Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.038
Filtrar
1.
Chem Biol Drug Des ; 104(4): e14640, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39380150

RESUMO

Misfolding and aggregation of TAR DNA-binding protein, TDP-43, is linked to devastating proteinopathies such as ALS. Therefore, targeting TDP-43's aggregation is significant for therapeutics. Recently, green tea polyphenol, EGCG, was observed to promote non-toxic TDP-43 oligomer formation disallowing TDP-43 aggregation. Here, we investigated if the anti-aggregation effect of EGCG is mediated via EGCG's binding to TDP-43. In silico molecular docking and molecular dynamics (MD) simulation suggest a strong binding of EGCG with TDP-43's aggregation-prone C-terminal domain (CTD). Three replicas, each having 800 ns MD simulation of the EGCG-TDP-43-CTD complex, yielded a high negative binding free energy (ΔG) inferring a stable complex formation. Simulation snapshots show that EGCG forms close and long-lasting contacts with TDP-43's Phe-313 and Ala-341 residues, which were previously identified for monomer recruitment in CTD's aggregation. Notably, stable physical interactions between TDP-43 and EGCG were also detected in vitro using TTC staining and isothermal titration calorimetry which revealed a high-affinity binding site of EGCG on TDP-43 (Kd, 7.8 µM; ΔG, -6.9 kcal/mol). Additionally, TDP-43 co-incubated with EGCG was non-cytotoxic when added to HEK293 cells. In summary, EGCG's binding to TDP-43 and blocking of residues important for aggregation can be a possible mechanism of its anti-aggregation effects on TDP-43.


Assuntos
Catequina , Proteínas de Ligação a DNA , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Catequina/análogos & derivados , Catequina/química , Catequina/farmacologia , Catequina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/antagonistas & inibidores , Humanos , Sítios de Ligação , Termodinâmica , Agregados Proteicos/efeitos dos fármacos , Domínios Proteicos
2.
J Enzyme Inhib Med Chem ; 39(1): 2383886, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39072709

RESUMO

Specifically inducing the degradation of acidic nucleoplasmic DNA-binding protein 1 (And1) is a promising antitumor strategy. Our previous study identified Bazedoxifene (BZA) and CH3 as specific And1 degraders and validated their activity in reversing radiotherapy resistance in vitro and in vivo. However, unelucidated structure-activity relationships and moderate activity have limited their application. In this study, 27 novel CH3 derivatives were designed and synthesised based on the cavity topology of the WD40 domain of And1. Among them, A15 with a "V" conformation significantly induced And1 degradation in NSCLC cells. In addition, this study demonstrated a potential synthetic lethal effect of And1 degraders and PARP1 inhibitors. 1 µM of Olaparib in combination with 5 µM of A15 significantly inhibited the proliferation of A549 and H460 cells. Overall, these compounds are valuable tools for elucidating And1 biology, and their special spatial conformation make them promising candidates for future optimisation studies.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Pulmonares , Poli(ADP-Ribose) Polimerase-1 , Estilbenos , Humanos , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Estilbenos/farmacologia , Estilbenos/química , Estilbenos/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Linhagem Celular Tumoral
3.
Cancer Res ; 84(15): 2501-2517, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38833522

RESUMO

Recurrent somatic mutations in the BRG1/BRM-associated factor (BAF) chromatin remodeling complex subunit ARID1A occur frequently in advanced urothelial, endometrial, and ovarian clear cell carcinomas, creating an alternative chromatin state that may be exploited therapeutically. The histone methyltransferase EZH2 has been previously identified as targetable vulnerability in the context of ARID1A mutations. In this study, we describe the discovery of tulmimetostat, an orally available, clinical stage EZH2 inhibitor, and it elucidates the aspects of its application potential in ARID1A mutant tumors. Tulmimetostat administration achieved efficacy in multiple ARID1A mutant bladder, ovarian, and endometrial tumor models and improved cisplatin response in chemotherapy-resistant models. Consistent with its comprehensive and durable level of target coverage, tulmimetostat demonstrated greater efficacy than other PRC2-targeted inhibitors at comparable or lower exposures in a bladder cancer xenograft mouse model. Tulmimetostat mediated extensive changes in gene expression, in addition to a profound reduction in global H3K27me3 levels in tumors. Phase I clinical pharmacokinetic and pharmacodynamic data indicated that tulmimetostat exhibits durable exposure and profound target engagement. Importantly, a tulmimetostat controlled gene expression signature identified in whole blood from a cohort of 32 patients with cancer correlated with tulmimetostat exposure, representing a pharmacodynamic marker for the assessment of target coverage for PRC2-targeted agents in the clinic. Collectively, these data suggest that tulmimetostat has the potential to achieve clinical benefit in solid tumors as a monotherapy but also in combination with chemotherapeutic agents, and may be beneficial in various indications with recurrent ARID1A mutations. Significance: The EZH2 inhibitor tulmimetostat achieves comprehensive target inhibition in ARID1A mutant solid tumor models and cancer patients that can be assessed with a pharmacodynamic gene signature in peripheral blood.


