Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82.503
Filtrar
1.
Mol Biol Rep ; 51(1): 707, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824255

RESUMO

BACKGROUND: Non-coding RNAs (ncRNAs) have a crucial impact on diverse cellular processes, influencing the progression of breast cancer (BC). The objective of this study was to identify novel ncRNAs in BC with potential effects on patient survival and disease progression. METHODS: We utilized the cancer genome atlas data to identify ncRNAs associated with BC pathogenesis. We explored the association between these ncRNA expressions and survival rates. A risk model was developed using candidate ncRNA expression and beta coefficients obtained from a multivariate Cox regression analysis. Co-expression networks were constructed to determine potential relationships between these ncRNAs and molecular pathways. For validation, we employed BC samples and the RT-qPCR method. RESULTS: Our findings revealed a noteworthy increase in the expression of AC093850.2 and CHCHD2P9 in BC, which was correlated with a poor prognosis. In contrast, ADAMTS9-AS1 and ZNF204P displayed significant downregulation and were associated with a favorable prognosis. The risk model, incorporating these four ncRNAs, robustly predicted patient survival. The co-expression network showed an effective association between levels of AC093850.2, CHCHD2P9, ADAMTS9-AS1, and ZNF204P and genes involved in pathways like metastasis, angiogenesis, metabolism, and DNA repair. The RT-qPCR results verified notable alterations in the expression of CHCHD2P9 and ZNF204P in BC samples. Pan-cancer analyses revealed alterations in the expression of these two ncRNAs across various cancer types. CONCLUSION: This study presents a groundbreaking discovery, highlighting the substantial dysregulation of CHCHD2P9 and ZNF204P in BC and other cancers, with implications for patient survival.


Assuntos
Neoplasias da Mama , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/mortalidade , Feminino , Prognóstico , Regulação Neoplásica da Expressão Gênica/genética , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade , RNA não Traduzido/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Redes Reguladoras de Genes , Perfilação da Expressão Gênica/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Environ Microbiol Rep ; 16(3): e13269, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822640

RESUMO

Recombinational repair is an important mechanism that allows DNA replication to overcome damaged templates, so the DNA is duplicated timely and correctly. The RecFOR pathway is one of the common ways to load RecA, while the RuvABC complex operates in the resolution of DNA intermediates. We have generated deletions of recO, recR and ruvB genes in Thermus thermophilus, while a recF null mutant could not be obtained. The recO deletion was in all cases accompanied by spontaneous loss of function mutations in addA or addB genes, which encode a helicase-exonuclease also key for recombination. The mutants were moderately affected in viability and chromosome segregation. When we generated these mutations in a Δppol/addAB strain, we observed that the transformation efficiency was maintained at the typical level of Δppol/addAB, which is 100-fold higher than that of the wild type. Most mutants showed increased filamentation phenotypes, especially ruvB, which also had DNA repair defects. These results suggest that in T. thermophilus (i) the components of the RecFOR pathway have differential roles, (ii) there is an epistatic relationship of the AddAB complex over the RecFOR pathway and (iii) that neither of the two pathways or their combination is strictly required for viability although they are necessary for normal DNA repair and chromosome segregation.


Assuntos
Proteínas de Bactérias , DNA Helicases , Thermus thermophilus , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA/genética , Deleção de Genes , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Segregação de Cromossomos/genética , DNA Bacteriano/genética , Mutação
3.
FASEB J ; 38(11): e23702, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38837439

