Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.917
Filtrar
1.
J Mol Graph Model ; 133: 108872, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39362060

RESUMO

Human fatty acid-binding proteins (FABPs) are involved in many aspects of lipid metabolism, such as the uptake, transport, and storage of lipophilic molecules, as well as cellular functions. Understanding how FABPs recognize fatty acids (FAs) is crucial for identifying FABP function and applications, such as in inhibitor design or biomarker development. The recently developed AlphaFold3 (AF3) demonstrates significantly higher accuracy than other prediction tools, particularly in predicting protein-ligand interactions with state-of-the-art docking tools. Studies on whether AF3 can be used to identify the FAs of FABP are lacking. To assess the accuracy of FA docking to FABPs using AF3, models of FA docked into FABP generated using AF3 were compared with experimentally determined FA-bound FABP structures. FA ligands in AF3 structures docked reliably into the FA-binding pocket of FABPs; however, the detailed binding configuration of most FA ligands docked into FABPs and the interaction between FA and FABP determined using AF3 and experimentally differed. These results will aid in understanding FA docking to FABPs and other FA-binding proteins using AF3.


Assuntos
Proteínas de Ligação a Ácido Graxo , Ácidos Graxos , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas de Ligação a Ácido Graxo/química , Proteínas de Ligação a Ácido Graxo/metabolismo , Humanos , Ácidos Graxos/metabolismo , Ácidos Graxos/química , Ligantes , Sítios de Ligação
2.
Cell Death Dis ; 15(10): 717, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353883

RESUMO

Immune checkpoint inhibitors (ICIs) immunotherapy facilitates new approaches to achieve precision cancer treatment. A growing number of patients with non-small cell lung cancer (NSCLC) have benefited from treatment with neoadjuvant ICIs combined with chemotherapy. However, the mechanisms and associations between the therapeutic efficacy of neoadjuvant pembrolizumab and chemotherapy (NAPC) and macrophage subsets are still unclear. We performed single-cell RNA sequencing (scRNA-seq) and identified a novel FABP4+C1q+ macrophage subtype, which exhibited stronger proinflammatory cytokine production and phagocytic ability. This subtype was found to be more abundant in tumor tissues and lymph nodes of major pathological response (MPR) patients compared to non-MPR patients, and was associated with a good efficacy of NAPC. Multiplex fluorescent immunohistochemical (mIHC) staining was subsequently used to verify our findings. Further mechanistic studies indicated that FABP4 and C1q regulate the expression of proinflammatory cytokines synergistically. In addition, FABP4 and C1q promote fatty acid synthesis, enhance anti-apoptosis ability and phagocytic ability of macrophage via the interaction of AMPK/JAK/STAT axis. This study provides novel insights into the underlying mechanisms and predictive biomarkers of NAPC. Our findings contribute to improving the prognosis of patients with NSCLC by potentially guiding more precise patient selection and treatment strategies. NOVELTY & IMPACT STATEMENTS: We identified a group of macrophages (FABP4+C1q+ macrophages) related to the therapeutic efficacy of neoadjuvant chemoimmunotherapy. FABP4+C1q+ macrophages highly expressed proinflammatory cytokines-related genes and had a strong cytokine production and phagocytic ability. We believe that our study provides a novel insight into the synergistic mechanism of neoadjuvant ICI combined with chemotherapy and may lead to improved clinical outcomes in patients with NSCLC in the future.


Assuntos
Anticorpos Monoclonais Humanizados , Carcinoma Pulmonar de Células não Pequenas , Proteínas de Ligação a Ácido Graxo , Neoplasias Pulmonares , Macrófagos , Terapia Neoadjuvante , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Janus Quinases/metabolismo , Camundongos , Feminino , Masculino , Fatores de Transcrição STAT/metabolismo , Pessoa de Meia-Idade , Transdução de Sinais/efeitos dos fármacos
3.
Cell Mol Life Sci ; 81(1): 438, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39453486