Assuntos
Proteínas de Ligação a DNA , Proteína Potenciadora do Homólogo 2 de Zeste , Mutação , Fatores de Transcrição , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Feminino , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Linhagem Celular Tumoral , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo
4.
ChemMedChem ; 19(19): e202400361, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38863297

RESUMO

The Hippo pathway, which is key in organ morphogenesis, is frequently deregulated in cancer. The TEAD (TEA domain family member) transcription factors are the most distal elements of this pathway, and their activity is regulated by proteins such as YAP (Yes-associated protein). The identification of inhibitors of the YAP : TEAD interaction is one approach to develop novel anticancer drugs: the first clinical candidate (IAG933) preventing the association between these two proteins by direct competition has just been reported. The discovery of this molecule was particularly challenging because the interface between these two proteins is large (~3500 Å2 buried in complex formation) and made up of distinct contact areas. The most critical of these involves an omega-loop (Ω-loop), a secondary structure element rarely found in protein-protein interactions. This review summarizes how the knowledge gained from structure-function studies of the interaction between the Ω-loop of YAP and TEAD was used to devise the strategy to identify potent low-molecular weight compounds that show a pronounced anti-tumor effect.


Assuntos
Antineoplásicos , Descoberta de Drogas , Fatores de Transcrição , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proteínas de Sinalização YAP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/química , Ligação Proteica , Fatores de Transcrição de Domínio TEA , Relação Estrutura-Atividade , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia
5.
J Exp Clin Cancer Res ; 43(1): 137, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711119

RESUMO

BACKGROUND: The C-terminal-binding protein 1/brefeldin A ADP-ribosylation substrate (CtBP1/BARS) acts both as an oncogenic transcriptional co-repressor and as a fission inducing protein required for membrane trafficking and Golgi complex partitioning during mitosis, hence for mitotic entry. CtBP1/BARS overexpression, in multiple cancers, has pro-tumorigenic functions regulating gene networks associated with "cancer hallmarks" and malignant behavior including: increased cell survival, proliferation, migration/invasion, epithelial-mesenchymal transition (EMT). Structurally, CtBP1/BARS belongs to the hydroxyacid-dehydrogenase family and possesses a NAD(H)-binding Rossmann fold, which, depending on ligands bound, controls the oligomerization of CtBP1/BARS and, in turn, its cellular functions. Here, we proposed to target the CtBP1/BARS Rossmann fold with small molecules as selective inhibitors of mitotic entry and pro-tumoral transcriptional activities. METHODS: Structured-based screening of drug databases at different development stages was applied to discover novel ligands targeting the Rossmann fold. Among these identified ligands, N-(3,4-dichlorophenyl)-4-{[(4-nitrophenyl)carbamoyl]amino}benzenesulfonamide, called Comp.11, was selected for further analysis. Fluorescence spectroscopy, isothermal calorimetry, computational modelling and site-directed mutagenesis were employed to define the binding of Comp.11 to the Rossmann fold. Effects of Comp.11 on the oligomerization state, protein partners binding and pro-tumoral activities were evaluated by size-exclusion chromatography, pull-down, membrane transport and mitotic entry assays, Flow cytometry, quantitative real-time PCR, motility/invasion, and colony assays in A375MM and B16F10 melanoma cell lines. Effects of Comp.11 on tumor growth in vivo were analyzed in mouse tumor model. RESULTS: We identify Comp.11 as a new, potent and selective inhibitor of CtBP1/BARS (but not CtBP2). Comp.11 directly binds to the CtBP1/BARS Rossmann fold affecting the oligomerization state of the protein (unlike other known CtBPs inhibitors), which, in turn, hinders interactions with relevant partners, resulting in the inhibition of both CtBP1/BARS cellular functions: i) membrane fission, with block of mitotic entry and cellular secretion; and ii) transcriptional pro-tumoral effects with significantly hampered proliferation, EMT, migration/invasion, and colony-forming capabilities. The combination of these effects impairs melanoma tumor growth in mouse models.  CONCLUSIONS: This study identifies a potent and selective inhibitor of CtBP1/BARS active in cellular and melanoma animal models revealing new opportunities to study the role of CtBP1/BARS in tumor biology and to develop novel melanoma treatments.


