Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.768
Filtrar
1.
Sci Rep ; 14(1): 12979, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839868

RESUMO

Subcutaneous dirofilariasis, caused by the parasitic nematode Dirofilaria repens, is a growing concern in Europe, affecting both dogs and humans. This study focused on D. repens Dr20/22, a protein encoded by an alt (abundant larval transcript) gene family. While well-documented in L3 larvae of other filariae species, this gene family had not been explored in dirofilariasis. The research involved cloning Dr20/22 cDNA, molecular characterization, and evaluating its potential application in the diagnosis of dirofilariasis. Although Real-Time analysis revealed mRNA expression in both adult worms and microfilariae, the native protein remained undetected in lysates from both developmental stages. This suggests the protein's specificity for L3 larvae and may be related to a process called SLTS (spliced leader trans-splicing), contributing to stage-specific gene expression. The specificity of the antigen for invasive larvae positions it as a promising early marker for dirofilariasis. However, ELISA tests using sera from infected and uninfected dogs indicated limited diagnostic utility. While further research is required, our findings contribute to a deeper understanding of the molecular and immunological aspects of host-parasite interactions and could offer insights into the parasite's strategies for evading the immune system.


Assuntos
Dirofilaria repens , Dirofilariose , Doenças do Cão , Animais , Cães , Dirofilariose/imunologia , Dirofilariose/parasitologia , Dirofilaria repens/genética , Dirofilaria repens/imunologia , Doenças do Cão/parasitologia , Doenças do Cão/imunologia , Anticorpos Anti-Helmínticos/imunologia , Anticorpos Anti-Helmínticos/sangue , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia , Proteínas de Helminto/metabolismo , Antígenos de Helmintos/imunologia , Antígenos de Helmintos/genética , Larva/imunologia , Formação de Anticorpos/imunologia
2.
Vet Res ; 55(1): 78, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877574

RESUMO

Endoplasmic reticulum stress (ERS) and oxidative stress (OS) are adaptive responses of the body to stressor stimulation. Although it has been verified that Trichinella spiralis (T. spiralis) can induce ERS and OS in the host, their association is still unclear. Therefore, this study explored whether T. spiralis-secreted serpin-type serine protease inhibitor (TsAdSPI) is involved in regulating the relationship between ERS and OS in the host intestine. In this study, mice jejunum and porcine small intestinal epithelial cells (IECs) were detected using qPCR, western blotting, immunohistochemistry (IHC), immunofluorescence (IF), and detection kits. The results showed that ERS- and OS-related indexes changed significantly after TsAdSPI stimulation, and Bip was located in IECs, indicating that TsAdSPI could induce ERS and OS in IECs. After the use of an ERS inhibitor, OS-related indexes were inhibited, suggesting that TsAdSPI-induced OS depends on ERS. When the three ERS signalling pathways, ATF6, IRE1, and PERK, were sequentially suppressed, OS was only regulated by the PERK pathway, and the PERK-eif2α-CHOP-ERO1α axis played a key role. Similarly, the expression of ERS-related indexes and the level of intracellular Ca2+ were inhibited after adding the OS inhibitor, and the expression of ERS-related indexes decreased significantly after inhibiting calcium transfer. This finding indicated that TsAdSPI-induced OS could affect ERS by promoting Ca2+ efflux from the endoplasmic reticulum. The detection of the ERS and OS sequences revealed that OS occurred before ERS. Finally, changes in apoptosis-related indexes were detected, and the results indicated that TsAdSPI-induced ERS and OS could regulate IEC apoptosis. In conclusion, TsAdSPI induced OS after entering IECs, OS promoted ERS by enhancing Ca2+ efflux, and ERS subsequently strengthened OS by activating the PERK-eif2α-CHOP-ERO1α axis. ERS and OS induced by TsAdSPI synergistically promoted IEC apoptosis. This study provides a foundation for exploring the invasion mechanism of T. spiralis and the pathogenesis of host intestinal dysfunction after invasion.


Assuntos
Estresse do Retículo Endoplasmático , Células Epiteliais , Estresse Oxidativo , Serpinas , Trichinella spiralis , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Trichinella spiralis/fisiologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Suínos , Serpinas/metabolismo , Serpinas/genética , Inibidores de Serina Proteinase/farmacologia , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Jejuno/efeitos dos fármacos
3.
Parasite ; 31: 32, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38912916

RESUMO

The plerocercoid larvae of Spirometra mansoni are etiological agents of human and animal sparganosis. Annexins are proteins with important roles in parasites. However, our knowledge of annexins in S. mansoni is still inadequate. In this study, 18 new members of the Annexin (ANX) family were characterized in S. mansoni. The clustering analysis demonstrated that all the SmANXs were divided into two main classes, consistent with the patterns of conserved motif organization. The 18 SmANXs were detected at all developmental stages (plerocercoid, adult, and egg) and displayed ubiquitous but highly variable expression patterns in all tissues/organs studied. The representative member rSmANX18 was successfully cloned and expressed. The protein was immunolocalized in the tegument and parenchyma of the plerocercoid and in the tegument, parenchyma, uterus and egg shell of adult worms. The recombinant protein can bind phospholipids with high affinity in a Ca2+-dependent manner, shows high anticoagulant activity and combines with FITC to recognize apoptotic cells. Annexin gene polymorphism and conservative core motif permutation were found in both cestodes and trematodes. SmANXs also revealed high genetic diversity among Platyhelminthes of medical interest. Our findings lay a foundation for further studies on the biological functions of ANXs in S. mansoni as well as other taxa in which ANXs occur.