RESUMO

In patients with sepsis, neutrophil apoptosis tends to be inversely proportional to the severity of sepsis, but its mechanism is not yet clear. This study aimed to explore the mechanism of fatty acid binding protein 4 (FABP4) regulating neutrophil apoptosis through combined analysis of gut microbiota and short-chain fatty acids (SCFAs) metabolism. First, neutrophils from bronchoalveolar lavage fluid (BALF) of patients with sepsis-induced acute respiratory distress syndrome (ARDS) were purified and isolated RNA was applied for sequencing. Then, the cecal ligation and puncture (CLP) method was applied to induce the mouse sepsis model. After intervention with differential SCFAs sodium acetate, neutrophil apoptosis and FABP4 expression were further analyzed. Then, FABP4 inhibitor BMS309403 was used to treat neutrophils. We found CLP group had increased lung injury score, lung tissue wet/dry ratio, lung vascular permeability, and inflammatory factors IL-1ß, TNF-α, IL-6, IFN-γ, and CCL3 levels in both bronchoalveolar lavage fluid and lung tissue. Additionally, FABP4 was lower in neutrophils of ARDS patients and mice. Meanwhile, CLP-induced dysbiosis of gut microbiota and changes in SCFAs levels were observed. Further verification showed that acetic acids reduced neutrophil apoptosis and FABP4 expression via FFAR2. Besides, FABP4 affected neutrophil apoptosis through endoplasmic reticulum (ER) stress, and neutrophil depletion alleviated the promotion of ARDS development by BMS309403. Moreover, FABP4 in neutrophils regulated the injury of RLE-6TN through inflammatory factors. In conclusion, FABP4 affected by gut microbiota-derived SCFAs delayed neutrophil apoptosis through ER stress, leading to increased inflammatory factors mediating lung epithelial cell damage.


Assuntos
Apoptose , Proteínas de Ligação a Ácido Graxo , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Neutrófilos , Síndrome do Desconforto Respiratório , Sepse , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Animais , Apoptose/efeitos dos fármacos , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/microbiologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Camundongos , Neutrófilos/metabolismo , Sepse/complicações , Sepse/metabolismo , Sepse/microbiologia , Sepse/patologia , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/farmacologia , Feminino , Modelos Animais de Doenças , Líquido da Lavagem Broncoalveolar , Acetatos/farmacologia , Pessoa de Meia-Idade , Pulmão/patologia , Pulmão/metabolismo , Pulmão/microbiologia , Compostos de Bifenilo , Pirazóis
4.
Sci Rep ; 14(1): 24899, 2024 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-39438505

RESUMO

Graphene quantum dots (GQDs) have garnered significant attention across numerous fields due to their ultrasmall size and exceptional properties. However, their extensive applications may lead to environmental exposure and subsequent uptake by humans. Yet, conflicting reports exist regarding the potential toxicity of GQDs based on experimental investigations. Therefore, a comprehensive understanding of GQD biosafety requires further microscopic and molecular-level investigations. In this study, we employed molecular dynamics (MD) simulations to explore the interactions between GQDs and graphene oxide quantum dots (GOQDs) with a protein model, the human intestinal fatty acid binding protein (HIFABP), that plays a crucial role in mediating the carrier of fatty acids in the intestine. Our MD simulation results reveal that GQDs can be adsorbed on the opening of HIFABP, which serves as an entrance for the fatty acid molecules into the protein's interior cavity. This adsorption has the potential to obstruct the opening of HIFABP, leading to the loss of its normal biological function and ultimately resulting in toxicity. The adsorption of GQDs is driven by a combination of van der Waals (vdW), π-π stacking, cation-π, and hydrophobic interactions. Similarly, GOQDs also exhibit the ability to block the opening of HIFABP, thereby potentially causing toxicity. The blockage of GOQDs to HIFABP is guided by a combination of vdW, Coulomb, π-π stacking, and hydrophobic interactions. These findings not only highlight the potential harmful effects of GQDs on HIFABP but also elucidate the underlying molecular mechanism, which provides crucial insights into GQD toxicology.


Assuntos
Proteínas de Ligação a Ácido Graxo , Grafite , Simulação de Dinâmica Molecular , Pontos Quânticos , Grafite/toxicidade , Grafite/química , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Humanos , Proteínas de Ligação a Ácido Graxo/metabolismo , Adsorção , Ácidos Graxos/metabolismo , Ácidos Graxos/química
5.
Cancer Lett ; 604: 217271, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39306229

RESUMO

Metabolic remodeling is a pivotal feature of cancer, with cancer stem cells frequently showcasing distinctive metabolic behaviors. Nonetheless, understanding the metabolic intricacies of triple-negative breast cancer (TNBC) and breast cancer stem cells (BCSCs) has remained elusive. In this study, we meticulously characterized the metabolic profiles of TNBC and BCSCs and delved into their potential implications for TNBC treatment. Our findings illuminated the robust lipid metabolism activity within TNBC tumors, especially in BCSCs. Furthermore, we discovered that Fabp4, through its mediation of fatty acid uptake, plays a crucial role in regulating TNBC lipid metabolism. Knocking down Fabp4 or inhibiting its activity significantly suppressed TNBC tumor progression in both the MMTV-Wnt1 spontaneous TNBC model and the TNBC patient-derived xenograft model. Mechanistically, Fabp4's influence on TNBC tumor progression was linked to its regulation of mitochondrial stability, the CPT1-mediated fatty acid oxidation process, and ROS production. Notably, in a high-fat diet model, Fabp4 deficiency proved to be a substantial inhibitor of obesity-accelerated TNBC progression. Collectively, these findings shed light on the unique metabolic patterns of TNBC and BCSCs, underscore the biological significance of Fabp4-mediated fatty acid metabolism in governing TNBC progression, and offer a solid theoretical foundation for considering metabolic interventions in breast cancer treatment. SIGNIFICANCE: Triple-negative breast cancer progression and breast cancer stem cell activity can be restricted by targeting a critical regulator of lipid responses, FABP4.