RESUMO

Pyruvate kinase is a glycolytic enzyme that converts phosphoenolpyruvate and ADP into pyruvate and ATP. There are two genes that encode pyruvate kinase in vertebrates; Pkm and Pkl encode muscle- and liver/erythrocyte-specific forms, respectively. Each gene encodes two isoenzymes due to alternative splicing. Both muscle-specific enzymes, PKM1 and PKM2, function in glycolysis, but PKM2 also has been implicated in gene regulation due to its ability to phosphorylate histone 3 threonine 11 (H3T11) in cancer cells. Here, we examined the roles of PKM1 and PKM2 during myoblast differentiation. RNA-seq analysis revealed that PKM2 promotes the expression of Dpf2/Baf45d and Baf250a/Arid1A. DPF2 and BAF250a are subunits that identify a specific sub-family of the mammalian SWI/SNF (mSWI/SNF) of chromatin remodeling enzymes that is required for the activation of myogenic gene expression during differentiation. PKM2 also mediated the incorporation of DPF2 and BAF250a into the regulatory sequences controlling myogenic gene expression. PKM1 did not affect expression but was required for nuclear localization of DPF2. Additionally, PKM2 was required not only for the incorporation of phosphorylated H3T11 in myogenic promoters but also for the incorporation of phosphorylated H3T6 and H3T45 at myogenic promoters via regulation of AKT and protein kinase C isoforms that phosphorylate those amino acids. Our results identify multiple unique roles for PKM2 and a novel function for PKM1 in gene expression and chromatin regulation during myoblast differentiation.


Assuntos
Diferenciação Celular , Histonas , Mioblastos , Piruvato Quinase , Animais , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Camundongos , Fosforilação , Histonas/metabolismo , Histonas/genética , Mioblastos/metabolismo , Mioblastos/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a Hormônio da Tireoide , Humanos , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Isoenzimas/metabolismo , Isoenzimas/genética
4.
Proc Natl Acad Sci U S A ; 121(24): e2400732121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38838021

RESUMO

Cytoplasmic mislocalization and aggregation of TDP-43 protein are hallmarks of amyotrophic lateral sclerosis (ALS) and are observed in the vast majority of both familial and sporadic cases. How these two interconnected processes are regulated on a molecular level, however, remains enigmatic. Genome-wide screens for modifiers of the ALS-associated genes TDP-43 and FUS have identified the phospholipase D (Pld) pathway as a key regulator of ALS-related phenotypes in the fruit fly Drosophila melanogaster [M. W. Kankel et al., Genetics 215, 747-766 (2020)]. Here, we report the results of our search for downstream targets of the enzymatic product of Pld, phosphatidic acid. We identify two conserved negative regulators of the cAMP/PKA signaling pathway, the phosphodiesterase dunce and the inhibitory subunit PKA-R2, as modifiers of pathogenic phenotypes resulting from overexpression of the Drosophila TDP-43 ortholog TBPH. We show that knockdown of either of these genes results in a mitigation of both TBPH aggregation and mislocalization in larval motor neuron cell bodies, as well as an amelioration of adult-onset motor defects and shortened lifespan induced by TBPH. We determine that PKA kinase activity is downstream of both TBPH and Pld and that overexpression of the PKA target CrebA can rescue TBPH mislocalization. These findings suggest a model whereby increasing cAMP/PKA signaling can ameliorate the molecular and functional effects of pathological TDP-43.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , AMP Cíclico , Proteínas de Ligação a DNA , Proteínas de Drosophila , Drosophila melanogaster , Transdução de Sinais , Animais , AMP Cíclico/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Humanos , Neurônios Motores/metabolismo
5.
Sci Transl Med ; 16(750): eadj7308, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838131