Assuntos
Oxirredutases do Álcool , Proteínas de Ligação a DNA , Melanoma , Humanos , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/genética , Animais , Camundongos , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/metabolismo , Melanoma/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Biochemistry ; 63(10): 1297-1306, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38729622

RESUMO

The DNA damage binding protein 1 (DDB1) is an essential component of protein complexes involved in DNA damage repair and the ubiquitin-proteasome system (UPS) for protein degradation. As an adaptor protein specific to Cullin-RING E3 ligases, DDB1 binds different receptors that poise protein substrates for ubiquitination and subsequent degradation by the 26S proteasome. Examples of DDB1-binding protein receptors are Cereblon (CRBN) and the WD-repeat containing DDB1- and CUL4-associated factors (DCAFs). Cognate substrates of CRBN and DCAFs are involved in cancer-related cellular processes or are mimicked by viruses to reprogram E3 ligases for the ubiquitination of antiviral host factors. Thus, disrupting interactions of DDB1 with receptor proteins might be an effective strategy for anticancer and antiviral drug discovery. Here, we developed fluorescence polarization (FP)-based peptide displacement assays that utilize full-length DDB1 and fluorescein isothiocyanate (FITC)-labeled peptide probes derived from the specific binding motifs of DDB1 interactors. A general FP-based assay condition applicable to diverse peptide probes was determined and optimized. Mutagenesis and biophysical analyses were then employed to identify the most suitable peptide probe. The FITC-DCAF15 L49A peptide binds DDB1 with a dissociation constant of 68 nM and can be displaced competitively by unlabeled peptides at sub-µM to low nM concentrations. These peptide displacement assays can be used to screen small molecule libraries to identify novel modulators that could specifically antagonize DDB1 interactions toward development of antiviral and cancer therapeutics.


Assuntos
Proteínas de Ligação a DNA , Peptídeos , Humanos , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/química , Polarização de Fluorescência/métodos , Peptídeos/química , Peptídeos/farmacologia , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismo
7.
J Phys Chem B ; 128(16): 3795-3806, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38606592

RESUMO

The Hippo signaling pathway is a highly conserved signaling network that plays a central role in regulating cellular growth, proliferation, and organ size. This pathway consists of a kinase cascade that integrates various upstream signals to control the activation or inactivation of YAP/TAZ proteins. Phosphorylated YAP/TAZ is sequestered in the cytoplasm; however, when the Hippo pathway is deactivated, it translocates into the nucleus, where it associates with TEAD transcription factors. This partnership is instrumental in regulating the transcription of progrowth and antiapoptotic genes. Thus, in many cancers, aberrantly hyperactivated YAP/TAZ promotes oncogenesis by contributing to cancer cell proliferation, metastasis, and therapy resistance. Because YAP and TAZ exert their oncogenic effects by binding with TEAD, it is critical to understand this key interaction to develop cancer therapeutics. Previous research has indicated that TEAD undergoes autopalmitoylation at a conserved cysteine, and small molecules that inhibit TEAD palmitoylation disrupt effective YAP/TAZ binding. However, how exactly palmitoylation contributes to YAP/TAZ-TEAD interactions and how the TEAD palmitoylation inhibitors disrupt this interaction remains unknown. Utilizing molecular dynamics simulations, our investigation not only provides detailed atomistic insight into the YAP/TAZ-TEAD dynamics but also unveils that the inhibitor studied influences the binding of YAP and TAZ to TEAD in distinct manners. This discovery has significant implications for the design and deployment of future molecular interventions targeting this interaction.