Assuntos
Progressão da Doença , Proteínas de Ligação a Ácido Graxo , Metabolismo dos Lipídeos , Células-Tronco Neoplásicas , Neoplasias de Mama Triplo Negativas , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Humanos , Animais , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Feminino , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Camundongos , Linhagem Celular Tumoral , Ácidos Graxos/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo
6.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39273233

RESUMO

To elucidate the possible biological roles of fatty acid-binding protein 5 (FABP5) in the intraocular environment, the cells from which FABP5 originates were determined by using four different intraocular tissue-derived cell types including human non-pigmented ciliary epithelium (HNPCE) cells, retinoblastoma (RB) cells, adult retinal pigment epithelial19 (ARPE19) cells and human ocular choroidal fibroblast (HOCF) cell lines, and the effects of FABP ligand 6, a specific inhibitor for FABP5 and FABP7 were analyzed by RNA sequencing and seahorse cellular metabolic measurements. Among these four different cell types, qPCR analysis showed that FABP5 was most prominently expressed in HNPCE cells, in which no mRNA expression of FABP7 was detected. In RNA sequencing analysis, 166 markedly up-regulated and 198 markedly down-regulated differentially expressed genes (DEGs) were detected between non-treated cells and cells treated with FABP ligand 6. IPA analysis of these DEGs suggested that FABP5 may be involved in essential roles required for cell development, cell survival and cell homeostasis. In support of this possibility, both mitochondrial and glycolytic functions of HNPCE cells, in which mRNA expression of FABP5, but not that of FABP7, was detected, were shown by using a Seahorse XFe96 Bioanalyzer to be dramatically suppressed by FABP ligand 6-induced inhibition of the activity of FABP5. Furthermore, in IPA upstream analysis, various unfolded protein response (UPR)-related factors were identified as upstream and causal network master regulators. Analysis by qPCR analysis showed significant upregulation of the mRNA expression of most of UPR-related factors and aquaporin1 (AQP1). The findings in this study suggest that HNPCE is one of intraocular cells producing FABP5 and may be involved in the maintenance of UPR and AQP1-related functions of HNPCE.


Assuntos
Proteínas de Ligação a Ácido Graxo , Humanos , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Linhagem Celular , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/citologia , Células Epiteliais/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Regulação da Expressão Gênica , Corpo Ciliar/metabolismo , Corpo Ciliar/citologia , Glicólise
7.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39273616

RESUMO

Chemotherapy is an important treatment option for advanced prostate cancer, especially for metastatic prostate cancer (PCa). Resistance to first-line chemotherapeutic drugs such as docetaxel often accompanies prostate cancer progression. Attempts to overcome resistance to docetaxel by combining docetaxel with other biological agents have been mostly unsuccessful. A better understanding of the mechanisms underlying docetaxel resistance may provide new avenues for the treatment of advanced PCa. We have previously found that the fatty acid-binding protein 12 (FABP12)-PPARγ pathway modulates lipid-related bioenergetics and PCa metastatic transformation through induction of Slug, a master driver of epithelial-to-mesenchymal transition (EMT). Here, we report that the FABP12-Slug axis also underlies chemoresistance in PCa cells. Cell sensitivity to docetaxel is markedly suppressed in FABP12-expressing cells, along with induction of Survivin, a typical apoptosis inhibitor, and inhibition of cleaved PARP, a hallmark of programmed cell death. Importantly, Slug depletion down-regulates Survivin and restores cell sensitivity to docetaxel in FABP12-expressing cells. Finally, we also show that high levels of Survivin are associated with poor prognosis in PCa patients, with FABP12 status determining its prognostic significance. Our research identifies a FABP12-Slug-Survivin pathway driving docetaxel resistance in PCa cells, suggesting that targeting FABP12 may be a precision approach to improve chemodrug efficacy and curb metastatic progression in PCa.