RESUMO

Progranulin (PGRN) haploinsufficiency is a major risk factor for frontotemporal lobar degeneration with TAR DNA-binding protein 43 (TDP-43) pathology (FTLD-GRN). Multiple therapeutic strategies are in clinical development to restore PGRN in the CNS, including gene therapy. However, a limitation of current gene therapy approaches aimed to alleviate FTLD-associated pathologies may be their inefficient brain exposure and biodistribution. We therefore developed an adeno-associated virus (AAV) targeting the liver (L) to achieve sustained peripheral expression of a transferrin receptor (TfR) binding, brain-penetrant (b) PGRN variant [AAV(L):bPGRN] in two mouse models of FTLD-GRN, namely, Grn knockout and GrnxTmem106b double knockout mice. This therapeutic strategy avoids potential safety and biodistribution issues of CNS-administered AAVs and maintains sustained concentrations of PGRN in the brain after a single dose. AAV(L):bPGRN treatment reduced several FTLD-GRN-associated pathologies including severe motor function deficits, aberrant TDP-43 phosphorylation, dysfunctional protein degradation, lipid metabolism, gliosis, and neurodegeneration in the brain. The potential translatability of our findings was tested in an in vitro model using cocultured human induced pluripotent stem cell (hiPSC)-derived microglia lacking PGRN and TMEM106B and wild-type hiPSC-derived neurons. As in mice, aberrant TDP-43, lysosomal dysfunction, and neuronal loss were ameliorated after treatment with exogenous TfR-binding protein transport vehicle fused to PGRN (PTV:PGRN). Together, our studies suggest that peripherally administered brain-penetrant PGRN replacement strategies ameliorate FTLD-GRN relevant phenotypes including TDP-43 pathology, neurodegeneration, and behavioral deficits. Our data provide preclinical proof of concept for the use of this AAV platform for treatment of FTLD-GRN and potentially other CNS disorders.


Assuntos
Encéfalo , Dependovirus , Modelos Animais de Doenças , Degeneração Lobar Frontotemporal , Camundongos Knockout , Progranulinas , Animais , Progranulinas/metabolismo , Progranulinas/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Dependovirus/metabolismo , Camundongos , Humanos , Receptores da Transferrina/metabolismo , Terapia Genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fosforilação
6.
Sci Adv ; 10(23): eadm9589, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838142

RESUMO

DNA replication stress (RS) is a widespread phenomenon in carcinogenesis, causing genomic instability and extensive chromatin alterations. DNA damage leads to activation of innate immune signaling, but little is known about transcriptional regulators mediating such signaling upon RS. Using a chemical screen, we identified protein arginine methyltransferase 5 (PRMT5) as a key mediator of RS-dependent induction of interferon-stimulated genes (ISGs). This response is also associated with reactivation of endogenous retroviruses (ERVs). Using quantitative mass spectrometry, we identify proteins with PRMT5-dependent symmetric dimethylarginine (SDMA) modification induced upon RS. Among these, we show that PRMT5 targets and modulates the activity of ZNF326, a zinc finger protein essential for ISG response. Our data demonstrate a role for PRMT5-mediated SDMA in the context of RS-induced transcriptional induction, affecting physiological homeostasis and cancer therapy.


Assuntos
Replicação do DNA , Imunidade Inata , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Transdução de Sinais , Arginina/metabolismo , Arginina/análogos & derivados , Estresse Fisiológico , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Dano ao DNA , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
7.
Cell Metab ; 36(6): 1287-1301.e7, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38838641

RESUMO

Adipocytes in dermis are considered to be important participants in skin repair and regeneration, but the role of subcutaneous white adipose tissue (sWAT) in skin repair is poorly understood. Here, we revealed the dynamic changes of sWAT during wound healing process. Lineage-tracing mouse studies revealed that sWAT would enter into the large wound bed and participate in the formation of granulation tissue. Moreover, sWAT undergoes beiging after skin injury. Inhibition of sWAT beiging by genetically silencing PRDM16, a key regulator to beiging, hindered wound healing process. The transcriptomics results suggested that beige adipocytes in sWAT abundantly express neuregulin 4 (NRG4), which regulated macrophage polarization and the function of myofibroblasts. In diabetic wounds, the beiging of sWAT was significantly suppressed. Thus, adipocytes from sWAT regulate multiple aspects of repair and may be therapeutic for inflammatory diseases and defective wound healing associated with aging and diabetes.