Assuntos
Lipoilação , Simulação de Dinâmica Molecular , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP , Humanos , Aciltransferases/metabolismo , Aciltransferases/antagonistas & inibidores , Aciltransferases/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/química , Regulação Alostérica/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/química , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição de Domínio TEA/química , Fatores de Transcrição de Domínio TEA/metabolismo , Transativadores/metabolismo , Transativadores/química , Transativadores/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/química , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Proteínas de Sinalização YAP/química , Proteínas de Sinalização YAP/metabolismo
8.
Mol Cancer Ther ; 23(6): 791-808, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38412481

RESUMO

Therapies that abrogate persistent androgen receptor (AR) signaling in castration-resistant prostate cancer (CRPC) remain an unmet clinical need. The N-terminal domain of the AR that drives transcriptional activity in CRPC remains a challenging therapeutic target. Herein we demonstrate that BCL-2-associated athanogene-1 (BAG-1) mRNA is highly expressed and associates with signaling pathways, including AR signaling, that are implicated in the development and progression of CRPC. In addition, interrogation of geometric and physiochemical properties of the BAG domain of BAG-1 isoforms identifies it to be a tractable but challenging drug target. Furthermore, through BAG-1 isoform mouse knockout studies, we confirm that BAG-1 isoforms regulate hormone physiology and that therapies targeting the BAG domain will be associated with limited "on-target" toxicity. Importantly, the postulated inhibitor of BAG-1 isoforms, Thio-2, suppressed AR signaling and other important pathways implicated in the development and progression of CRPC to reduce the growth of treatment-resistant prostate cancer cell lines and patient-derived models. However, the mechanism by which Thio-2 elicits the observed phenotype needs further elucidation as the genomic abrogation of BAG-1 isoforms was unable to recapitulate the Thio-2-mediated phenotype. Overall, these data support the interrogation of related compounds with improved drug-like properties as a novel therapeutic approach in CRPC, and further highlight the clinical potential of treatments that block persistent AR signaling which are currently undergoing clinical evaluation in CRPC.


Assuntos
Progressão da Doença , Neoplasias de Próstata Resistentes à Castração , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499741

RESUMO

The existence of a tight relationship between inflammation and epigenetics that in primary breast tumor cells can lead to tumor progression and the formation of bone metastases was investigated. It was highlighted how the induction of tumor progression and bone metastasis by Interleukin-1 beta, in a non-metastatic breast cancer cell line, MCF-7, was dependent on the de-methylating actions of ten-eleven translocation proteins (TETs). In fact, the inhibition of their activity by the Bobcat339 molecule, an inhibitor of TET enzymes, determined on the one hand, the modulation of the epithelial-mesenchymal transition process, and on the other hand, the reduction in the expression of markers of bone metastasis, indicating that the epigenetic action of TETs is a prerequisite for IL-1ß-dependent tumor progression and bone metastasis formation.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Neoplasias Inflamatórias Mamárias , Feminino , Humanos , Neoplasias Ósseas/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Epigênese Genética , Transição Epitelial-Mesenquimal/genética , Interleucina-1beta/farmacologia , Células MCF-7 , Dioxigenases/antagonistas & inibidores , Proteínas de Ligação a DNA/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia
10.
Comput Math Methods Med ; 2022: 8801484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844444

RESUMO

Objective: The lack of certain trace elements such as selenium, molybdenum, magnesium or related nutrients in the soil, water quality and food in the disease area, which caused disturbance of myocardium metabolism and resulted in injury and necrosis. The aim of the study was to explore the mechanism of ibuprofen alleviating myocardial injury caused by acute pancreatitis (AP). Method: We have established AP cell model and rat model. HE staining is used for histological examination. ELISA is used to determine the levels of proinflammatory cytokines (TNF-α and IL-6) and markers of myocardial injury (LDH and CK-MB). qRT-PCR and Western blot are used to analyze the mRNA and protein levels of related genes. Results: The expression level of AIM2 was significantly increased in AP cells; downregulation of AIM2 alleviated inflammation and myocardial injury induced by AP cells; ibuprofen could inhibit the expression of AIM2 and alleviate inflammation and myocardial injury induced by AP cells. In vivo experiments have found that ibuprofen can inhibit the expression of AIM2 to alleviate myocardial injury in AP rat. Conclusion: Ibuprofen can alleviate myocardial injury caused by acute pancreatitis by inhibiting the expression of AIM2.


Assuntos
Proteínas de Ligação a DNA , Ibuprofeno , Pancreatite , Doença Aguda , Animais , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Ibuprofeno/farmacologia , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Pancreatite/genética , Pancreatite/metabolismo , Ratos , Fator de Necrose Tumoral alfa/metabolismo
11.
Dis Markers ; 2022: 9312971, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769815