Title: La famille des gènes des annexines chez Spirometra mansoni (Cestoda : Diphyllobothriidae) et son schéma phylogénétique parmi les Plathelminthes d'intérêt médical. Abstract: Les larves plérocercoïdes de Spirometra mansoni sont des agents étiologiques de la sparganose humaine et animale. Les annexines sont des protéines jouant un rôle important chez les parasites. Cependant, nos connaissances sur les annexines chez S. mansoni sont encore insuffisantes. Dans cette étude, 18 nouveaux membres de la famille des annexines (ANX) ont été caractérisés chez S. mansoni. L'analyse de regroupement a démontré que tous les SmANX étaient divisées en deux classes principales, ce qui correspond aux modèles d'organisation des motifs conservés. Les 18 SmANX ont été détectées à tous les stades de développement (plérocercoïde, adulte et œuf) et présentaient des modèles d'expression omniprésents mais très variables dans tous les tissus/organes étudiés. Le membre représentatif rSmANX18 a été cloné et exprimé avec succès. La protéine a été immunolocalisée dans le tégument et le parenchyme du plérocercoïde ainsi que dans le tégument, le parenchyme, l'utérus et la coquille d'œuf des vers adultes. La protéine recombinante peut se lier aux phospholipides avec une affinité élevée de manière dépendante du Ca2+, présente une activité anticoagulante élevée et se combine avec le FITC pour reconnaître les cellules apoptotiques. Un polymorphisme du gène de l'annexine et une permutation conservatrice du motif central ont été trouvés chez les cestodes et les trématodes. Les SmANX ont également révélé une grande diversité génétique parmi les Plathelminthes d'intérêt médical. Nos résultats jettent les bases pour des études plus approfondies sur les fonctions biologiques des ANX chez S. mansoni ainsi que dans d'autres taxons dans lesquels les ANX sont présents.


Assuntos
Anexinas , Filogenia , Spirometra , Animais , Spirometra/genética , Anexinas/genética , Anexinas/química , Sequência de Aminoácidos , Proteínas de Helminto/genética , Proteínas de Helminto/química , Família Multigênica , Humanos , Feminino , Variação Genética , Proteínas Recombinantes/genética
4.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928010

RESUMO

The identification of novel drug targets in plant-parasitic nematodes (PPNs) is imperative due to the loss of traditional nematicides and a lack of replacements. Chemosensation, which is pivotal for PPNs in locating host roots, has become a focus in nematode behavioral research. However, its underlying molecular basis is still indistinct in such a diverse group of PPNs. To characterize genes participating in chemosensation in the Javanese root-knot nematode Meloidogyne javanica, RNA-sequencing of the second-stage juveniles (J2s) treated with tomato root exudate (TRE) for 1 h and 6 h was performed. Genes related to chemosensation in M. javanica mainly responded to TRE treatment at 1 h. Moreover, a gene ontology (GO) analysis underscored the significance of the neuropeptide G protein-coupled receptor signaling pathway. Consequently, the repertoire of putative neuropeptides in M. javanica, including FMRFamide-like peptides (FLPs), insulin-like peptides (ILPs), and neuropeptide-like peptides (NLPs), were outlined based on a homology analysis. The gene Mjflp-14a, harboring two neuropeptides, was significantly up-regulated at 1 h TRE treatment. Through peptide synthesis and J2 treatment, one of the two neuropeptides (MjFLP-14-2) was proven to influence the J2 chemotaxis towards tomato root tips. Overall, our study reinforces the potential of nematode neuropeptides as novel targets and tools for root-knot nematode control.


Assuntos
Neuropeptídeos , Raízes de Plantas , Solanum lycopersicum , Tylenchoidea , Animais , Tylenchoidea/fisiologia , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Raízes de Plantas/parasitologia , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Solanum lycopersicum/parasitologia , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Quimiotaxia , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética
5.
Sci Rep ; 14(1): 12969, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839835