Assuntos
Tecido Adiposo Branco , Pele , Cicatrização , Animais , Tecido Adiposo Branco/metabolismo , Camundongos , Pele/metabolismo , Pele/patologia , Camundongos Endogâmicos C57BL , Gordura Subcutânea/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Neurregulinas/metabolismo , Neurregulinas/genética , Masculino , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Tecido Adiposo Marrom/metabolismo , Adipócitos Bege/metabolismo , Macrófagos/metabolismo , Humanos , Miofibroblastos/metabolismo
8.
BMC Cancer ; 24(1): 685, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840106

RESUMO

BACKGROUND: Gastric cancer is one of the most common tumors worldwide, and most patients are deprived of treatment options when diagnosed at advanced stages. PRDM14 has carcinogenic potential in breast and non-small cell lung cancer. however, its role in gastric cancer has not been elucidated. METHODS: We aimed to elucidate the expression of PRDM14 using pan-cancer analysis. We monitored the expression of PRDM14 in cells and patients using quantitative polymerase chain reaction, western blotting, and immunohistochemistry. We observed that cell phenotypes and regulatory genes were influenced by PRDM14 by silencing PRDM14. We evaluated and validated the value of the PRDM14-derived prognostic model. Finally, we predicted the relationship between PRDM14 and small-molecule drug responses using the Connectivity Map and The Genomics of Drug Sensitivity in Cancer databases. RESULTS: PRDM14 was significantly overexpressed in gastric cancer, which identified in cell lines and patients' tissues. Silencing the expression of PRDM14 resulted in apoptosis promotion, cell cycle arrest, and inhibition of the growth and migration of GC cells. Functional analysis revealed that PRDM14 acts in epigenetic regulation and modulates multiple DNA methyltransferases or transcription factors. The PRDM14-derived differentially expressed gene prognostic model was validated to reliably predict the patient prognosis. Nomograms (age, sex, and PRDM14-risk score) were used to quantify the probability of survival. PRDM14 was positively correlated with sensitivity to small-molecule drugs such as TPCA-1, PF-56,227, mirin, and linsitinib. CONCLUSIONS: Collectively, our findings suggest that PRDM14 is a positive regulator of gastric cancer progression. Therefore, it may be a potential therapeutic target for gastric cancer.


Assuntos
Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Gástricas , Fatores de Transcrição , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Prognóstico , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Feminino , Masculino , Nomogramas , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Epigênese Genética
9.
Sci China Life Sci ; 67(6): 1089-1105, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842635

RESUMO

Histone H3 Lys36 (H3K36) methylation and its associated modifiers are crucial for DNA double-strand break (DSB) repair, but the mechanism governing whether and how different H3K36 methylation forms impact repair pathways is unclear. Here, we unveil the distinct roles of H3K36 dimethylation (H3K36me2) and H3K36 trimethylation (H3K36me3) in DSB repair via non-homologous end joining (NHEJ) or homologous recombination (HR). Yeast cells lacking H3K36me2 or H3K36me3 exhibit reduced NHEJ or HR efficiency. yKu70 and Rfa1 bind H3K36me2- or H3K36me3-modified peptides and chromatin, respectively. Disrupting these interactions impairs yKu70 and Rfa1 recruitment to damaged H3K36me2- or H3K36me3-rich loci, increasing DNA damage sensitivity and decreasing repair efficiency. Conversely, H3K36me2-enriched intergenic regions and H3K36me3-enriched gene bodies independently recruit yKu70 or Rfa1 under DSB stress. Importantly, human KU70 and RPA1, the homologs of yKu70 and Rfa1, exclusively associate with H3K36me2 and H3K36me3 in a conserved manner. These findings provide valuable insights into how H3K36me2 and H3K36me3 regulate distinct DSB repair pathways, highlighting H3K36 methylation as a critical element in the choice of DSB repair pathway.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Histonas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Humanos , Metilação , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética , Recombinação Homóloga , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Reparo do DNA , Cromatina/metabolismo , Cromatina/genética
10.
Proc Natl Acad Sci U S A ; 121(24): e2322009121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38843187