Assuntos
Docetaxel , Proteínas de Ligação a Ácido Graxo , Neoplasias da Próstata , Fatores de Transcrição da Família Snail , Survivina , Humanos , Masculino , Docetaxel/farmacologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Survivina/metabolismo , Survivina/genética , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Morte Celular/efeitos dos fármacos
8.
Neoplasia ; 57: 101050, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39243502

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive brain tumor with poor prognosis. A better understanding of mechanisms concerned in glioma invasion might be critical for treatment optimization. Given that epithelial-mesenchymal transition in tumor cells is closely associated with glioma progression and recurrence, identifying pivotal mediators in GBM EMT process is urgently needed. As a member of Fatty acid binding protein (FABP) family, FABP4 serves as chaperones for free fatty acids and participates in cellular process including fatty acid uptake, transport, and metabolism. In this study, our data revealed that FABP4 expression was elevated in human GBM samples and correlated with a mesenchymal glioma subtype. Gain of function and loss of function experiments indicated that FABP4 potently rendered glioma cells increased filopodia formation and cell invasiveness. Differential expression genes analysis and GSEA in TCGA dataset revealed an EMT-related molecular signature in FABP4-mediated signaling pathways. Cell interaction analysis suggested CD36 as a potential target regulated by FABP4. Furthermore, in vitro mechanistic experiments demonstrated that FABP4-induced CD36 expression promoted EMT via non-canonical TGFß pathways. An intracranial glioma model was constructed to assess the effect of FABP4 on tumor progression in vivo. Together, our findings demonstrated a critical role for FABP4 in the regulation invasion and EMT in GBM, and suggest that pharmacological inhibition of FABP4 may represent a promising therapeutic strategy for treatment of GBM.


Assuntos
Antígenos CD36 , Transição Epitelial-Mesenquimal , Proteínas de Ligação a Ácido Graxo , Regulação Neoplásica da Expressão Gênica , Glioma , Transição Epitelial-Mesenquimal/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Humanos , Antígenos CD36/metabolismo , Antígenos CD36/genética , Animais , Glioma/patologia , Glioma/genética , Glioma/metabolismo , Camundongos , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Transdução de Sinais , Movimento Celular/genética , Modelos Animais de Doenças
9.
Toxicol Appl Pharmacol ; 491: 117079, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39218163

RESUMO

Fatty acid-binding proteins (FABPs) are small intracellular proteins that regulate fatty acid metabolism, transport, and signalling. There are ten known human isoforms, many of which are upregulated and involved in clinical pathologies. As such, FABP inhibition may be beneficial in disease states such as cancer, and those involving the cardiovascular system, metabolism, immunity, and cognition. Recently, a potent, selective FABP5 inhibitor (ART26.12), with 90-fold selectivity to FABP3 and 20-fold selectivity to FABP7, was found to be remarkably benign, with a no-observed-adverse-effect level of 1000 mg/kg in rats and dogs, showing no genotoxicity, cardiovascular, central, or respiratory toxicity. To understand the potential implication of FABP inhibition more fully, this review systematically assessed literature investigating genetic knockout, knockdown, and pharmacological inhibition of FABP3, FABP4, FABP5, or FABP7. Analysis of the literature revealed that animals bred not to express FABPs showed the most biological effects, suggesting key roles of these proteins during development. FABP ablation sometimes exacerbated symptoms of disease models, particularly those linked to metabolism, inflammatory and immune responses, cardiac contractility, neurogenesis, and cognition. However, FABP inhibition (genetic silencing or pharmacological) had a positive effect in many more disease conditions. Several polymorphisms of each FABP gene have also been linked to pathological conditions, but it was unclear how several polymorphisms affected protein function. Overall, analysis of the literature to date suggests that pharmacological inhibition of FABPs in adults is of low risk.


Assuntos
Proteínas de Ligação a Ácido Graxo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Animais , Humanos , Cães
10.
FASEB J ; 38(18): e70036, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39275940

RESUMO

Fatty acid-binding protein 1 (FABP1) plays an important role in regulating fatty acid metabolism in liver, which is a potential therapeutic target for diseases such as non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms are not well defined. Using complementary experimental models, we discovered FABP1 induction in hepatocytes as a primary mediator of lipogenesis when exposed to fatty acids, especially saturated fatty acids (SFAs). In the feeding trial, palm oil led to excess lipid accumulation in the liver of large yellow croaker (Larimichthys crocea), accompanied by significant induction of FABP1. In cultured cells, palmitic acid (PA), a kind of SFA, triggered the fabp1 expression and increased triglyceride (TG) contents. Knockdown of FABP1 dampened PA-induced TG accumulation through mitigated lipogenesis. The overexpression of FABP1 showed the opposite result. Furthermore, the inactivation of FABP1 led to induction in insulin-induced gene 1 (INSIG1) expression, which attenuated the processing of sterol regulatory element-binding protein 1 (SREBP1) by down-regulating the nuclear-localized SREBP1. These results revealed a previously unrecognized function of FABP1 in response to PA, providing additional evidence for targeting FABP1 in the treatment of NAFLD caused by SFA.