RESUMO

Schistosomiasis, caused by Schistosoma trematodes, is a significant global health concern, particularly affecting millions in Africa and Southeast Asia. Despite efforts to combat it, the rise of praziquantel (PZQ) resistance underscores the need for new treatment options. Protein kinases (PKs) are vital in cellular signaling and offer potential as drug targets. This study focused on focal adhesion kinase (FAK) as a candidate for anti-schistosomal therapy. Transcriptomic and proteomic analyses of adult S. mekongi worms identified FAK as a promising target due to its upregulation and essential role in cellular processes. Molecular docking simulations assessed the binding energy of FAK inhibitors to Schistosoma FAK versus human FAK. FAK inhibitor 14 and PF-03814735 exhibited strong binding to Schistosoma FAK with minimal binding for human FAK. In vitro assays confirmed significant anti-parasitic activity against S. mekongi, S. mansoni, and S. japonicum, comparable to PZQ, with low toxicity in human cells, indicating potential safety. These findings highlight FAK as a promising target for novel anti-schistosomal therapies. However, further research, including in vivo studies, is necessary to validate efficacy and safety before clinical use. This study offers a hopeful strategy to combat schistosomiasis and reduce its global impact.


Assuntos
Proteômica , Schistosoma , Esquistossomose , Transcriptoma , Animais , Humanos , Proteômica/métodos , Schistosoma/efeitos dos fármacos , Schistosoma/genética , Schistosoma/metabolismo , Esquistossomose/tratamento farmacológico , Simulação de Acoplamento Molecular , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Perfilação da Expressão Gênica/métodos , Inibidores de Proteínas Quinases/farmacologia , Proteoma/metabolismo
6.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892261

RESUMO

Flatworms are known for their remarkable regenerative ability, one which depends on totipotent cells known as germinative cells in cestodes. Depletion of germinative cells with hydroxyurea (HU) affects the regeneration of the parasite. Here, we studied the reduction and recovery of germinative cells in T. crassiceps cysticerci after HU treatment (25 mM and 40 mM of HU for 6 days) through in vitro assays. Viability and morphological changes were evaluated. The recovery of cysticerci's mobility and morphology was evaluated at 3 and 6 days, after 6 days of treatment. The number of proliferative cells was evaluated using EdU. Our results show morphological changes in the size, shape, and number of evaginated cysticerci at the 40 mM dose. The mobility of cysticerci was lower after 6 days of HU treatment at both concentrations. On days 3 and 6 of recovery after 25 mM of HU treatment, a partial recovery of the proliferative cells was observed. Proteomic and Gene Ontology analyses identified modifications in protein groups related to DNA binding, DNA damage, glycolytic enzymes, cytoskeleton, skeletal muscle, and RNA binding.


Assuntos
Proliferação de Células , Hidroxiureia , Taenia , Hidroxiureia/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Taenia/efeitos dos fármacos , Taenia/genética , Taenia/crescimento & desenvolvimento , Taenia/metabolismo , Proteômica/métodos , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Proteoma/metabolismo , Cysticercus/efeitos dos fármacos , Cysticercus/metabolismo
7.
BMC Vet Res ; 20(1): 252, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851737

RESUMO

BACKGROUND: The insulin/insulin-like signalling (IIS) pathway is common in mammals and invertebrates, and the IIS pathway is unknown in Fasciola gigantica. In the present study, the IIS pathway was reconstructed in F. gigantica. We defined the components involved in the IIS pathway and investigated the transcription profiles of these genes for all developmental stages of F. gigantica. In addition, the presence of these components in excretory and secretory products (ESPs) was predicted via signal peptide annotation. RESULTS: The core components of the IIS pathway were detected in F. gigantica. Among these proteins, one ligand (FgILP) and one insulin-like molecule binding protein (FgIGFBP) were analysed. Interestingly, three receptors (FgIR-1/FgIR-2/FgIR-3) were detected, and a novel receptor, FgIR-3, was screened, suggesting novel functions. Fg14-3-3ζ, Fgirs, and Fgpp2a exhibited increased transcription in 42-day-old juveniles and 70-day-old juveniles, while Fgilp, Fgigfb, Fgsgk-1, Fgakt-1, Fgir-3, Fgpten, and Fgaap-1 exhibited increased transcription in metacercariae. FgILP, FgIGFBP, FgIR-2, FgIR-3, and two transcription factors (FgHSF-1 and FgSKN-1) were predicted to be present in FgESPs, indicating their exogenous roles. CONCLUSIONS: This study helps to elucidate the signal transduction pathway of IIS in F. gigantica, which will aid in understanding the interaction between flukes and hosts, as well as in understanding fluke developmental regulation, and will also lay a foundation for further characterisation of the IIS pathways of trematodes.


Assuntos
Fasciola , Proteínas de Helminto , Insulina , Transdução de Sinais , Animais , Fasciola/genética , Fasciola/metabolismo , Insulina/metabolismo , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética
8.
Mol Biochem Parasitol ; 259: 111632, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38834134

RESUMO

Spirocerca lupi is a parasitic nematode affecting predominantly domestic dogs. It causes spirocercosis, a disease that is often fatal. The assembled draft genome of S. lupi consists of 13,627 predicted protein-coding genes and is approximately 150 Mb in length. Several known anthelmintic gene targets such as for ß-Tubulin, glutamate, and GABA receptors as well as known vaccine gene targets such as cysteine protease inhibitor and cytokines were identified in S. lupi by comparing orthologs of C. elegans anthelmintic gene targets as well as orthologs to known vaccine candidates. New anthelmintic targets were predicted through an inclusion-exclusion strategy and new vaccine targets were predicted through an immunoinformatics approach. New anthelminthic targets include DNA-directed RNA polymerases, chitin synthase, polymerases, and other enzymes. New vaccine targets include cuticle collagens. These gene targets provide a starting platform for new drug identification and vaccine design.