RESUMO

Follicular helper T (TFH) cells mediate germinal center reactions to generate high affinity antibodies against specific pathogens, and their excessive production is associated with the pathogenesis of systemic autoimmune diseases such as systemic lupus erythematosus (SLE). ETV5, a member of the ETS transcription factor family, promotes TFH cell differentiation in mice. In this study, we examined the role of ETV5 in the pathogenesis of lupus in mice and humans. T cell-specific deletion of Etv5 alleles ameliorated TFH cell differentiation and autoimmune phenotypes in lupus mouse models. Further, we identified SPP1 as an ETV5 target that promotes TFH cell differentiation in both mice and humans. Notably, extracellular osteopontin (OPN) encoded by SPP1 enhances TFH cell differentiation by activating the CD44-AKT signaling pathway. Furthermore, ETV5 and SPP1 levels were increased in CD4+ T cells from patients with SLE and were positively correlated with disease activity. Taken together, our findings demonstrate that ETV5 is a lupus-promoting transcription factor, and secreted OPN promotes TFH cell differentiation.


Assuntos
Diferenciação Celular , Lúpus Eritematoso Sistêmico , Osteopontina , Fatores de Transcrição , Animais , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/patologia , Osteopontina/metabolismo , Osteopontina/genética , Camundongos , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Células T Auxiliares Foliculares/imunologia , Células T Auxiliares Foliculares/metabolismo , Feminino , Modelos Animais de Doenças , Camundongos Knockout
11.
Biochemistry (Mosc) ; 89(4): 626-636, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38831500

RESUMO

Su(Hw) belongs to the class of proteins that organize chromosome architecture, determine promoter activity, and participate in formation of the boundaries/insulators between the regulatory domains. This protein contains a cluster of 12 zinc fingers of the C2H2 type, some of which are responsible for binding to the consensus site. The Su(Hw) protein forms complex with the Mod(mdg4)-67.2 and the CP190 proteins, where the last one binds to all known Drosophila insulators. To further study functioning of the Su(Hw)-dependent complexes, we used the previously described su(Hw)E8 mutation with inactive seventh zinc finger, which produces mutant protein that cannot bind to the consensus site. The present work shows that the Su(Hw)E8 protein continues to directly interact with the CP190 and Mod(mdg4)-67.2 proteins. Through interaction with Mod(mdg4)-67.2, the Su(Hw)E8 protein can be recruited into the Su(Hw)-dependent complexes formed on chromatin and enhance their insulator activity. Our results demonstrate that the Su(Hw) dependent complexes without bound DNA can be recruited to the Su(Hw) binding sites through the specific protein-protein interactions that are stabilized by Mod(mdg4)-67.2.


Assuntos
Cromatina , Proteínas de Drosophila , Drosophila melanogaster , Proteínas Repressoras , Fatores de Transcrição , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/química , Animais , Cromatina/metabolismo , Fatores de Transcrição/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Ligação Proteica , Proteínas Nucleares/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dedos de Zinco , Proteínas Associadas aos Microtúbulos
12.
Biochemistry (Mosc) ; 89(4): 663-673, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38831503

RESUMO

Dosage compensation complex (DCC), which consists of five proteins and two non-coding RNAs roX, specifically binds to the X chromosome in males, providing a higher level of gene expression necessary to compensate for the monosomy of the sex chromosome in male Drosophila compared to the two X chromosomes in females. The MSL2 protein contains the N-terminal RING domain, which acts as an E3 ligase in ubiquitination of proteins and is the only subunit of the complex expressed only in males. Functional role of the two C-terminal domains of the MSL2 protein, enriched with proline (P-domain) and basic amino acids (B-domain), was investigated. As a result, it was shown that the B-domain destabilizes the MSL2 protein, which is associated with the presence of two lysines ubiquitination of which is under control of the RING domain of MSL2. The unstructured proline-rich domain stimulates transcription of the roX2 gene, which is necessary for effective formation of the dosage compensation complex.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Domínios Proteicos , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/química , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Masculino , Feminino , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/química , Ubiquitinação , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/química
13.
Biochemistry (Mosc) ; 89(4): 601-625, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38831499