Assuntos
Proteínas de Ligação a Ácido Graxo , Hepatócitos , Lipogênese , Perciformes , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Hepatócitos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Perciformes/metabolismo , Perciformes/genética , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Triglicerídeos/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Ácido Palmítico/farmacologia , Células Cultivadas
11.
Sci Rep ; 14(1): 21135, 2024 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256510

RESUMO

Fatty acid-binding protein 4 (FABP4) plays an essential role in metabolism and inflammation. However, the role of FABP4 in alcoholic steatohepatitis (ASH) remains unclear. This study aimed to investigate the function and underlying mechanisms of FABP4 in the progression of ASH. We first obtained alcoholic hepatitis (AH) datasets from the National Center for Biotechnology Information-Gene Expression Omnibus database and conducted bioinformatics analysis to identify critical genes in the FABP family. We then established ASH models of the wild-type (WT) and Fabp4-deficient (Fabp4-/-) mice to investigate the role of FABP4 in ASH. Additionally, we performed transcriptional profiling of mouse liver tissue and analyzed the results using integrative bioinformatics. The FABP4-associated signaling pathway was further verified. FABP4 was upregulated in two AH datasets and was thus identified as a critical biomarker for AH. FABP4 expression was higher in the liver tissues of patients with alcoholic liver disease and ASH mice than in the corresponding control samples. Furthermore, the Fabp4-/- ASH mice showed reduced hepatic lipid deposition and inflammation compared with the WT ASH mice. Mechanistically, Fabp4 may be involved in regulating the p53 and sirtuin-1 signaling pathways, subsequently affecting lipid metabolism and macrophage polarization in the liver of ASH mice. Our results demonstrate that Fabp4 is involved in the progression of ASH and that Fabp4 deficiency may ameliorate ASH. Therefore, FABP4 may be a potential therapeutic target for ASH treatment.


Assuntos
Proteínas de Ligação a Ácido Graxo , Fígado Gorduroso Alcoólico , Transdução de Sinais , Proteína Supressora de Tumor p53 , Animais , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Camundongos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Fígado Gorduroso Alcoólico/metabolismo , Fígado Gorduroso Alcoólico/genética , Fígado Gorduroso Alcoólico/patologia , Camundongos Knockout , Humanos , Masculino , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Sirtuína 1/metabolismo , Sirtuína 1/genética , Metabolismo dos Lipídeos
12.
Adv Exp Med Biol ; 1460: 73-95, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287849

RESUMO

In this chapter, intestinal lipid transport, which plays a central role in fat homeostasis and the development of obesity in addition to the mechanisms of fatty acids and monoacylglycerol absorption in the intestinal lumen and reassembly of these within the enterocyte was described. A part of the resynthesized triglycerides (triacylglycerols; TAG) is repackaged in the intestine to form the hydrophobic core of chylomicrons (CMs). These are delivered as metabolic fuels, essential fatty acids, and other lipid-soluble nutrients, from enterocytes to the peripheral tissues following detachment from the endoplasmic reticulum membrane. Moreover, the attitudes of multiple receptor functions in dietary lipid uptake, synthesis, and transport are highlighted. Additionally, intestinal fatty acid binding proteins (FABPs), which increase the cytosolic flux of fatty acids via intermembrane transfer in enterocytes, and the functions of checkpoints for receptor-mediated fatty acid signaling are debated. The importance of the balance between storage and secretion of dietary fat by enterocytes in determining the physiological fate of dietary fat, including regulation of blood lipid concentrations and energy balance, is mentioned. Consequently, promising checkpoints regarding how intestinal fat processing affects lipid homeostatic mechanisms and lipid stores in the body and the prevention of obesity-lipotoxicity due to excessive intestinal lipid absorption are evaluated. In this context, dietary TAG digestion, pharmacological inhibition of TAG hydrolysis, the regulation of long-chain fatty acid uptake traffic into adipocytes, intracellular TAG resynthesis, the enlargement of cytoplasmic lipid droplets in enterocytes and constitutional alteration of their proteome, CD36-mediated conversion of diet-derived fatty acid into cellular lipid messengers and their functions are discussed.


Assuntos
Absorção Intestinal , Obesidade , Humanos , Obesidade/metabolismo , Animais , Gorduras na Dieta/metabolismo , Gorduras na Dieta/efeitos adversos , Metabolismo dos Lipídeos , Enterócitos/metabolismo , Triglicerídeos/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo
13.
Mol Nutr Food Res ; 68(20): e2400310, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39318069

RESUMO

SCOPE: Monomethyl-branched chain fatty acids (mmBCFAs) are found in a variety of food sources and are of great interest due to their potent antiinflammatory properties. However, most of the current researches have concentrated on the relationship between mmBCFAs and intestinal inflammation, and there is a large gap in the biological mechanisms involved behind their antiinflammatory effects. METHODS AND RESULTS: The present study examines the role of mmBCFAs in modulating macrophage polarization. The results demonstrate that iso-C16:0 significantly inhibits macrophages M1 proinflammatory polarization through regulating FABP4/PPAR-γ pathway. Proteomics and molecular biology experiments verify that metabolic reprogramming is involved in the inhibition of M1 macrophage, referring to the upregulation of fatty acid oxidation, TCA cycle, and oxidative phosphorylation, as well as downregulation of glycolytic flux. CONCLUSION: In summary, this study offers a novel perspective on the antiinflammatory effects mediated by mmBCFAs.