Assuntos
Anti-Helmínticos , Genoma Helmíntico , Thelazioidea , Vacinas , Animais , Anti-Helmínticos/farmacologia , Vacinas/imunologia , Vacinas/genética , Thelazioidea/genética , Thelazioidea/imunologia , Thelazioidea/efeitos dos fármacos , Cães , Infecções por Spirurida/parasitologia , Infecções por Spirurida/prevenção & controle , Infecções por Spirurida/veterinária , Infecções por Spirurida/imunologia , Doenças do Cão/parasitologia , Doenças do Cão/prevenção & controle , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia
9.
Acta Trop ; 255: 107247, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729330

RESUMO

Fatty acid binding proteins (FABPs) have emerged as attractive vaccination candidates for several platyhelminth species. To explore the physiological functions of Echinococcus multilocularis (E. multilocularis) FABP, the molecular characteristics of EmFABP1 were analyzed by online software, and the regulatory roles of rEmFABP1 protein in murine macrophages were further investigated. The emfabp1 gene encodes 133 amino acids with the characteristic ß-barrel shape of the cytoplasmic FABP family. Natural EmFABP1 protein is predominantly expressed in protoscoleces tegument and germinal layer cells and is also detected in cyst fluid and exosomes of E. multilocularis. rEmFABP1 protein demonstrated a notable suppression of phagocytic activity and nitric oxide production in murine macrophages. Additionally, the protein was observed to promote apoptosis and regulate cytokine expression in macrophages. These findings suggested that E. multilocularis FABP1 is critical in modifying macrophage physiological processes and that this protein may have immunomodulatory roles during infection.


Assuntos
Echinococcus multilocularis , Proteínas de Ligação a Ácido Graxo , Proteínas de Helminto , Macrófagos , Fagocitose , Animais , Echinococcus multilocularis/genética , Echinococcus multilocularis/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Proteínas de Helminto/imunologia , Óxido Nítrico/metabolismo , Apoptose , Citocinas/metabolismo , Células RAW 264.7
10.
Vet Parasitol ; 329: 110196, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763120

RESUMO

Monogeneans are parasitic flatworms that represent a significant threat to the aquaculture industry. Species like Neobenedenia melleni (Capsalidae) and Rhabdosynochus viridisi (Diplectanidae) have been identified as causing diseases in farmed fish. In the past years, molecular research on monogeneans of the subclass Monopisthocotylea has focused on the generation of genomic and transcriptomic information and the identification in silico of some protein families of veterinary interest. Proteomic analysis has been suggested as a powerful tool to investigate proteins in parasites and identify potential targets for vaccine development and diagnosis. To date, the proteomic dataset for monogeneans has been restricted to a species of the subclass Polyopisthocotylea, while in monopisthocotyleans there is no proteomic data. In this study, we present the first proteomic data on two monopisthocotylean species, Neobenedenia sp. and R. viridisi, obtained from three distinct sample types: tissue, excretory-secretory products (ESPs), and eggs. A total of 1691 and 1846 expressed proteins were identified in Neobenedenia sp. and R. viridisi, respectively. The actin family was the largest protein family, followed by the tubulin family and the heat shock protein 70 (HSP70) family. We focused mainly on ESPs because they are important to modulate the host immune system. We identified proteins of the actin, tubulin, HSP70 and HSP90 families in both tissue and ESPs, which have been recognized for their antigenic activities in parasitic flatworms. Furthermore, our study uncovered the presence of proteins within ESPs, such as annexin, calcium-binding protein, fructose bisphosphate aldolase, glutamate dehydrogenase, myoferlin, and paramyosin, that are targets for immunodiagnostic and vaccine development and hold paramount relevance in veterinary medicine. This study expands our knowledge of monogeneans and identified proteins that, in other platyhelminths are potential targets for vaccines and drug discovery.