RESUMO

The most prominent representatives of multisubunit SMC complexes, cohesin and condensin, are best known as structural components of mitotic chromosomes. It turned out that these complexes, as well as their bacterial homologues, are molecular motors, the ATP-dependent movement of these complexes along DNA threads leads to the formation of DNA loops. In recent years, we have witnessed an avalanche-like accumulation of data on the process of SMC dependent DNA looping, also known as loop extrusion. This review briefly summarizes the current understanding of the place and role of cohesin-dependent extrusion in cell physiology and presents a number of models describing the potential molecular mechanism of extrusion in a most compelling way. We conclude the review with a discussion of how the capacity of cohesin to extrude DNA loops may be mechanistically linked to its involvement in sister chromatid cohesion.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Coesinas , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Humanos , Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/química , DNA/metabolismo , DNA/química , Animais , Cromátides/metabolismo
14.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38843934

RESUMO

RNA-binding proteins are frequently deregulated in cancer and emerge as effectors of the DNA damage response (DDR). The non-POU domain-containing octamer-binding protein NONO/p54nrb is a multifunctional RNA-binding protein that not only modulates the production and processing of mRNA, but also promotes the repair of DNA double-strand breaks (DSBs). Here, we investigate the impact of Nono deletion in the murine KP (KRas G12D , Trp53 -/- ) cell-based lung cancer model. We show that the deletion of Nono impairs the response to DNA damage induced by the topoisomerase II inhibitor etoposide or the radiomimetic drug bleomycin. Nono-deficient KP (KPN) cells display hyperactivation of DSB signalling and high levels of DSBs. The defects in the DDR are accompanied by reduced RNA polymerase II promoter occupancy, impaired nascent RNA synthesis, and attenuated induction of the DDR factor growth arrest and DNA damage-inducible beta (Gadd45b). Our data characterise Gadd45b as a putative Nono-dependent effector of the DDR and suggest that Nono mediates a genome-protective crosstalk of the DDR with the RNA metabolism via induction of Gadd45b.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Ligação a RNA , Animais , Camundongos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Quebras de DNA de Cadeia Dupla , Antígenos de Diferenciação/metabolismo , Antígenos de Diferenciação/genética , Bleomicina/farmacologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Etoposídeo/farmacologia , Transdução de Sinais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , RNA Polimerase II/metabolismo , Humanos , Proteínas GADD45
15.
BMC Biol ; 22(1): 132, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835016

RESUMO

BACKGROUND: ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, is thought to play a significant role both in tumor suppression and tumor initiation, which is highly dependent upon context. Previous studies have suggested that ARID1A deficiency may contribute to cancer development. The specific mechanisms of whether ARID1A loss affects tumorigenesis by RNA editing remain unclear. RESULTS: Our findings indicate that the deficiency of ARID1A leads to an increase in RNA editing levels and alterations in RNA editing categories mediated by adenosine deaminases acting on RNA 1 (ADAR1). ADAR1 edits the CDK13 gene at two previously unidentified sites, namely Q113R and K117R. Given the crucial role of CDK13 as a cyclin-dependent kinase, we further observed that ADAR1 deficiency results in changes in the cell cycle. Importantly, the sensitivity of ARID1A-deficient tumor cells to SR-4835, a CDK12/CDK13 inhibitor, suggests a promising therapeutic approach for individuals with ARID1A-mutant tumors. Knockdown of ADAR1 restored the sensitivity of ARID1A deficient cells to SR-4835 treatment. CONCLUSIONS: ARID1A deficiency promotes RNA editing of CDK13 by regulating ADAR1.


Assuntos
Adenosina Desaminase , Quinases Ciclina-Dependentes , Proteínas de Ligação a DNA , Edição de RNA , Proteínas de Ligação a RNA , Fatores de Transcrição , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Linhagem Celular Tumoral , Proteína Quinase CDC2
16.
Cancer Rep (Hoboken) ; 7(6): e2085, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837682