Assuntos
Proteínas de Ligação a Ácido Graxo , Ácidos Graxos , Macrófagos , PPAR gama , Transdução de Sinais , PPAR gama/metabolismo , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Ligação a Ácido Graxo/metabolismo , Camundongos , Células RAW 264.7 , Ácidos Graxos/farmacologia , Ácidos Graxos/metabolismo , Anti-Inflamatórios/farmacologia
14.
Circ Arrhythm Electrophysiol ; 17(9): e012683, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39212041

RESUMO

BACKGROUND: Adipocyte FABP4 (fatty acid-binding protein 4) is augmented in the epicardial stroma of patients with long-standing persistent atrial fibrillation. Because this molecule is released mainly by adipocytes, our objective was to study its role in atrial cardiomyopathy, focusing our attention on fibrosis, metabolism, and electrophysiological changes. These results might clarify the role of adiposity as a mediator of atrial cardiomyopathy. METHODS: We used several preclinical cellular models, epicardial and subcutaneous stroma primary cell cultures from patients undergoing open heart surgery, human atrial fibroblasts, atrial cardiomyocytes derived from human induced pluripotent stem cells and isolated from adult mice, and Nav1.5 transfected Chinese hamster ovary cells. Fibrosis, glucose, mitochondrial and adipogenesis activity, gene expression, and proteomics were determined by wound healing, enzymatic, colorimetric, fluorescence assays, real-time quantitative polymerase chain reaction, and TripleTOF proteomics. Molecular changes were analyzed by Raman confocal microspectroscopy, calcium dynamics by confocal microscopy, and ion currents by patch clamp. Epicardial, subcutaneous, and atrial fibroblasts and cardiomyocytes were incubated with FABP4 at 100 ng/mL. RESULTS: Our results showed that FABP4 induced fibrosis, glucose metabolism, and lipid accumulation on epicardial and subcutaneous stroma cells and atrial fibroblasts. Besides, it modified lipid content and calcium dynamics in atrial cardiomyocytes without effects on INa. CONCLUSIONS: FABP4 exerts fibrotic and metabolic changes on epicardial stroma and modifies lipid content and calcium dynamic on atrial cardiomyocytes. These results suggest its possible role as an atrial cardiomyopathy mediator.


Assuntos
Proteínas de Ligação a Ácido Graxo , Fibrose , Miócitos Cardíacos , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Humanos , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patologia , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Metabolismo dos Lipídeos , Células CHO , Cricetulus , Masculino , Camundongos , Pericárdio/metabolismo , Pericárdio/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Sinalização do Cálcio , Cálcio/metabolismo , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Feminino , Proteômica/métodos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia
15.
Exp Mol Med ; 56(8): 1869-1886, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39198543

RESUMO

Hyperlipidemia and hypertension might play a role in cardiac fibrosis, in which a heterogeneous population of fibroblasts seems important. However, it is unknown whether CD34+ progenitor cells are involved in the pathogenesis of heart fibrosis. This study aimed to explore the mechanism of CD34+ cell differentiation in cardiac fibrosis during hyperlipidemia. Through the analysis of transcriptomes from 50,870 single cells extracted from mouse hearts and 76,851 single cells from human hearts, we have effectively demonstrated the evolving cellular landscape throughout cardiac fibrosis. Disturbances in lipid metabolism can accelerate the development of fibrosis. Through the integration of bone marrow transplantation models and lineage tracing, our study showed that hyperlipidemia can expedite the differentiation of non-bone marrow-derived CD34+ cells into fibroblasts, particularly FABP4+ fibroblasts, in response to angiotensin II. Interestingly, the partial depletion of CD34+ cells led to a notable reduction in triglycerides in the heart, mitigated fibrosis, and improved cardiac function. Furthermore, immunostaining of human heart tissue revealed colocalization of CD34+ cells and fibroblasts. Mechanistically, our investigation of single-cell RNA sequencing data through pseudotime analysis combined with in vitro cellular studies revealed the crucial role of the PPARγ/Akt/Gsk3ß pathway in orchestrating the differentiation of CD34+ cells into FABP4+ fibroblasts. Through our study, we generated valuable insights into the cellular landscape of CD34+ cell-derived cells in the hypertrophic heart with hyperlipidemia, indicating that the differentiation of non-bone marrow-derived CD34+ cells into FABP4+ fibroblasts during this process accelerates lipid accumulation and promotes heart failure via the PPARγ/Akt/Gsk3ß pathway.


Assuntos
Antígenos CD34 , Diferenciação Celular , Proteínas de Ligação a Ácido Graxo , Fibroblastos , Fibrose , Metabolismo dos Lipídeos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Camundongos , Animais , Antígenos CD34/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Miocárdio/metabolismo , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hiperlipidemias/metabolismo , Hiperlipidemias/patologia , Masculino , Transdução de Sinais , PPAR gama/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Modelos Animais de Doenças
16.
Nutrients ; 16(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39125328

RESUMO

Cerebral palsy (CP) results in non-progressive damage to the central nervous system, leading to functional disorders of the gastrointestinal tract and requiring enteral nutrition via gastrostomy in some patients. The aim of the study was to assess the impact of enteral nutrition on intestinal inflammation expressed by stool calprotectin and intestinal permeability determined by fecal zonulin and IFABP, and to determine whether CP affects these parameters. The study group consisted of 30 children with CP, fed enterally (Cerebral Palsy Enteral Nutrition-CPEN), and two reference groups: 24 children with CP, fed orally with a standard diet (CPC-Cerebral Palsy Controls) and 24 healthy children (HC-healthy controls). The differences between these groups and between the combined CP groups (CPG and CPEN + CPC) and HC were analyzed. Fecal zonulin, calprotectin, and intestinal fatty acid-binding protein 2 (IFABP2) levels were determined by ELISA. The concentrations of fecal calprotectin and zonulin were significantly higher in the CPEN group than in the CPC group (p = 0.012, p = 0.025). When comparing the CPG (n = 53) with the HC group (n = 24), statistically significant differences were observed for calprotectin (p = 0.000018, higher in the CPG) and IFABP (p = 0.021, higher in HC). Enteral nutrition was associated in our cohort with increased fecal calprotectin and zonulin. Children with cerebral palsy presented with increased fecal calprotectin but not increased intestinal permeability expressed by stool zonulin.


Assuntos
Biomarcadores , Paralisia Cerebral , Toxina da Cólera , Nutrição Enteral , Fezes , Haptoglobinas , Função da Barreira Intestinal , Complexo Antígeno L1 Leucocitário , Precursores de Proteínas , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Estudos de Casos e Controles , Paralisia Cerebral/metabolismo , Nutrição Enteral/métodos , Proteínas de Ligação a Ácido Graxo/metabolismo , Fezes/química , Haptoglobinas/metabolismo , Inflamação , Mucosa Intestinal/metabolismo , Intestinos , Complexo Antígeno L1 Leucocitário/análise , Complexo Antígeno L1 Leucocitário/metabolismo , Precursores de Proteínas/metabolismo
17.
Cell Tissue Res ; 398(1): 15-25, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39120736

RESUMO

In goldfish, spinal cord injury triggers the formation of a fibrous scar at the injury site. Regenerating axons are able to penetrate the scar tissue, resulting in the recovery of motor function. Previous findings suggested that regenerating axons enter the scar through tubular structures surrounded by glial elements with laminin-positive basement membranes and that glial processes expressing glial fibrillary acidic protein (GFAP) are associated with axonal regeneration. How glia contribute to promoting axonal regeneration, however, is unknown. Here, we revealed that glial processes expressing vimentin or brain lipid-binding protein (BLBP) also enter the fibrous scar after spinal cord injury in goldfish. Vimentin-positive glial processes were more numerous than GFAP- or BLBP-positive glial processes in the scar tissue. Regenerating axons in the scar tissue were more closely associated with vimentin-positive glial processes than GFAP-positive glial processes. Vimentin-positive glial processes co-expressed matrix metalloproteinase (MMP)-14. Our findings suggest that vimentin-positive glial processes closely associate with regenerating axons through tubular structures entering the scar after spinal cord injury in goldfish. In intact spinal cord, ependymo-radial glial cell bodies express BLBP and their radial processes express vimentin, suggesting that vimentin-positive glial processes derive from migrating ependymo-radial glial cells. MMP-14 expressed in vimentin-positive glial cells and their processes might provide a beneficial environment for axonal regeneration.


Assuntos
Axônios , Carpa Dourada , Regeneração Nervosa , Neuroglia , Traumatismos da Medula Espinal , Vimentina , Animais , Carpa Dourada/metabolismo , Vimentina/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Neuroglia/metabolismo , Axônios/metabolismo , Regeneração Nervosa/fisiologia , Metaloproteinase 14 da Matriz/metabolismo , Cicatriz/metabolismo , Cicatriz/patologia , Proteínas de Ligação a Ácido Graxo/metabolismo
18.
Cells ; 13(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38994990

RESUMO

In zebrafish, like in mammals, radial glial cells (RGCs) can act as neural progenitors during development and regeneration in adults. However, the heterogeneity of glia subpopulations entails the need for different specific markers of zebrafish glia. Currently, fluorescent protein expression mediated by a regulatory element from the glial fibrillary acidic protein (gfap) gene is used as a prominent glia reporter. We now expand this tool by demonstrating that a regulatory element from the mouse Fatty acid binding protein 7 (Fabp7) gene drives reliable expression in fabp7-expressing zebrafish glial cells. By using three different Fabp7 regulatory element-mediated fluorescent protein reporter strains, we reveal in double transgenic zebrafish that progenitor cells expressing fluorescent proteins driven by the Fabp7 regulatory element give rise to radial glia, oligodendrocyte progenitors, and some neuronal precursors. Furthermore, Bergmann glia represent the almost only glial population of the zebrafish cerebellum (besides a few oligodendrocytes), and the radial glia also remain in the mature cerebellum. Fabp7 regulatory element-mediated reporter protein expression in Bergmann glia progenitors suggests their origin from the ventral cerebellar proliferation zone, the ventricular zone, but not from the dorsally positioned upper rhombic lip. These new Fabp7 reporters will be valuable for functional studies during development and regeneration.


Assuntos
Animais Geneticamente Modificados , Proteína 7 de Ligação a Ácidos Graxos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Proteína 7 de Ligação a Ácidos Graxos/genética , Neuroglia/metabolismo , Cerebelo/metabolismo , Cerebelo/citologia , Oligodendroglia/metabolismo , Oligodendroglia/citologia , Camundongos , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
19.
Sci Adv ; 10(28): eadm8206, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996022

RESUMO

Melanoma clinical outcomes emerge from incompletely understood genetic mechanisms operating within the tumor and its microenvironment. Here, we used single-cell RNA-based spatial molecular imaging (RNA-SMI) in patient-derived archival tumors to reveal clinically relevant markers of malignancy progression and prognosis. We examined spatial gene expression of 203,472 cells inside benign and malignant melanocytic neoplasms, including melanocytic nevi and primary invasive and metastatic melanomas. Algorithmic cell clustering paired with intratumoral comparative two-dimensional analyses visualized synergistic, spatial gene signatures linking cellular proliferation, metabolism, and malignancy, validated by protein expression. Metastatic niches included up-regulation of CDK2 and FABP5, which independently predicted poor clinical outcome in 473 patients with melanoma via Cox regression analysis. More generally, our work demonstrates a framework for applying single-cell RNA-SMI technology toward identifying gene regulatory landscapes pertinent to cancer progression and patient survival.


Assuntos
Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Melanoma , Análise de Célula Única , Humanos , Melanoma/patologia , Melanoma/genética , Melanoma/metabolismo , Melanoma/mortalidade , Prognóstico , Análise de Célula Única/métodos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 2 Dependente de Ciclina/genética , Microambiente Tumoral , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Masculino , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/mortalidade , Perfilação da Expressão Gênica
20.
Sci Rep ; 14(1): 15390, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965292

RESUMO

Non-muscle invasive bladder cancers (NMIBC) pTa-pT1 are depicted by a high risk of recurrence and/or progression with an unpredictable clinical evolution. Our aim was to identify, from the original resection specimen, tumors that will progress to better manage patients. We previously showed that A-FABP (Adipocyte- Fatty Acid Binding Protein) loss predicted NMIBC progression. Here we determined by immunohistochemistry the prognostic value of E-FABP (Epidermal-Fatty Acid Binding Protein) expression in 210 tumors (80 pTa, 75 pT1, 55 pT2-T4). Thus, E-FABP low expression was correlated with a high grade/stage, the presence of metastatic lymph nodes, and visceral metastases (p < 0.001). Unlike A-FABP in NMIBC, E-FABP low expression was not associated with RFS or PFS in Kaplan-Meier analysis. But patients of the overall cohort with a high E-FABP expression had a longer mOS (53.8 months vs. 29.3 months, p = 0.029). The immunohistochemical analysis on the same NMIBC tissue sections revealed that when A-FABP is absent, a high E-FABP expression is detected. E-FABP could compensate A-FABP loss. Interestingly, patients, whose original tumor presents both low E-FABP and negative A-FABP, had the worse survival, those maintaining the expression of both markers had better survival. To conclude, the combined evaluation of A- and E-FABP expression allowed to stratify patients with urothelial carcinoma for optimizing treatment and follow-up.


Assuntos
Proteínas de Ligação a Ácido Graxo , Neoplasias da Bexiga Urinária , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Prognóstico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...