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a serious hematological tumor derived from early T-cell progenitors, which is extremely resistant to chemotherapy. Classically, doxorubicin (DOX) is an effective first-line drug for the treatment of T-ALL; however, DOX resistance limits its clinical effect. The DEK proto-oncogene (DEK) has been involved in neoplasms but remains unexplored in T-ALL. We silenced DEK on Jurkat cells and detected cell proliferation with cell counting and colony formation assay. Then, we detected DEK's drug sensitivity to DOX with CCK-8, cell cycle, and apoptosis with DOX treatment. Western blot analysis was performed to determine protein expression of apoptosis and cell cycle-related genes, including BCL2L1, caspase-3, and cyclin-dependent kinases (CDK). Finally, the tumorigenic ability of DEK was analyzed using a BALB/C nude mouse model. In this study, DEK was highly expressed in Jurkat cells. Inhibition of DEK can lead to decreased cell proliferation and proportion of S-phase cells in the cell cycle and more cell apoptosis, and the effect is more obvious after DOX treatment. Western blot results showed that DOX treatment leads to cell cycle arrest, reduction of cyclin-dependent kinase 6 (CDK6) protein, accumulation of CDKN1A protein, and DOX-induced apoptosis accompanied by reductions in protein levels of BCL2L1, as well as increases in protein level of caspase-3. Furthermore, DEK-silenced Jurkat cells generated a significantly smaller tumor mass in mice. Our study found that DEK is a novel, potential therapeutic target for overcoming DOX resistance in T-ALL.


Assuntos
Proteínas de Ligação a DNA , Doxorrubicina , Proteínas Oncogênicas , Proteínas de Ligação a Poli-ADP-Ribose , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia
12.
Asian Pac J Cancer Prev ; 23(5): 1539-1545, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35633536

RESUMO

OBJECTIVE: Among sarcomas, Ewing sarcoma (EWS) is characterized as a highly malignant type of bone tumor caused by the fusion of EWS RNA Binding Protein-1 (EWSR1)/ Friend leukemia integration 1 (FLI1) genes. The product of fusion gene gives rise to EWSR1/FLI1 which activates the activity of Eyes absent homolog 3 (EYA3) which causes tumor growth and angiogenesis. EYA3 is now considered as a therapeutic drug target for EWS . The study was designed to gather potential inhibitors for the EYA3 target using medicinal compounds. METHODS: In this study, we have obtained a list of medicinal compounds from the NuBBE database and downloaded their structural information. Then insilico screening analysis of >2,000 medicinal compounds was performed with PyRX virtual drug screening software to discover potential inhibitors for the treatment of EWS. RESULTS: Our investigation revealed that Sorbifolin and 1,7-Dihydroxy-3-methylanthracene-9.10-dione show interactive affinity for EYA3 active residues. Moreover, these compounds have adequate toxicity, can induce cytotoxicity in EWS cells, and are capable of regulating the expression of genes activated by EWSR1/FLI1. CONCLUSION: Our study concluded that Sorbifolin and 1,7-Dihydroxy-3-methylanthracene-9.10-dione are promising drug candidates for the treatment of EWS and should be further subjected to invitro testing.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Sarcoma de Ewing , Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Humanos , Proteínas de Fusão Oncogênica/genética , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/genética , Proteína Proto-Oncogênica c-fli-1/genética , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/genética
13.
Cell Death Dis ; 13(4): 350, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428778

RESUMO

Patients with late-stage and human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) continue to have a very poor prognosis. The development of more effective novel therapies that improve overall survival and overcome drug resistance is an urgent priority. Here we report that HNSCC tumors significantly overexpress NEDD8 and exhibit high sensitivity to the first-in-class NEDD8-activating enzyme (NAE) inhibitor pevonedistat. Additional studies established that disruption of NEDD8-mediated protein turnover with pevonedistat dramatically augmented cisplatin-induced DNA damage and apoptosis in HNSCC models. Further analysis revealed that the specific pevonedistat target CUL4A played an essential role in driving the synergy of the pevonedistat and cisplatin combination. Targeted inhibition of CUL4A resulted in significant downregulation in Damage Specific DNA binding protein 2 (DDB2), a DNA-damage recognition protein that promotes nucleotide excision repair and resistance to cisplatin. Silencing of CUL4A or DDB2 enhanced cisplatin-induced DNA damage and apoptosis in a manner similar to that of pevonedistat demonstrating that targeted inhibition of CUL4A may be a novel approach to augment cisplatin therapy. Administration of pevonedistat to mice bearing HNSCC tumors significantly decreased DDB2 expression in tumor cells, increased DNA damage and potently enhanced the activity of cisplatin to yield tumor regression and long-term survival of all animals. Our findings provide strong rationale for clinical investigation of CUL4A inhibition with pevonedistat as a novel strategy to augment the efficacy of cisplatin therapy for patients with HNSCC and identify loss of DDB2 as a key pharmacodynamic mediator controlling sensitivity to this regimen.


Assuntos
Cisplatino , Proteínas Culina , Proteínas de Ligação a DNA , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Animais , Linhagem Celular Tumoral , Cisplatino/farmacologia , Proteínas Culina/antagonistas & inibidores , Proteínas Culina/genética , Proteínas Culina/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Sinergismo Farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
14.
Eur J Med Chem ; 236: 114311, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385803

RESUMO

TRIM24 (tripartite motif-containing protein 24) and BRPF1 (bromodomain and PHD finger containing protein 1) are epigenetics "readers" and potential therapeutic targets for cancer and other diseases. Here we describe the structure-guided design of 1-(indolin-1-yl)ethan-1-ones as novel TRIM24/BRPF1 bromodomain inhibitors. The representative compound 20l (Y08624) is a new TRIM24/BRPF1 dual inhibitor, with IC50 values of 0.98 and 1.16 µM, respectively. Cellular activity of 20l was validated by viability assay in prostate cancer (PC) cell lines. In PC xenograft models, 20l suppressed tumor growth (50 mg/kg/day, TGI = 53%) without exhibiting noticeable toxicity. Compound 20l represents a versatile starting point for the development of more potent TRIM24/BRPF1 inhibitors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte , Proteínas de Ligação a DNA , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Animais , Proteínas de Transporte/antagonistas & inibidores , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/antagonistas & inibidores , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Domínios Proteicos
15.
Clin Transl Med ; 12(4): e742, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35384342

RESUMO

BACKGROUND: Metabolic diseases, including type 2 diabetes, have long been considered incurable, chronic conditions resulting from a variety of pathological conditions in obese patients. Growing evidence suggests the Wnt/ß-catenin pathway is a major pathway in adipose tissue remodelling, pancreatic ß-cell regeneration and energy expenditure through regulation of key metabolic target genes in various tissues. CXXC5-type zinc finger protein 5 (CXXC5) is identified negative feedback regulator of the Wnt/ß-catenin pathway that functions via Dishevelled (Dvl) binding. METHODS: Expression level of CXXC5 was characterised in clinical samples and diabetes-induced mice model. Diabetes-induced mice model was established by using high-fat diet (HFD). HFD-fed mice treated with KY19334, a small molecule inhibiting CXXC5-Dvl protein-protein interaction (PPI), was used to assess the role of CXXC5 in metabolic diseases. RESULTS: Here, we show that CXXC5 is overexpressed with suppression of Wnt/ß-catenin signalling in visceral adipose tissues of patients with obesity-related diabetes. Meanwhile, Cxxc5-/- mice fed an HFD exhibited resistance to metabolic dysregulation. KY19334 restores the lowered Wnt/ß-catenin signalling and reverses metabolic abnormalities as observed in HFD-fed Cxxc5-/- mice. Administration of KY19334 on HFD-fed mice had a long-lasting glucose-controlling effect through remodelling of adipocytes and regeneration of pancreatic ß-cells. CONCLUSION: Overall, the inhibition of CXXC5 function by small molecule-mediated interference of Dvl binding is a potential therapeutic strategy for the treatment of obesity-related diabetes.


Assuntos
Proteínas de Ligação a DNA , Diabetes Mellitus Tipo 2 , Fatores de Transcrição , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Humanos , Camundongos , Camundongos Knockout , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt
16.
J Immunol ; 208(5): 1007-1020, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35181641

RESUMO

E-protein transcription factors limit group 2 innate lymphoid cell (ILC2) development while promoting T cell differentiation from common lymphoid progenitors. Inhibitors of DNA binding (ID) proteins block E-protein DNA binding in common lymphoid progenitors to allow ILC2 development. However, whether E-proteins influence ILC2 function upon maturity and activation remains unclear. Mice that overexpress ID1 under control of the thymus-restricted proximal Lck promoter (ID1tg/WT) have a large pool of primarily thymus-derived ILC2s in the periphery that develop in the absence of E-protein activity. We used these mice to investigate how the absence of E-protein activity affects ILC2 function and the genomic landscape in response to house dust mite (HDM) allergens. ID1tg/WT mice had increased KLRG1- ILC2s in the lung compared with wild-type (WT; ID1WT/WT) mice in response to HDM, but ID1tg/WT ILC2s had an impaired capacity to produce type 2 cytokines. Analysis of WT ILC2 accessible chromatin suggested that AP-1 and C/EBP transcription factors but not E-proteins were associated with ILC2 inflammatory gene programs. Instead, E-protein binding sites were enriched at functional genes in ILC2s during development that were later dynamically regulated in allergic lung inflammation, including genes that control ILC2 response to cytokines and interactions with T cells. Finally, ILC2s from ID1tg/WT compared with WT mice had fewer regions of open chromatin near functional genes that were enriched for AP-1 factor binding sites following HDM treatment. These data show that E-proteins shape the chromatin landscape during ILC2 development to dictate the functional capacity of mature ILC2s during allergic inflammation in the lung.


Assuntos
Antígenos de Dermatophagoides/imunologia , Asma/imunologia , Proteína 1 Inibidora de Diferenciação/metabolismo , Linfócitos T/imunologia , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Alérgenos/imunologia , Animais , Asma/patologia , Diferenciação Celular/imunologia , Cromatina/metabolismo , Citocinas/imunologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Feminino , Lectinas Tipo C/genética , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pyroglyphidae/imunologia , Receptores Imunológicos/genética , Células-Tronco/citologia , Linfócitos T/citologia , Fator de Transcrição AP-1/metabolismo
17.
J Med Chem ; 65(5): 3943-3961, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35192363

RESUMO

Chromodomain helicase DNA-binding protein 1 like (CHD1L) is an oncogene implicated in tumor progression, multidrug resistance, and metastasis in many types of cancer. In this article, we described the optimization of the first lead CHD1L inhibitors (CHD1Li) through drug design and medicinal chemistry. More than 30 CHD1Li were synthesized and evaluated using a variety of colorectal cancer (CRC) tumor organoid models and functional assays. The results led to the prioritization of six lead CHD1Li analogues with improved potency, antitumor activity, and drug-like properties including metabolic stability and in vivo pharmacokinetics. Furthermore, lead CHD1Li 6.11 proved to be an orally bioavailable antitumor agent, significantly reducing the tumor volume of CRC xenografts generated from isolated quasi mesenchymal cells (M-phenotype), which possess enhanced tumorigenic properties. In conclusion, we reported the optimization of first-in-class inhibitors of oncogenic CHD1L as a novel therapeutic strategy with potential for the treatment of cancer.


Assuntos
Antineoplásicos , DNA Helicases , Proteínas de Ligação a DNA , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinogênese/genética , Linhagem Celular Tumoral , DNA Helicases/antagonistas & inibidores , Proteínas de Ligação a DNA/antagonistas & inibidores , Desenho de Fármacos , Humanos , Oncogenes
18.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35193978

RESUMO

The architectural protein histone-like protein from Escherichia coli strain U93 (HU) is the most abundant bacterial DNA binding protein and highly conserved among bacteria and Apicomplexan parasites. It not only binds to double-stranded DNA (dsDNA) to maintain DNA stability but also, interacts with RNAs to regulate transcription and translation. Importantly, HU is essential to cell viability for many bacteria; hence, it is an important antibiotic target. Here, we report that Gp46 from bacteriophage SPO1 of Bacillus subtilis is an HU inhibitor whose expression prevents nucleoid segregation and causes filamentous morphology and growth defects in bacteria. We determined the solution structure of Gp46 and revealed a striking negatively charged surface. An NMR-derived structural model for the Gp46-HU complex shows that Gp46 occupies the DNA binding motif of the HU and therefore, occludes DNA binding, revealing a distinct strategy for HU inhibition. We identified the key residues responsible for the interaction that are conserved among HUs of bacteria and Apicomplexans, including clinically significant Mycobacterium tuberculosis, Acinetobacter baumannii, and Plasmodium falciparum, and confirm that Gp46 can also interact with these HUs. Our findings provide detailed insight into a mode of HU inhibition that provides a useful foundation for the development of antibacteria and antimalaria drugs.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Bacteriófagos/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Glicoproteínas/metabolismo , Proteínas Virais/metabolismo , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ligação Proteica
19.
Mol Med Rep ; 25(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35169856

RESUMO

Polycystic ovary syndrome is one of the most common endocrine and metabolic gynecological disorders, of which dysfunction of ovarian granulosa cells is a key contributing factor. The aim of the present study was to explore the role of ferrostatin­1 (Fer­1), a ferroptosis inhibitor, in a cell injury model established by homocysteine (Hcy)­induced ovarian granulosa KGN cell line and the potential underlying mechanism. Cell viability was measured using Cell Counting Kit­8 assay in the presence or absence of Hcy and Fer­1. Cell apoptosis was assessed using TUNEL staining and the expression levels of apoptosis­related proteins were measured using western blotting. To explore the effects of Fer­1 on oxidative stress in Hcy­treated ovarian granulosa cells, the levels of reactive oxygen species (ROS), malondialdehyde (MDA), lactate dehydrogenase (LDH) and glutathione (GSH) were measured using their corresponding kits. Furthermore, Fe2+ levels were assessed using Phen Green™ SK labeling and western blotting was performed to measure the protein expression levels of ferroptosis­associated proteins GPX4, SLC7A11, ASCL4 and DMT1. Subsequently, DNA methylation and ten­eleven translocation (TET) 1/2 demethylase levels were also detected to evaluate the extent of overall DNA methylation in ovarian granulosa cells after Hcy treatment. The TET1/2 inhibitor Bobcat339 hydrochloride was applied to treat ovarian granulosa cells before evaluating the possible effects of Fer­1 on TET1/2 and DNA methylation. Fer­1 was found to markedly elevate ovarian granulosa cell viability following Hcy treatment. The apoptosis rate in Fer­1­treated groups was also markedly decreased, which was accompanied by downregulated Bax and cleaved caspase­3 expression and upregulated Bcl­2 protein expression. In addition, Fer­1 treatment reduced the levels of ROS, MDA and LDH whilst enhancing the levels of GSH. Fe2+ levels were significantly decreased following Fer­1 treatment, which also elevated glutathione peroxidase 4 expression whilst reducing solute carrier family 7 member 11, achaete­scute family BHLH transcription factor 4 and divalent metal transporter 1 protein expression. Fer­1 significantly inhibited DNA methylation and enhanced TET1/2 levels, which were reversed by treatment with Bobcat339 hydrochloride. Subsequent experiments on cell viability, oxidative stress, Fe2+ content, ferroptosis­ and apoptosis­related proteins levels revealed that Bobcat339 hydrochloride reversed the effects of Fer­1 on ovarian granulosa Hcy­induced cell injury. These results suggest that Fer­1 may potentially protect ovarian granulosa cells against Hcy­induced injury by increasing TET levels and reducing DNA methylation.


Assuntos
Cicloexilaminas/farmacologia , Metilação de DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Ferroptose/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Oxigenases de Função Mista/metabolismo , Fenilenodiaminas/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/antagonistas & inibidores , Dioxigenases/antagonistas & inibidores , Feminino , Glutationa/metabolismo , Homocisteína/toxicidade , Humanos , L-Lactato Desidrogenase/metabolismo , Malondialdeído/metabolismo , Oxigenases de Função Mista/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Síndrome do Ovário Policístico/tratamento farmacológico , Proteínas Proto-Oncogênicas/antagonistas & inibidores
20.
Nat Commun ; 13(1): 866, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165282

RESUMO

Epstein-Barr virus (EBV) is reportedly the first identified human tumor virus, and is closely related to the occurrence and development of nasopharyngeal carcinoma (NPC), gastric carcinoma (GC), and several lymphomas. PD-L1 expression is elevated in EBV-positive NPC and GC tissues; however, the specific mechanisms underlying the EBV-dependent promotion of PD-L1 expression to induce immune escape warrant clarification. EBV encodes 44 mature miRNAs. In this study, we find that EBV-miR-BART11 and EBV-miR-BART17-3p upregulate the expression of PD-L1 in EBV-associated NPC and GC. Furthermore, EBV-miR-BART11 targets FOXP1, EBV-miR-BART17-3p targets PBRM1, and FOXP1 and PBRM1 bind to the enhancer region of PD-L1 to inhibit its expression. Therefore, EBV-miR-BART11 and EBV-miR-BART17-3p inhibit FOXP1 and PBRM1, respectively, and enhance the transcription of PD-L1 (CD274, http://www.ncbi.nlm.nih.gov/gene/29126 ), resulting in the promotion of tumor immune escape, which provides insights into potential targets for EBV-related tumor immunotherapy.


Assuntos
Herpesvirus Humano 4/genética , MicroRNAs/genética , Carcinoma Nasofaríngeo/imunologia , Neoplasias Nasofaríngeas/imunologia , Neoplasias Gástricas/imunologia , Evasão Tumoral/imunologia , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Herpesvirus Humano 4/imunologia , Humanos , Linfoma/imunologia , Linfoma/virologia , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/virologia , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Neoplasias Gástricas/virologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Evasão Tumoral/genética , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...