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the second most common cause of cancer-related death worldwide. Long noncoding RNA (lncRNA) is involved in many malignant tumors. This study aimed to clarify the role of the lncRNA plasmacytoma variant translocation 1 (PVT1) in CRC growth and metastasis. METHODS: Differentially expressed lncRNAs in CRC were analyzed using the Cancer Genome Atlas. Gene expression profiling interactive analysis and a comprehensive resource for lncRNAs from cancer arrays databases were used to analyze lncRNA PVT1 expression and CRC prognosis, respectively. Cell counting kit-8, wound healing, colony formation, Transwell, and immunofluorescence assays were used to evaluate CRC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), respectively. Tumor growth and metastasis models were used to explore the PVT1 effect on the growth and metastasis of CRC in vivo. RESULTS: PVT1 was highly expressed in CRC, associated with a poor prognosis of CRC, and showed good diagnostic value. Transfection of sh-PVT1 or pcDNA3.1-PVT1 reduced or increased the proliferation, wound healing rate, colony formation, invasion, and EMT of CRC cells. PVT1 and miR-3619-5p were co-expressed in CRC cytoplasm, and PVT1 acted as a competitive endogenous RNA (ceRNA) by sponging miR-3619-5p to up-regulate tripartite motif containing 29 (TRIM29) expression. MiR-3619-5p overexpression and TRIM29 knockdown reduced proliferation, wound healing rate, invasion, and EMT of CRC cells. However, simultaneous PVT1 and miR-3619-5p overexpression or knockdown of miR-3619-5p and TRIM29 knockdown rescued the malignant phenotype of CRC cells. CONCLUSIONS: We first clarified the ceRNA mechanism of PVT1 in CRC, which induced growth and metastasis by sponging with miR-3619-5p to regulate TRIM29.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , MicroRNAs , RNA Longo não Codificante , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , RNA Longo não Codificante/genética , MicroRNAs/genética , Proliferação de Células/genética , Camundongos , Animais , Prognóstico , Transição Epitelial-Mesenquimal/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Masculino , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos Nus , Feminino , Linhagem Celular Tumoral , Metástase Neoplásica , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Nat Commun ; 15(1): 4792, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839760

RESUMO

Innate lymphoid cell precursors (ILCPs) develop into distinct subsets of innate lymphoid cells (ILCs) with specific functions. The epigenetic program underlying the differentiation of ILCPs into ILC subsets remains poorly understood. Here, we reveal the genome-wide distribution and dynamics of the DNA methylation and hydroxymethylation in ILC subsets and their respective precursors. Additionally, we find that the DNA hydroxymethyltransferase TET1 suppresses ILC1 but not ILC2 or ILC3 differentiation. TET1 deficiency promotes ILC1 differentiation by inhibiting TGF-ß signaling. Throughout ILCP differentiation at postnatal stage, gut microbiota contributes to the downregulation of TET1 level. Microbiota decreases the level of cholic acid in the gut, impairs TET1 expression and suppresses DNA hydroxymethylation, ultimately resulting in an expansion of ILC1s. In adult mice, TET1 suppresses the hyperactivation of ILC1s to maintain intestinal homeostasis. Our findings provide insights into the microbiota-mediated epigenetic programming of ILCs, which links microbiota-DNA methylation crosstalk to ILC differentiation.


Assuntos
Diferenciação Celular , Metilação de DNA , Proteínas de Ligação a DNA , Imunidade Inata , Linfócitos , Proteínas Proto-Oncogênicas , Animais , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Linfócitos/metabolismo , Linfócitos/imunologia , Camundongos Endogâmicos C57BL , Microbioma Gastrointestinal , Epigênese Genética , Camundongos Knockout , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais
18.
Mol Brain ; 17(1): 32, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840222

