proteínas do Soro do Leite , Humanos , Golfe/fisiologia , Método Duplo-Cego , Força Muscular/efeitos dos fármacos , Força Muscular/fisiologia , Masculino , Proteínas do Soro do Leite/administração & dosagem , Proteínas do Soro do Leite/farmacologia , Desempenho Atlético/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/efeitos dos fármacos , Adulto , Caseínas/administração & dosagem , Caseínas/farmacologia , Adulto Jovem , Proteínas de Ervilha/administração & dosagem , Fenômenos Fisiológicos da Nutrição Esportiva , Proteínas Alimentares/administração & dosagem , Feminino , Força da Mão/fisiologia
3.
Biofabrication ; 16(4)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38996408

RESUMO

Recent 3D-printing research showed the potential of using plant-protein-enriched inks to fabricate cultivated meat (CM) via agar-based support baths. However, for fabricating large, customized, structured, thick cellular constructs and further cultivation, improved 3D-printing capabilities and diffusion limit circumvention are warranted. The presented study harnesses advanced printing and thick tissue engineering concepts for such purpose. By improving bath composition and altering printing design and execution, large-scale, marbled, 0.5-cm-thick rib-eye shaped constructs were obtained. The constructs featured stable fibrous architectures comparable to those of structured-meat products. Customized multi-cellular constructs with distinct regions were produced as well. Furthermore, sustainable 1-cm-thick cellular constructs were carefully designed and produced, which successfully maintained cell viability and activity for 3 weeks, through the combined effects of void-incorporation and dynamic culturing. As large, geometrically complex construct fabrication suitable for long-term cellular cultivation was demonstrated, these findings hold great promise for advancing structured CM research.


Assuntos
Impressão Tridimensional , Animais , Alicerces Teciduais/química , Proteínas de Ervilha/química , Engenharia Tecidual/métodos , Carne , Sobrevivência Celular , Carne in vitro
4.
J Food Sci ; 89(8): 4997-5015, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38980959

RESUMO

The objective of this research was to explore the viability of pea protein as a substitute for gelatin in the complex coacervation process, with a specific focus on understanding the impact of incorporating an emulsifier into this process. The study involved the preparation of samples with varying polymer mixing ratios (1:1, 1:2, and 2:1) and emulsifier content. As core substances, black pepper and juniper essential oils were utilized, dissolved beforehand in grape seed oil or soybean oil, to minimize the loss of volatile compounds. In total, 24 distinct samples were created, subjected to freeze-drying to produce powder, and then assessed for their physicochemical properties. Results revealed the significant impact of emulsifier addition on microcapsule parameters. Powders lacking emulsifiers exhibited higher water solubility (57.10%-81.41%) compared to those with emulsifiers (24.64%-40.13%). Moreover, the emulsifier significantly decreased thermal stability (e.g., without emulsifier, Ton = 137.21°C; with emulsifier, Ton = 41.55°C) and adversely impacted encapsulation efficiency (highest efficiency achieved: 67%; with emulsifier: 21%).


Assuntos
Emulsificantes , Óleos Voláteis , Emulsificantes/química , Óleos Voláteis/química , Proteínas de Ervilha/química , Solubilidade , Tamanho da Partícula , Liofilização , Gelatina/química , Cápsulas , Óleo de Soja/química
5.
Int J Biol Macromol ; 276(Pt 2): 133965, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39029831

RESUMO

The current study was undertaken to synthesize pea protein based films containing fatty acids with various chain lengths. Films namely PFAF1, PFAF2, and PFAF3 were fabricated in the presence of pelargonic acid, margaric acid, and pentacosanoic acid, respectively. Also, negative (PF: film formulated using protein alone) and positive control (PCF: film formulated using mixture of protein and chitosan) control were prepared. Interactions occurring within films were clarified by FTIR. Moreover, morphology and thermal behavior of samples were evaluated by SEM and TGA. Variations in thickness (PF: 0.03 mm, PFAF1: 0.03 mm, PFAF2: 0.04 mm, PFAF3: 0.04 mm, PCF: 0.06 mm) and water content (PF: 28.85 %, PFAF1: 16.20 %, PFAF2: 14.51 %, PFAF3: 12.04 %, PCF: 13.83) were obvious. Superior opacity was identified in PCF, followed by PFAF3, PFAF2, PFAF1, and PF. PFAF3 together with PCF were more successful than others in reducing/protecting oxygen and water permeation. Adding fatty acid or chitosan to protein films led to the decline in tensile strength (TS) and increment in elongation at break (E). As for preservation performances, maximum limitations against shifts in weight and color of bananas during 7-day storage were provided by PFAF3. Also, except for PF, all coatings (especially PFAF3) postponed the rotting of fruits.


Assuntos
Ácidos Graxos , Frutas , Interações Hidrofóbicas e Hidrofílicas , Oxigênio , Proteínas de Ervilha , Água , Água/química , Oxigênio/química , Ácidos Graxos/química , Frutas/química , Proteínas de Ervilha/química , Pisum sativum/química , Permeabilidade , Quitosana/química , Embalagem de Alimentos/métodos , Resistência à Tração
6.
Mol Nutr Food Res ; 68(15): e2400010, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38958100

RESUMO

SCOPE: Celiac disease (CD) is an allergic intestinal disease caused mainly by gliadin in wheat, which is widespread in the population and currently lacks effective treatment. α-Gliadin peptides cause cellular damage by substantially increasing cellular reactive oxygen species (ROS) levels. METHODS AND RESULTS: This study investigates the protective effect of 11 pea-derived peptides (PPs) on ɑ-gliadin peptide (P31-43) treated Caco-2 cells. Results show that cells treated with PP2, PP5, and PP6 peptides significantly reduce the cell mortality caused by P31-43. Three PPs significantly reduce the P31-43-induced decrease in ROS levels to control levels, and there is no difference between them and the vitamin C (Vc) group. The results in terms of antioxidant-related enzymes show that PPs significantly decrease superoxide dismutase activity (SOD), glutathione reductases (GR), and glutathione (GSH)/oxidized glutathione (GSSG) levels, thus significantly enhancing the antioxidant level of cells. By studying the key proteins of the Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor 2 (Nrf2) pathway, it is found that PPs activate the Keap1/Nrf2 signaling pathway. CONCLUSION: The study finds that peptides from peas can effectively alleviate ɑ-gliadin peptide-induced cell damage. The discovery of these food-derived peptides provides novel potential solutions for the prevention and treatment of CD.


Assuntos
Gliadina , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Gliadina/farmacologia , Humanos , Células CACO-2 , Transdução de Sinais/efeitos dos fármacos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Cacau/química , Peptídeos/farmacologia , Pisum sativum/química , Estresse Oxidativo/efeitos dos fármacos , Glutationa/metabolismo , Glutationa/farmacologia , Proteínas de Ervilha/farmacologia , Superóxido Dismutase/metabolismo , Doença Celíaca/prevenção & controle , Doença Celíaca/tratamento farmacológico
7.
Int J Biol Macromol ; 277(Pt 2): 133889, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39013508

RESUMO

From a physicochemical perspective, foods like vegan cheese and meat analogues are complex multicomponent gels. The aim of this study was to investigate the effect of processing conditions and composition on the textural properties of multicomponent gels containing starch, pea protein isolate (PPI) and emulsion droplets. Mechanical properties were measured, and structural analysis was carried with CLSM and SEM. In the case of particle gels prepared with maize starch (MS), a higher shearing speed decreased Young's modulus, fracture stress and fracture strain due to break up of the starch granules. In polymer gels prepared with potato starch (PS), structure and mechanical properties were not much affected by processing conditions. The addition of emulsion droplets increased the Young's modulus of MS gels and decreased that of PS gels. In PS gels, the fracture stress decreased further for smaller oil droplets. The addition of emulsion droplets was also found to decrease adhesiveness, cohesiveness and chewiness, regardless of the matrix structure. With protein addition into PS gels, an increase in Young's modulus and a decrease in fracture strain were observed. These results show that processing conditions and composition can be used to modulate the physical properties of complex food systems.


Assuntos
Emulsões , Géis , Proteínas de Ervilha , Solanum tuberosum , Amido , Emulsões/química , Géis/química , Amido/química , Proteínas de Ervilha/química , Solanum tuberosum/química , Módulo de Elasticidade , Pisum sativum/química
8.
Int J Biol Macromol ; 276(Pt 1): 133640, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969047

RESUMO

The potential of using emulsion gels stabilized by binary plant protein nanoparticle mixtures for the encapsulation and delivery of lipophilic nutraceuticals was evaluated. The particle characteristics, physical stability, water diffusivity, microrheology, large amplitude oscillating shear (LAOS) properties, and in vitro digestion of emulsion gels prepared by different ratios of hydrolyzed rice glutelin fibrils (HRGFs) and pea protein nanoparticle (PNP) were characterized. The emulsion gel with P/H = 2:1 (0.84 µm) exhibited the best storage stability and freeze-thaw stability, as seen by the smaller oil droplet size (1.02 and 1.42 µm, respectively). Low-field pulsed NMR indicated that the majority of water in samples was highly mobile. All the samples were predominantly elastic-like materials. The P/H 2:1 emulsion gel had the lowest FI value (6.21 × 10-4 Hz), the highest MVI value (5.57 s/nm2), G'/ G″ values and enclosed area, showing that it had denser 3D network structures, higher stiffness values, and a high sensitivity to changes in strain. Additionally, P/H 2:1 emulsion gel had a relatively high lipid digestibility (96.1 %), curcumin bioaccessibility (58.9 %), and curcumin stability (94.2 %). This study showed that emulsion gels stabilized by binary protein nanoparticle mixtures (PNP/HRGF) have potential as edible delivery systems for lipophilic nutraceuticals.


Assuntos
Curcumina , Emulsões , Géis , Glutens , Nanopartículas , Oryza , Proteínas de Ervilha , Curcumina/química , Curcumina/farmacologia , Emulsões/química , Nanopartículas/química , Proteínas de Ervilha/química , Oryza/química , Glutens/química , Géis/química , Hidrólise , Tamanho da Partícula , Reologia , Composição de Medicamentos
9.
Int J Biol Macromol ; 276(Pt 1): 133736, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38992543

RESUMO

Pea peptides can lead to degradation through oxidation, deamidation, hydrolysis, or cyclization during production, processing, and storage, which in turn limit their broader application. To stabilize pea peptides, this study employed spray drying technology to create a pea peptide micro-encapsule using maltodextrin, gum tragacanth, and pea peptides. Four key factors, including polysaccharide ratio, glycopeptide ratio, solid-liquid ratio, and inlet temperature, were optimized to enhance the antioxidant properties of the pea peptide micro-encapsule. The results indicated that the utilization of maltodextrin and gum tragacanth significantly improves the storage stability and antioxidant activity of pea peptides. Moreover, optimal storage stability for pea peptides was achieved with a polysaccharide ratio of 9:1, a glycopeptide ratio of 10:1, a solid-liquid ratio of 4:40, and an inlet temperature of 180 °C. After 60 days of storage, the encapsulated pea peptides maintained 70.22 %, 25.19 %, and 40.32 % for scavenging abilities to hydroxyl radical, superoxide anion, and ABTS radical, respectively. In contrast, the unencapsulated pea peptides showed a decline to 47.02 %, 0 %, and 24.46 % in the same antioxidant activities after storage. These findings underscore the potential of spray drying technology to enhance the functional properties of pea peptides for various applications.


Assuntos
Sequestradores de Radicais Livres , Proteínas de Ervilha , Polissacarídeos , Tragacanto , Sequestradores de Radicais Livres/química , Polissacarídeos/química , Tragacanto/química , Proteínas de Ervilha/química , Peptídeos/química , Antioxidantes/química , Pisum sativum/química , Temperatura , Radicais Livres/química , Estabilidade de Medicamentos
10.
Int J Biol Macromol ; 276(Pt 2): 133939, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39029827

RESUMO

Pea protein isolate (PPI) was used as a carrier matrix to load tannic acid (TA) due to its multiple cavity structures and reaction sites, after that, magnesium ion (M) was further added to form more stable carrier structures. PPI was covalently bound with TA to form TA-PPI complexes in alkaline conditions, then M induced the aggregation of TA-PPI to produce M-TA-PPI complexes. TA mainly interacted with free amino groups and sulfhydryl groups of PPI, thereby decreasing their content in complexes. TA further decreased the α-helix content and increased the ß-sheet and ß-turn content in TA-PPI complexes correspondingly, nevertheless the M would decline these changes in M-TA-PPI complexes. As a result of binding, TA and M jointly increased the average molecular size of complexes. The higher TA addition amount (10-20 mg/g PPI) was conducive to the stronger intramolecular interactions (more hydrophobic interactions and disulfide bonds), gel structure (higher hardness value) and storage modulus in M-TA-PPI gels. Compared with TA-PPI complexes, M-TA-PPI complexes showed higher stability in gastric digestion and higher TA releasement and antioxidant capacity of its digesta in intestinal digestion. This kind of metal-phenolics-protein complexes may have potentials to be a stable and efficient carrier for loading gastric sensitive polyphenols.


Assuntos
Magnésio , Proteínas de Ervilha , Polifenóis , Antioxidantes/química , Substâncias Macromoleculares/química , Magnésio/química , Proteínas de Ervilha/química , Proteínas de Ervilha/isolamento & purificação , Pisum sativum/química , Polifenóis/química
11.
J Agric Food Chem ; 72(28): 15890-15905, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38953212

RESUMO

Pea-protein-based ingredients are gaining attention in the food industry due to their nutritional benefits and versatility, but their bitter, astringent, green, and beany off-flavors pose challenges. This study applied fermentation using microbial cultures to enhance the sensory qualities of pea-protein-based beverages. Using UHPLC-TOF-MS analyses along with sensory profile comparisons, microbial species such as Limosilactobacillus fermentum, Lactococcus lactis, Lactobacillus johnsonii, Lacticaseibacillus rhamnosus, and Bifidobacterium longum were preselected from an entire culture collection and found to be effective in improving the overall flavor impression by reducing bitter off-notes and enhancing aroma profiles. Notably, L. johnsonii NCC533 and L. fermentum NCC660 exhibited controlled proteolytic activities after 48 h of fermentation, enriching the matrix with taste-active amino acids, nucleotides, and peptides and improving umami and salty flavors while mitigating bitterness. This study has extended traditional volatile analyses, including nonvolatile metabolomic, proteomic, and sensory analyses and offering a detailed view of fermentation-induced biotransformations in pea-protein-based food. The results highlight the importance of combining comprehensive screening approaches and sensoproteomic techniques in developing tastier and more palatable plant-based protein products.


Assuntos
Fermentação , Aromatizantes , Proteínas de Ervilha , Pisum sativum , Paladar , Humanos , Proteínas de Ervilha/metabolismo , Proteínas de Ervilha/química , Pisum sativum/química , Pisum sativum/metabolismo , Pisum sativum/microbiologia , Aromatizantes/metabolismo , Aromatizantes/química , Feminino , Masculino , Adulto , Bebidas/análise , Bebidas/microbiologia
12.
J Agric Food Chem ; 72(28): 15875-15889, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38957928

RESUMO

This study investigated the mechanism underlying the flavor improvement observed during fermentation of a pea protein-based beverage using Lactobacillus johnsonii NCC533. A combination of sensomics and sensoproteomics approach revealed that the fermentation process enriched or generated well-known basic taste ingredients, such as amino acids, nucleotides, organic acids, and dipeptides, besides six new taste-active peptide sequences that enhance kokumi and umami notes. The six new umami and kokumi enhancing peptides, with human recognition thresholds ranging from 0.046 to 0.555 mM, are produced through the degradation of Pisum sativum's storage protein. Our findings suggest that compounds derived from fermentation enhance umami and kokumi sensations and reduce bitterness, thus improving the overall flavor perception of pea proteins. In addition, the analysis of intraspecific variations in the proteolytic activity of L. johnsonii and the genome-peptidome correlation analysis performed in this study point at cell-wall-bound proteinases such as PrtP and PrtM as the key genes necessary to initiate the flavor improving proteolytic cascade. This study provides valuable insights into the molecular mechanisms underlying the flavor improvement of pea protein during fermentation and identifies potential future research directions. The results highlight the importance of combining fermentation and senso(proteo)mics techniques in developing tastier and more palatable plant-based protein products.


Assuntos
Fermentação , Aromatizantes , Lactobacillus , Proteínas de Ervilha , Pisum sativum , Paladar , Humanos , Proteínas de Ervilha/metabolismo , Proteínas de Ervilha/química , Lactobacillus/metabolismo , Lactobacillus/genética , Pisum sativum/química , Pisum sativum/metabolismo , Aromatizantes/metabolismo , Aromatizantes/química , Proteômica , Adulto , Masculino , Feminino , Adulto Jovem , Bebidas/análise , Bebidas/microbiologia
13.
Nutrients ; 16(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39064674

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is now recognized as the most prevalent liver disease globally. Pea albumin (PA) has demonstrated positive impacts on reducing obesity and improving glucose metabolism. In this research, a mouse model of NAFLD induced by a high-fat diet (HFD) was employed to examine the impact of PA on NAFLD and explore its potential mechanisms. The findings revealed that mice subjected to a HFD developed pronounced fatty liver alterations. The intervention with PA significantly lowered serum TC by 26.81%, TG by 43.55%, and LDL-C by 57.79%. It also elevated HDL-C levels by 1.2 fold and reduced serum ALT by 37.94% and AST by 31.21% in mice fed a HFD. These changes contributed to the reduction in hepatic steatosis and lipid accumulation. Additionally, PA improved insulin resistance and inhibited hepatic oxidative stress and inflammatory responses. Mechanistic studies revealed that PA alleviated lipid accumulation in HFD-induced NAFLD by activating the phosphorylation of AMPKα and ACC, inhibiting the expression of SREBF1 and FASN to reduce hepatic lipogenesis, and increasing the expression of ATGL, PPARα, and PPARγ to promote lipolysis and fatty acid oxidation. These results indicate that PA could serve as a dietary supplement for alleviating NAFLD, offering a theoretical foundation for the rational intake of PA in NAFLD intervention.


Assuntos
Dieta Hiperlipídica , Lipogênese , Lipólise , Fígado , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Pisum sativum , Sementes , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Lipogênese/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Pisum sativum/química , Lipólise/efeitos dos fármacos , Masculino , Sementes/química , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Resistência à Insulina , Modelos Animais de Doenças , Albuminas/metabolismo , Proteínas de Ervilha/farmacologia , Estresse Oxidativo/efeitos dos fármacos
14.
Meat Sci ; 216: 109588, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38964226

RESUMO

This study examined the effects of replacing alkaline phosphate (AP) with bamboo fiber (BF), isolated pea protein (PP), and mushroom powder (MP) on the nutritional, technological, oxidative, and sensory characteristics of low-sodium mortadellas. Results indicated that this reformulation maintained the nutritional quality of the products. Natural substitutes were more effective than AP in reducing water and fat exudation. This led to decreased texture profile analysis (TPA) values such as hardness, cohesiveness, gumminess, and chewiness. The reformulation reduced the L* values and increased the b* values, leading to color modifications rated from noticeable to appreciable according to the National Bureau of Standards (NBS) index. Despite minor changes in oxidative stability indicated by increased values in TBARS (from 0.19 to 0.33 mg MDA/kg), carbonyls (from 2.1 to 4.4 nmol carbonyl/mg protein), and the volatile compound profile, the sensory profile revealed a beneficial increase in salty taste, especially due to the inclusion of MP, which was enhanced by the synergy with BF and PP. In summary, the results confirmed the potential of natural alternatives to replace chemical additives in meat products. Incorporating natural antioxidants into future formulations could address the minor oxidation issues observed and enhance the applicability of this reformulation strategy.


Assuntos
Agaricales , Fibras na Dieta , Produtos da Carne , Valor Nutritivo , Proteínas de Ervilha , Paladar , Proteínas de Ervilha/química , Animais , Produtos da Carne/análise , Fibras na Dieta/análise , Agaricales/química , Humanos , Antioxidantes , Pós , Manipulação de Alimentos/métodos , Masculino , Fosfatos , Cor , Oxirredução , Suínos , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Feminino , Sasa/química
15.
Food Chem ; 459: 140381, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38991441

RESUMO

This study investigated the interaction between pea protein amyloid-like nanofibril and epigallocatechin gallate, constructed and characterized the novel pea protein nanofibrils-derived hydrogel mediated by epigallocatechin gallate, and researched the functionalities of the hydrogel. Epigallocatechin gallate remodeled the structure of pea protein nanofibrils, and a stable and strong hydrogel was formed at a relatively low protein concentration (4.5%). Additionally, the hydrogels exhibited various surface structures and hydrogel properties dependent on the mass ratio. Strongest gel strength (51 g) was attained at 0.25 epigallocatechin gallate/pea protein nanofibrils mass ratio. Whereas, the hydrogels exhibited the highest water holding capacity (87%) at 0.05 mass ratio. The primary driving forces in the formation and maintaining of the hydrogels were hydrophobic interactions and ionic bonds. Progressive rise of ß-sheet content of pea protein nanofibrils occurred increasing epigallocatechin gallate concentration. This hydrogel holds great potential for applications in food processing, targeted delivery of nutraceuticals and biomedicine.


Assuntos
Catequina , Hidrogéis , Proteínas de Ervilha , Catequina/química , Catequina/análogos & derivados , Hidrogéis/química , Proteínas de Ervilha/química , Nanofibras/química , Pisum sativum/química , Interações Hidrofóbicas e Hidrofílicas , Amiloide/química
16.
Nutrients ; 16(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38999765

RESUMO

Animal-sourced whey protein (WPr) is the most popular protein supplement among consumers and has been shown to improve muscle mass and strength. However, due to allergies, dietary restrictions/personal choices, and growing demand, alternative protein sources are warranted. Sedentary adults were randomized to pea protein (PPr) or WPr in combination with a weekly resistance training program for 84 days. Changes in whole-body muscle strength (WBMS) including handgrip, lower body, and upper body strength, body composition, and product perception were assessed. The safety outcomes included adverse events, vital signs, clinical chemistry, and hematology. There were no significant differences in the change in WBMS, muscle mass, or product perception and likability scores between the PPr and WPr groups. The participants supplemented with PPr had a 16.1% improvement in WBMS following 84 days of supplementation (p = 0.01), while those taking WPr had an improvement of 11.1% (p = 0.06). Both study products were safe and well-tolerated in the enrolled population. Eighty-four days of PPr supplementation resulted in improvements in strength and muscle mass comparable to WPr when combined with a resistance training program in a population of healthy sedentary adults. PPr may be considered as a viable alternative to animal-sourced WPr without sacrificing muscular gains and product enjoyment.


Assuntos
Suplementos Nutricionais , Força Muscular , Músculo Esquelético , Proteínas de Ervilha , Treinamento Resistido , Comportamento Sedentário , Humanos , Masculino , Feminino , Adulto , Proteínas de Ervilha/administração & dosagem , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Proteínas do Soro do Leite/administração & dosagem , Pessoa de Meia-Idade , Adulto Jovem , Composição Corporal , Força da Mão
17.
Food Chem ; 455: 139870, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850985

RESUMO

The present study investigated thermal gelation of mixed sarcoplasmic (Sarc), myofibrillar (Myof), and pea proteins corresponding to partial meat replacements (0, 25, and 50%) by pea protein isolate (PPI) at reducing salt levels (0.6 â†’ 0.1 M NaCl) to understand in situ (simulated) structure-forming properties of hybrid meat analogues. The amount of soluble proteins in hybrids generally increased with salt concentrations and PPI substitution. While muscle proteins (mixed Sarc and Myof) had the strongest gelling capacity, hybrid proteins also exhibited moderate aggregation and gelling activity based on the sol→gel rheological transition and gel hardness testing. Sarc and pea 7S/11S globulins collectively compensated for the attenuated gelling capacity of mixed proteins due to diminishing Myof in the hybrids. Immobilized water within hybrid protein gels was tightly bonded (T2 from nuclear magnetic resonance), consistent with the dense and uniform microstructure observed. These findings offer a new knowledge base for developing reduced-salt hybrid meat analogues.


Assuntos
Géis , Proteínas Musculares , Proteínas de Ervilha , Géis/química , Proteínas Musculares/química , Animais , Proteínas de Ervilha/química , Reologia , Produtos da Carne/análise , Cloreto de Sódio/química , Pisum sativum/química , Substitutos da Carne
18.
Food Chem ; 457: 140073, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38909456

RESUMO

The phytochemical composition and physicochemical attributes of polyphenol-enriched protein particle ingredients produced with pulse proteins (e.g. chickpea protein, pea protein, and a chickpea-pea protein blend) and polyphenols recovered from wild blueberry pomace were investigated for colloidal and interfacial properties. Anthocyanins were the major polyphenol fraction (27.74-36.47 mg C3G/g) of these polyphenol-rich particles (44.95-62.08 mg GAE/g). Dispersions of pea protein-polyphenol particles showed a superior phase stability before and after heat treatment compared to the chickpea pea protein-polyphenol system. This observation was independent of the added amount of NaCl in the dispersion. In general, at quasi equilibrium state, pulse protein-polyphenol particles and parental pulse protein ingredients showed similar oil-water interfacial tension. However, pea protein-polyphenol particles demonstrated a reduced diffusion-driven oil-water interfacial adsorption rate constant compared to the parental pea protein ingredient. Overall, the obtained results suggest application potential of pea protein-polyphenol particles as a functional food/beverage ingredient.


Assuntos
Coloides , Polifenóis , Polifenóis/química , Coloides/química , Proteínas de Plantas/química , Cicer/química , Secagem por Atomização , Tamanho da Partícula , Pisum sativum/química , Proteínas de Ervilha/química , Frutas/química , Extratos Vegetais/química
19.
Food Res Int ; 190: 114624, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945578

RESUMO

The present work evaluated how a native pea protein isolate (PPI) affects the key roles carried out by bile salts (BS) in lipid digestion by means of the in vitro static INFOGEST protocol. Two gastric residence times were evaluated (10 and 60 min), and then the peptides obtained (GPPP) were mixed with BS at physiological concentration in simulated intestinal fluid to understand how they interact with BS both at the bulk and at the interface. Both GPPP give rise to a film with a predominant viscous character that does not constitute a barrier to the penetration of BS, but interact with BS in the bulk duodenal fluid. When the peptides flushing from the stomach after the different gastric residence times undergo duodenal digestion, it was found that for the longer gastric residence time the percentage of soluble fraction in the duodenal phase, that perform synergistically with BS micelles, was twice that of the lower residence time, leading to an increase in the solubilization of oleic acid. These results finally lead to a greater extent of lipolysis of olive oil emulsions. This work demonstrates the usefulness of in vitro models as a starting point to study the influence of gastric residence time of pea protein on its interaction with BS, affecting lipolysis. Pea proteins were shown to be effective emulsifiers that synergistically perform with BS improving the release and bioaccessibility of bioactive lipids as olive oil.


Assuntos
Ácidos e Sais Biliares , Digestão , Lipólise , Proteínas de Ervilha , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/química , Proteínas de Ervilha/química , Proteínas de Ervilha/metabolismo , Pisum sativum/química , Pisum sativum/metabolismo , Peptídeos/metabolismo , Peptídeos/química , Duodeno/metabolismo , Humanos
20.
J Food Sci ; 89(7): 4229-4249, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38875321

RESUMO

This study investigates the aromatic composition of pea albumin and globulin fractions obtained through either fermentation or conventional acidification using hydrochloric acid (control) toward the isoelectric point of pea globulins. Different lactic acid bacteria were used including S. thermophilus (ST), L. plantarum (LP), and their coculture (STLP). The volatile compounds were extracted by solvent-assisted flavor evaporation technique and quantified by gas chromatography-mass spectrometry (GC-MS). Odor-active compounds (OAC) were further characterized by gas chromatography-olfactometry (GC-O). In total, 96 volatile and 36 OACs were identified by GC-MS and GC-O, respectively. The results indicated that the protein fractions obtained by conventional acidification were mainly described by green notes for the presence of different volatile compounds such as hexanal. However, the samples obtained by fermentation had a lower content of these volatile compounds. Moreover, protein fractions obtained by coculture fermentation were described by volatile compounds associated with fruity, floral, and lactic notes. PRACTICAL APPLICATION: The insights from this study on pea protein aroma could find practical use in the food industry to enhance the sensory qualities of plant-based products. By utilizing fermentation methods and specific lactic acid bacteria combinations, manufacturers may produce pea protein with reduced undesirable green notes, offering consumers food options with improved flavors. This research may contribute to the development of plant-based foods that not only provide nutritional benefits but also meet consumer preferences for a more appealing taste profile.


Assuntos
Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Proteínas de Ervilha , Pisum sativum , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Odorantes/análise , Proteínas de Ervilha/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Pisum sativum/química , Olfatometria/métodos , Lactobacillus plantarum/metabolismo , Aromatizantes , Humanos , Streptococcus thermophilus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...