Assuntos
Aquicultura , Doenças dos Peixes , Proteômica , Animais , Doenças dos Peixes/parasitologia , Vacinas/imunologia , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia , Proteínas de Helminto/análise , Infecções por Trematódeos/veterinária , Infecções por Trematódeos/parasitologia , Infecções por Trematódeos/diagnóstico , Biomarcadores , Trematódeos/genética , Trematódeos/imunologia , Platelmintos/genética , Platelmintos/imunologia
11.
Infect Genet Evol ; 122: 105609, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38806077

RESUMO

Nuclear hormone receptors (NHRs) are emerging target candidates against nematode infection and resistance. However, there is a lack of comprehensive information on NHR-coding genes in parasitic nematodes. In this study, we curated the nhr gene family for 60 major parasitic nematodes from humans and animals. Compared with the free-living model organism Caenorhabditis elegans, a remarkable contraction of the nhr family was revealed in parasitic species, with genetic diversification and conservation unveiled among nematode Clades I (10-13), III (16-42), IV (33-35) and V (25-64). Using an in vitro biosystem, we demonstrated that 40 nhr genes in a blood-feeding nematode Haemonchus contortus (clade V; barber's pole worm) were responsive to host serum and one nhr gene (i.e., nhr-64) was consistently stimulated by anthelmintics (i.e., ivermectin, thiabendazole and levamisole); Using a high-throughput RNA interference platform, we knocked down 43 nhr genes of H. contortus and identified at least two genes that are required for the viability (i.e., nhr-105) and development (i.e., nhr-17) of the infective larvae of this parasitic nematode in vitro. Harnessing this preliminary functional atlas of nhr genes for H. contortus will prime the biological studies of this gene family in nematode genetics, infection, and anthelmintic metabolism within host animals, as well as the promising discovery of novel intervention targets.


Assuntos
Haemonchus , Larva , Interferência de RNA , Receptores Citoplasmáticos e Nucleares , Animais , Larva/genética , Haemonchus/genética , Receptores Citoplasmáticos e Nucleares/genética , Família Multigênica , Filogenia , Anti-Helmínticos/farmacologia , Genoma Helmíntico , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Humanos
12.
PLoS Pathog ; 20(5): e1012268, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38814989

RESUMO

The eggs of the blood fluke Schistosoma mansoni are the main cause of the clinical manifestations of chronic schistosomiasis. After laying, the egg "winners" attach to the endothelium of the mesenteric vein and, after a period of development, induce the growth of a small granuloma, which facilitates their passage to the intestinal lumen. Egg "losers" carried by the bloodstream to non-specific tissues also undergo full development and induce large granuloma formation, but their life ends there. Although these trapped eggs represent a dead end in the parasite life cycle, the vast majority of studies attempting to describe the biology of the S. mansoni eggs have studied these liver-trapped "losers" instead of migrating intestinal "winners". This raises the fundamental question of how these eggs differ. With robust comparative transcriptomic analysis performed on S. mansoni eggs isolated 7 weeks post infection, we show that gene expression is critically dependent on tissue localization, both in the early and late stages of development. While mitochondrial genes and venom allergen-like proteins are significantly upregulated in mature intestinal eggs, well-described egg immunomodulators IPSE/alpha-1 and omega-1, together with micro-exon genes, are predominantly expressed in liver eggs. In addition, several proteases and protease inhibitors previously implicated in egg-host interactions display clear tissue-specific gene expression patterns. These major differences in gene expression could be then reflected in the observed different ability of liver and intestinal soluble egg antigens to elicit host immune responses and in the shorter viability of miracidia hatched from liver eggs. Our comparative analysis provides a new perspective on the biology of parasite's eggs in the context of their development and tissue localization. These findings could contribute to a broader and more accurate understanding of parasite eggs interactions with the host, which have historically been often restricted to liver eggs and sometimes inaccurately generalized.


Assuntos
Fígado , Schistosoma mansoni , Esquistossomose mansoni , Animais , Schistosoma mansoni/imunologia , Schistosoma mansoni/genética , Fígado/parasitologia , Fígado/imunologia , Fígado/metabolismo , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/parasitologia , Camundongos , Óvulo/metabolismo , Óvulo/imunologia , Intestinos/parasitologia , Intestinos/imunologia , Antígenos de Helmintos/imunologia , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Proteínas de Helminto/imunologia , Feminino , Proteínas do Ovo
13.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732085

RESUMO

Meloidogyne hapla is one of the most important nematode pathogens. It is a sedentary, biotrophic parasite of plants that overwinters in the soil or in diseased roots. The development of M. hapla is temperature dependent. Numerous studies have been performed on the effect of temperature on the development of M. hapla, but only a few of them analyzed the heat shock protein (hsp) genes. The aim of the study was to perform expression profiling of eight hsp genes (Mh-hsp90, Mh-hsp1, Mh-hsp4, Mh-hsp6, Mh-hsp60, Mh-dnj19, Mh-hsp43, and Mh-hsp12.2) at two development stages of M. hapla, i.e., in eggs and second-stage juveniles (J2). The eggs and J2 were incubated under cold stress (5 °C), heat stress (35 °C, 40 °C), and non-stress (10 °C, 20 °C, and 30 °C) conditions. Expression profiling was performed by qPCR. It was demonstrated that only two genes, Mh-hsp60 and Mh-dnj19, have been upregulated by heat and cold stress at both development stages. Heat stress upregulated the expression of more hsp genes than cold stress did. The level of upregulation of most hsp genes was more marked in J2 than in eggs. The obtained results suggest that the Mh-hsp90 and Mh-hsp1 genes can be used as bioindicators of environmental impacts on nematodes of the Meloidogyne genus.


Assuntos
Proteínas de Choque Térmico , Tylenchoidea , Tylenchoidea/fisiologia , Animais , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Temperatura , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Óvulo/metabolismo , Óvulo/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento
14.
Parasit Vectors ; 17(1): 206, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715089

RESUMO

BACKGROUND: Opisthorchiasis and cholangiocarcinoma (CCA) continue to be public health concerns in many Southeast Asian countries. Although the prevalence of opisthorchiasis is declining, reported cases tend to have a light-intensity infection. Therefore, early detection by using sensitive methods is necessary. Several sensitive methods have been developed to detect opisthorchiasis. The immunological detection of antigenic proteins has been proposed as a sensitive method for examining opisthorchiasis. METHODS: The Opisthorchis viverrini antigenic proteins, including cathepsin B (OvCB), asparaginyl endopeptidase (OvAEP), and cathepsin F (OvCF), were used to construct multi-antigenic proteins. The protein sequences of OvCB, OvAEP, and OvCF, with a high probability of B cell epitopes, were selected using BepiPred 1.0 and the IEDB Analysis Resource. These protein fragments were combined to form OvCB_OvAEP_OvCF recombinant DNA, which was then used to produce a recombinant protein in Escherichia coli strain BL21(DE3). The potency of the recombinant protein as a diagnostic target for opisthorchiasis was assessed using immunoblotting and compared with that of the gold standard method, the modified formalin-ether concentration technique. RESULTS: The recombinant OvCB_OvAEP_OvCF protein showed strong reactivity with total immunoglobulin G (IgG) antibodies against light-intensity O. viverrini infections in the endemic areas. Consequently, a high sensitivity (100%) for diagnosing opisthorchiasis was reported. However, cross-reactivity with sera from other helminth and protozoan infections (including taeniasis, strongyloidiasis, giardiasis, E. coli infection, enterobiasis, and mixed infection of Echinostome spp. and Taenia spp.) and no reactivity with sera from patients with non-parasitic infections led to a reduced specificity of 78.4%. In addition, the false negative rate (FNR), false positive rate (FPR), positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy were 0%, 21.6%, 81.4%, 100%, and 88.9%, respectively. CONCLUSIONS: The high sensitivity of the recombinant OvCB_OvAEP_OvCF protein in detecting opisthorchiasis demonstrates its potential as an opisthorchiasis screening target. Nonetheless, research on reducing cross-reactivity should be undertaken by detecting other antibodies in other sample types, such as saliva, urine, and feces.


Assuntos
Antígenos de Helmintos , Opistorquíase , Opisthorchis , Opistorquíase/diagnóstico , Opisthorchis/imunologia , Opisthorchis/genética , Animais , Antígenos de Helmintos/genética , Antígenos de Helmintos/imunologia , Humanos , Anticorpos Anti-Helmínticos/sangue , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Sensibilidade e Especificidade , Proteínas de Helminto/imunologia , Proteínas de Helminto/genética , Epitopos/imunologia , Epitopos/genética , Catepsina B/genética , Catepsina B/imunologia , Escherichia coli/genética , Cisteína Endopeptidases
15.
Sci Rep ; 14(1): 12347, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811840

RESUMO

Fascioliasis is a parasitic infection in animals and humans caused by the parasitic flatworm genus Fasciola, which has two major species, F. hepatica and F. gigantica. A major concern regarding this disease is drug resistance, which is increasingly reported worldwide. Hence, the discovery of a novel drug as well as drug targets is crucially required. Therefore, this study aims to characterize the novel drug target in the adult F. gigantica. In the beginning, we hypothesized that the parasite might interact with some host molecules when it lives inside the liver parenchyma or bile ducts, specifically hormones and hormone-like molecules, through the specific receptors, primarily nuclear receptors (NRs), which are recognized as a major drug target in various diseases. The retinoid X receptor (RXR) is a member of subfamily 2 NRs that plays multitudinous roles in organisms by forming homodimers or heterodimers with other NRs. We obtained the full-length amino acid sequences of F. gigantica retinoid X receptor-alpha (FgRXRα-A) from the transcriptome of F. gigantica that existed in the NCBI database. The FgRXRα-A were computationally predicted for the basic properties, multiple aligned, phylogeny analyzed, and generated of 2D and 3D models. Moreover, FgRXRα-A was molecular cloned and expressed as a recombinant protein (rFgRXRα-A), then used for immunization for specific polyclonal antibodies. The native FgRXRα-A was detected in the parasite extracts and tissues, and the function was investigated by in vitro binding assay. The results demonstrated the conservation of FgRXRα-A to the other RXRs, especially RXRs from the trematodes. Interestingly, the native FgRXRα-A could be detected in the testes of the parasite, where the sex hormones are accumulated. Moreover, the binding assay revealed the interaction of 9-cis retinoic acid and FgRXRα-A, suggesting the function of FgRXRα-A. Our findings suggested that FgRXRα-A will be involved with the sexual reproduction of the parasite by forming heterodimers with other NRs, and it could be the potential target for further drug development of fascioliasis.


Assuntos
Fasciola , Receptor X Retinoide alfa , Animais , Fasciola/metabolismo , Fasciola/genética , Receptor X Retinoide alfa/metabolismo , Receptor X Retinoide alfa/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Filogenia , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Proteínas de Helminto/química , Fasciolíase/parasitologia , Sequência de Aminoácidos
16.
Mol Biochem Parasitol ; 259: 111621, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38705360

RESUMO

Neurocysticercosis is the leading cause for acquired epilepsy worldwide, and it is caused by the larval stage of the parasite Taenia solium. Several proteins of this stage have been characterized and studied to understand the parasite-host interaction, however, the proteins from the early cysticercus stages (the postoncospheral form) have not yet been characterized. The study of the postoncospheral form proteins is important to understand the host-parasite relationship in the early stages of infection. The aim of this work was to identify postoncospheral form antigenic proteins using sera from neurocysticercosis patients. T. solium activated oncospheres were cultured in HCT-8 cells to obtain the postoncospheral form. Soluble total and excretory/secretory proteins were obtained from the postoncospheral form and were incubated with both pool sera and individual serum of neurocysticercosis positive human patients. Immunoblotting showed target antigenic proteins with apparent molecular weights of 23 kDa and 46-48 kDa. The 46-48 kDa antigen bands present in soluble total and excretory/secretory postoncospheral form proteins were analyzed by LC-MS/MS; proteins identified were: nuclear elongation factor 1 alpha, enolase, unnamed protein product/antigen diagnostic GP50, calcium binding protein calreticulin precursor and annexin. The postoncospheral form expresses proteins related to interaction with the host, some of these proteins are predicted to be exosomal proteins. In conclusion, postoncospheral proteins are consistent targets of the humoral immune response in human and may serve as targets for diagnosis and vaccines.


Assuntos
Antígenos de Helmintos , Proteínas de Helminto , Neurocisticercose , Taenia solium , Taenia solium/imunologia , Taenia solium/genética , Antígenos de Helmintos/imunologia , Animais , Humanos , Neurocisticercose/imunologia , Neurocisticercose/parasitologia , Neurocisticercose/diagnóstico , Proteínas de Helminto/imunologia , Proteínas de Helminto/genética , Proteínas de Helminto/química , Espectrometria de Massas em Tandem , Anticorpos Anti-Helmínticos/sangue , Anticorpos Anti-Helmínticos/imunologia , Cromatografia Líquida , Peso Molecular
17.
Mol Genet Genomics ; 299(1): 53, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753163

RESUMO

SoxB subfamily is an important branch of Sox family and plays a key role in animal physiological process, but little is known about their function in planarian regeneration. This study aims to evaluate the function of DjSoxB family genes in intact and regenerating planarians Dugesia japonica. Here, we amplify the full-length cDNA of DjSoxB1 and DjSoxB2 in D. japonica by rapid amplification of the cDNA ends (RACE), detect the expression of DjSoxB family genes in planarian. The results show that DjSoxBs are expressed in parenchymal tissue and the hybridization signals partially disappear after irradiation indicates DjSoxB family genes are expressed in neoblasts. After the RNA interference (RNAi) of DjSoxB1, DjSoxB2 and DjSoxB3 separately, the numbers of proliferative cells are all reduced that causes planarians show slower growth of blastema in the early stage of regeneration, and nerves of planarians are affected that the movement speed of planarians decreases in varying degrees. Specially, planarians in the DjSoxB3 RNAi group show shrinkage and twisting. Overall, this study reveals that DjSoxB family genes play a role in cell proliferation during regeneration. They also play an important role in the maintenance of normal nerve function and nerve regeneration. These results provide directions for the functional study of SoxB family genes and provide an important foundation for planarian regeneration.


Assuntos
Planárias , Regeneração , Animais , Planárias/genética , Planárias/fisiologia , Regeneração/genética , Interferência de RNA , Proliferação de Células/genética , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Fatores de Transcrição SOXB1/genética
18.
New Phytol ; 242(6): 2787-2802, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38693568

RESUMO

Root-knot nematodes (RKN; Meloidogyne species) are plant pathogens that introduce several effectors in their hosts to facilitate infection. The actual targets and functioning mechanism of these effectors largely remain unexplored. This study illuminates the role and interplay of the Meloidogyne javanica nematode effector ROS suppressor (Mj-NEROSs) within the host plant environment. Mj-NEROSs suppresses INF1-induced cell death as well as flg22-induced callose deposition and reactive oxygen species (ROS) production. A transcriptome analysis highlighted the downregulation of ROS-related genes upon Mj-NEROSs expression. NEROSs interacts with the plant Rieske's iron-sulfur protein (ISP) as shown by yeast-two-hybrid and bimolecular fluorescence complementation. Secreted from the subventral pharyngeal glands into giant cells, Mj-NEROSs localizes in the plastids where it interacts with ISP, subsequently altering electron transport rates and ROS production. Moreover, our results demonstrate that isp Arabidopsis thaliana mutants exhibit increased susceptibility to M. javanica, indicating ISP importance for plant immunity. The interaction of a nematode effector with a plastid protein highlights the possible role of root plastids in plant defense, prompting many questions on the details of this process.


Assuntos
Arabidopsis , Complexo III da Cadeia de Transporte de Elétrons , Imunidade Vegetal , Plastídeos , Espécies Reativas de Oxigênio , Tylenchoidea , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/parasitologia , Arabidopsis/imunologia , Arabidopsis/genética , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Animais , Plastídeos/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ligação Proteica , Mutação/genética , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética
19.
Front Cell Infect Microbiol ; 14: 1391168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817446

RESUMO

Schistosoma species are the causative agent of schistosomiasis and shows worldwide distribution. There is a great need to develop a sensitive diagnostic approach for controlling the disease. Previously, we identified large numbers of Extracellular Vesicle (EV) proteins from Schistosoma japonicum (S. japonicum), but rarely these proteins have been evaluated for their diagnostic potential. In the present study, we performed bioinformatic analyses of S. japonicum identified EV-associated proteins from the previous study and then identified Schistosoma-specific proteins with potentially secreted capability. Among them, we selected SJCHGC02838 protein, SJCHGC05593 protein, SJCHGC05668 protein and a hypothetical protein (SJHYP) to evaluate their diagnostic potential for detecting S. japonicum infection. First, we determined the expression of these four proteins at the transcript levels using qRT-PCR and revealed that all these genes showed higher expression in adult stage. Then, we cloned the full-length cDNA for each protein into a prokaryotic expression vector and successfully generated the recombinant proteins. Upon the purification of recombinant proteins, we developed an indirect ELISA method to evaluate the diagnostic potential of these purified recombinant proteins. The results showed high sensitivity for detecting Schistosoma infection. Additionally, these proteins also displayed a good potential for detecting Schistosoma infection, especially SJCHGC05668 protein at an early stage. The diagnostic potentials of these recombinant proteins were further evaluated by Western blot and comparatively analyzed by our previously developed cfDNA methods.


Assuntos
Biomarcadores , Ensaio de Imunoadsorção Enzimática , Vesículas Extracelulares , Proteínas de Helminto , Schistosoma japonicum , Esquistossomose Japônica , Schistosoma japonicum/genética , Schistosoma japonicum/metabolismo , Schistosoma japonicum/isolamento & purificação , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Esquistossomose Japônica/diagnóstico , Esquistossomose Japônica/parasitologia , Proteínas de Helminto/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Biologia Computacional , Sensibilidade e Especificidade , Camundongos , Humanos , Feminino , Clonagem Molecular
20.
Biochem J ; 481(11): 717-739, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38752933

RESUMO

Typical Kunitz proteins (I2 family of the MEROPS database, Kunitz-A family) are metazoan competitive inhibitors of serine peptidases that form tight complexes of 1:1 stoichiometry, mimicking substrates. The cestode Echinococcus granulosus, the dog tapeworm causing cystic echinococcosis in humans and livestock, encodes an expanded family of monodomain Kunitz proteins, some of which are secreted to the dog host interface. The Kunitz protein EgKU-7 contains, in addition to the Kunitz domain with the anti-peptidase loop comprising a critical arginine, a C-terminal extension of ∼20 amino acids. Kinetic, electrophoretic, and mass spectrometry studies using EgKU-7, a C-terminally truncated variant, and a mutant in which the critical arginine was substituted by alanine, show that EgKU-7 is a tight inhibitor of bovine and canine trypsins with the unusual property of possessing two instead of one site of interaction with the peptidases. One site resides in the anti-peptidase loop and is partially hydrolyzed by bovine but not canine trypsins, suggesting specificity for the target enzymes. The other site is located in the C-terminal extension. This extension can be hydrolyzed in a particular arginine by cationic bovine and canine trypsins but not by anionic canine trypsin. This is the first time to our knowledge that a monodomain Kunitz-A protein is reported to have two interaction sites with its target. Considering that putative orthologs of EgKU-7 are present in other cestodes, our finding unveils a novel piece in the repertoire of peptidase-inhibitor interactions and adds new notes to the evolutionary host-parasite concerto.


Assuntos
Echinococcus granulosus , Proteínas de Helminto , Echinococcus granulosus/enzimologia , Echinococcus granulosus/genética , Echinococcus granulosus/metabolismo , Animais , Cães , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Proteínas de Helminto/química , Inibidores da Tripsina/metabolismo , Inibidores da Tripsina/química , Bovinos , Sequência de Aminoácidos , Tripsina/química , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...