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects the motor neuron. One aspect of the neuropathology involved in ALS includes increased genomic damage and impaired DNA repair capability. The TAR-DNA binding protein 43 (TDP43) has been associated with both sporadic and familial forms of ALS, and is typically observed as cytosolic mislocalization of protein aggregates, termed TDP43 proteinopathy. TDP43 is a ubiquitous RNA/DNA binding protein with functional implications in a wide range of disease processes, including the repair of DNA double-strand breaks (DSBs). While TDP43 is widely known to regulate RNA metabolism, our lab has reported it also functions directly at the protein level to facilitate DNA repair. Here, we show that the TDP43 protein interacts with DNA mismatch repair (MMR) proteins MLH1 and MSH6 in a DNA damage-inducible manner. We utilized differentiated SH-SY5Y neuronal cultures to identify this inducible relationship using complementary approaches of proximity ligation assay (PLA) and co-immunoprecipitation (CoIP) assay. We observed that signals of TDP43 interaction with MLH1 and MSH6 increased significantly following a 2 h treatment of 10 µM methylmethanesulfonate (MMS), a DNA alkylating agent used to induce MMR repair. Likewise, we observed this effect was abolished in cell lines treated with siRNA directed against TDP43. Finally, we demonstrated these protein interactions were significantly increased in lumbar spinal cord samples of ALS-affected patients compared to age-matched controls. These results will inform our future studies to understand the mechanisms and consequences of this TDP43-MMR interaction in the context of ALS-affected neurons.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA , Proteína 1 Homóloga a MutL , Ligação Proteica , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteína 1 Homóloga a MutL/metabolismo , Ligação Proteica/efeitos dos fármacos , Linhagem Celular Tumoral , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Neurônios/metabolismo , Pessoa de Meia-Idade , Masculino
19.
J Clin Invest ; 134(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828722

RESUMO

The occurrence of clonal hematopoiesis of indeterminate potential (CHIP), in which advantageous somatic mutations result in the clonal expansion of blood cells, increases with age, as do an increased risk of mortality and detrimental outcomes associated with CHIP. However, the role of CHIP in susceptibility to pulmonary infections, which also increase with age, is unclear. In this issue of the JCI, Quin and colleagues explored the role of CHIP in bacterial pneumonia. Using characterization of immune cells from human donors and mice lacking tet methylcytosine dioxygenase 2 (Tet2), the authors mechanistically link myeloid immune cell dysfunction to CHIP-mediated risk of bacterial pneumonia. The findings suggest that CHIP drives inflammaging and immune senescence, and provide Tet2 status in older adults as a potential prognostic tool for informing treatment options related to immune modulation.


Assuntos
Hematopoiese Clonal , Proteínas de Ligação a DNA , Dioxigenases , Pneumonia Bacteriana , Humanos , Animais , Hematopoiese Clonal/imunologia , Hematopoiese Clonal/genética , Camundongos , Dioxigenases/genética , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/genética , Pneumonia Bacteriana/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/imunologia , Proteínas Proto-Oncogênicas/metabolismo
20.
Transl Neurodegener ; 13(1): 29, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831349

RESUMO

TDP-43 proteinopathies are a heterogeneous group of neurodegenerative disorders that share the presence of aberrant, misfolded and mislocalized deposits of the protein TDP-43, as in the case of amyotrophic lateral sclerosis and some, but not all, pathological variants of frontotemporal dementia. In recent years, many other diseases have been reported to have primary or secondary TDP-43 proteinopathy, such as Alzheimer's disease, Huntington's disease or the recently described limbic-predominant age-related TDP-43 encephalopathy, highlighting the need for new and accurate methods for the early detection of TDP-43 proteinopathy to help on the stratification of patients with overlapping clinical diagnosis. Currently, TDP-43 proteinopathy remains a post-mortem pathologic diagnosis. Although the main aim is to determine the pathologic TDP-43 proteinopathy in the central nervous system (CNS), the ubiquitous expression of TDP-43 in biofluids and cells outside the CNS facilitates the use of other accessible target tissues that might reflect the potential TDP-43 alterations in the brain. In this review, we describe the main developments in the early detection of TDP-43 proteinopathies, and their potential implications on diagnosis and future treatments.


Assuntos
Biomarcadores , Proteínas de Ligação a DNA , Proteinopatias TDP-43 , Humanos , Proteinopatias TDP-43/diagnóstico , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/genética , Biomarcadores/análise , Biomarcadores/metabolismo , Proteínas de Ligação a DNA/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA