Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.027
Filtrar
1.
Biochemistry ; 63(14): 1824-1836, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38968244

RESUMO

Faced with the emergence of multiresistant microorganisms that affect human health, microbial agents have become a serious global threat, affecting human health and plant crops. Antimicrobial peptides have attracted significant attention in research for the development of new microbial control agents. This work's goal was the structural characterization and analysis of antifungal activity of chitin-binding peptides from Capsicum baccatum and Capsicum frutescens seeds on the growth of Candida and Fusarium species. Proteins were initially submitted to extraction in phosphate buffer pH 5.4 and subjected to chitin column chromatography. Posteriorly, two fractions were obtained for each species, Cb-F1 and Cf-F1 and Cb-F2 and Cf-F2, respectively. The Cb-F1 (C. baccatum) and Cf-F1 (C. frutescens) fractions did not bind to the chitin column. The electrophoresis results obtained after chromatography showed two major protein bands between 3.4 and 14.2 kDa for Cb-F2. For Cf-F2, three major bands were identified between 6.5 and 14.2 kDa. One band from each species was subjected to mass spectrometry, and both bands showed similarity to nonspecific lipid transfer protein. Candida albicans and Candida tropicalis had their growth inhibited by Cb-F2. Cf-F2 inhibited the development of C. albicans but did not inhibit the growth of C. tropicalis. Both fractions were unable to inhibit the growth of Fusarium species. The toxicity of the fractions was tested in vivo on Galleria mellonella larvae, and both showed a low toxicity rate at high concentrations. As a result, the fractions have enormous promise for the creation of novel antifungal compounds.


Assuntos
Antifúngicos , Candida , Quitina , Fusarium , Simulação de Acoplamento Molecular , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/metabolismo , Quitina/química , Quitina/metabolismo , Fusarium/efeitos dos fármacos , Candida/efeitos dos fármacos , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Animais , Capsicum/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia , Testes de Sensibilidade Microbiana , Ligação Proteica , Conformação Proteica
2.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39000571

RESUMO

Hypertension is a major controllable risk factor associated with cardiovascular disease (CVD) and overall mortality worldwide. Most people with hypertension must take medications that are effective in blood pressure management but cause many side effects. Thus, it is important to explore safer antihypertensive alternatives to regulate blood pressure. In this study, peanut protein concentrate (PPC) was hydrolyzed with 3-5% Alcalase for 3-10 h. The in vitro angiotensin-converting enzyme (ACE) and renin-inhibitory activities of the resulting peanut protein hydrolysate (PPH) samples and their fractions of different molecular weight ranges were determined as two measures of their antihypertensive potentials. The results show that the crude PPH produced at 4% Alcalase for 6 h of hydrolysis had the highest ACE-inhibitory activity with IC50 being 5.45 mg/mL. The PPH samples produced with 3-5% Alcalase hydrolysis for 6-8 h also displayed substantial renin-inhibitory activities, which is a great advantage over the animal protein-derived bioactive peptides or hydrolysate. Remarkably higher ACE- and renin-inhibitory activities were observed in fractions smaller than 5 kDa with IC50 being 0.85 and 1.78 mg/mL. Hence, the PPH and its small molecular fraction produced under proper Alcalase hydrolysis conditions have great potential to serve as a cost-effective anti-hypertensive ingredient for blood pressure management.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Arachis , Peptidil Dipeptidase A , Proteínas de Plantas , Hidrolisados de Proteína , Renina , Subtilisinas , Subtilisinas/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Arachis/química , Renina/metabolismo , Renina/antagonistas & inibidores , Hidrólise , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia , Proteínas de Plantas/química , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/química , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/química , Humanos
3.
Molecules ; 29(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38998943

RESUMO

The leaves of mulberry, Azolla spp., sunflower sprouts, cashew nut, and mung bean are considered rich sources of plant protein with high levels of branched-chain amino acids. Furthermore, they contain beneficial phytochemicals such as antioxidants and anti-inflammatory agents. Additionally, there are reports suggesting that an adequate consumption of amino acids can reduce nerve cell damage, delay the onset of memory impairment, and improve sleep quality. In this study, protein isolates were prepared from the leaves of mulberry, Azolla spp., sunflower sprouts, cashew nut, and mung bean. The amino acid profile, dietary fiber content, phenolic content, and flavonoid content were evaluated. Pharmacological properties, such as antioxidant, anticholinesterase, monoamine oxidase, and γ-aminobutyric acid transaminase (GABA-T) activities, were also assessed. This study found that concentrated protein from mung beans has a higher quantity of essential amino acids (52,161 mg/100 g protein) compared to concentrated protein from sunflower sprouts (47,386 mg/100 g protein), Azolla spp. (42,097 mg/100 g protein), cashew nut (26,710 mg/100 g protein), and mulberry leaves (8931 mg/100 g protein). The dietary fiber content ranged from 0.90% to 3.24%, while the phenolic content and flavonoid content ranged from 0.25 to 2.29 mg/g and 0.01 to 2.01 mg/g of sample, respectively. Sunflower sprout protein isolates exhibited the highest levels of dietary fiber (3.24%), phenolic content (2.292 ± 0.082 mg of GAE/g), and flavonoids (2.014 mg quercetin/g of sample). The biological efficacy evaluation found that concentrated protein extract from sunflower sprouts has the highest antioxidant activity; the percentages of inhibition of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical were 20.503 ± 0.288% and 18.496 ± 0.105%, respectively. Five plant-based proteins exhibited a potent inhibition of acetylcholinesterase (AChE) enzyme activity, monoamine oxidase (MAO) inhibition, and GABA-T ranging from 3.42% to 24.62%, 6.14% to 20.16%, and 2.03% to 21.99%, respectively. These findings suggest that these plant protein extracts can be used as natural resources for developing food supplements with neuroprotective activity.


Assuntos
Aminoácidos , Antioxidantes , Flavonoides , Fármacos Neuroprotetores , Fenóis , Extratos Vegetais , Proteínas de Plantas , 4-Aminobutirato Transaminase/antagonistas & inibidores , Aminoácidos/química , Anacardium/química , Antioxidantes/farmacologia , Antioxidantes/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Fibras na Dieta , Flavonoides/química , Flavonoides/farmacologia , Morus/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fenóis/química , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Proteínas de Plantas/farmacologia , Proteínas de Plantas/química , Tailândia , Vigna/química , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia
4.
J Vector Borne Dis ; 61(2): 211-219, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38922655

RESUMO

BACKGROUND OBJECTIVES: Peptides isolated from different sources of plants have the advantages of specificity, lower toxicity, and increased therapeutic effects; hence, it is necessary to search for newer antivirals from plant sources for the treatment of dengue viral infections. METHODS: In silico screening of selected plant peptides against the non-structural protein 1, NS3 protease domain (NS2B-NS3Pro) with the cofactor and ATPase/helicase domain (NS3 helicase domain/NS3hel) of dengue virus was performed. The physicochemical characteristics of the peptides were calculated using Protparam tools, and the allergenicity and toxicity profiles were assessed using allergenFP and ToxinPred, respectively. RESULTS: Among the tested compounds, Ginkbilobin demonstrated higher binding energy against three tested nonstructural protein targets. Kalata B8 demonstrated maximum binding energy against NSP-1 and NSP-2, whereas Circulin A acted against the NSP3 protein of dengue virus. INTERPRETATION CONCLUSION: The three compounds identified by in silico screening can be tested in vitro, which could act as potential leads as they are involved in hampering the replication of the dengue virus by interacting with the three prime non-structural proteins.


Assuntos
Antivirais , Simulação por Computador , Vírus da Dengue , Peptídeos , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/química , Vírus da Dengue/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Peptídeos/farmacologia , Peptídeos/química , Proteínas de Plantas/farmacologia , Proteínas de Plantas/química , Simulação de Acoplamento Molecular , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , RNA Helicases/química , RNA Helicases/metabolismo , Proteases Virais
5.
Int J Biol Macromol ; 273(Pt 1): 132999, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866280

RESUMO

This study aimed to confirm macrophage-stimulatory component from Korean meadowsweet (Filipendula glaberrima; FG) and characterize its compositional and structural properties. FG-CWH, prepared via cool-water extraction and ethanol precipitation, induced the highest secretion of NO (6.0-8.0 µM), TNF-α (8.7-9.5 ng/mL), and IL-6 (1.0-5.7 ng/mL) compared to other samples at 0.4-10 µg/mL in RAW 264.7 cells. Analytical results revealed that FG-CWH is a high-molecular-weight component with an average molecular weight of 220 kDa, constituting a polysaccharide-protein mixture. Chemical and enzymatic treatment of FG-CWH indicated its primary composition as arabinogalactan protein (AGP)-rich glycoprotein, with activity likely associated with the chemical and structural characteristics of AGP. FG-CWH treatment resulted in significant and concentration-dependent increases in iNOS (20.0-29.6 folds), TNFα (10.6-18.6 folds) and IL6 (10.9-155.6 folds) gene expression, as well as the secretion of NO (5.3-6.3 µM), TNF-α (35.4-44.3 ng/mL), and IL-6 (4.1-8.4 ng/mL) secretion, even at a reduced concentration range of 125-500 ng/mL, compared to the negative control group. Immunoblotting analysis indicated FG-CWH-induced macrophage stimulation significantly associated with the activation of MAPK (ERK, JNK, and p38) and NF-κB (p65 and IκBα). These findings can serve as valuable groundwork for developing FG-derived AGP as novel functional ingredients to enhance human immunity.


Assuntos
Ativação de Macrófagos , Macrófagos , Mucoproteínas , Proteínas de Plantas , Camundongos , Animais , Células RAW 264.7 , Mucoproteínas/química , Mucoproteínas/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Peso Molecular , NF-kappa B/metabolismo
6.
Biochem Biophys Res Commun ; 725: 150253, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880080

RESUMO

Type1 Non-specific Lipid Transfer Protein (CsLTP1) from Citrus sinensis is a small cationic protein possessing a long tunnel-like hydrophobic cavity. CsLTP1 performing membrane trafficking of lipids is a promising candidate for developing a potent drug delivery system. The present work includes in-silico studies and the evaluation of drugs binding to CsLTP1 using biophysical techniques along with the investigation of CsLTP1's ability to enhance the efficacy of drugs employing cell-based bioassays. The in-silico investigations identified Panobinostat, Vorinostat, Cetylpyridinium Chloride, and Fulvestrant with higher affinities and stability of binding to the hydrophobic pocket of CsLTP1. SPR studies revealed strong binding affinities of anticancer drugs, Panobinostat (KD = 1.40 µM) and Vorinostat (KD = 2.17 µM) to CsLTP1 along with the binding and release kinetics. CD and fluorescent spectroscopy revealed drug-induced conformational changes in CsLTP1. CsLTP1-associated drug forms showed remarkably enhanced efficacy in MCF-7 cells, representing increased cell cytotoxicity, intracellular ROS, reduced mitochondrial membrane potential, and up-regulation of proapoptotic markers than the free drugs employing qRT-PCR and western blot analysis. The findings demonstrate that CsLTP1 binds strongly to hydrophobic drugs to facilitate their transport, hence improving their therapeutic efficacy revealed by the in-vitro investigations. This study establishes an excellent foundation for developing CsLTP1-based efficient drug delivery system.


Assuntos
Antineoplásicos , Proteínas de Transporte , Citrus sinensis , Humanos , Proteínas de Transporte/metabolismo , Proteínas de Transporte/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Células MCF-7 , Citrus sinensis/química , Sistemas de Liberação de Medicamentos/métodos , Simulação de Acoplamento Molecular , Apoptose/efeitos dos fármacos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia , Ligação Proteica
7.
Protein Expr Purif ; 222: 106534, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38897399

RESUMO

Tribolium castaneum, also known as the red flour beetle, is a polyphagous pest that seriously damages agricultural products, including stored and processed grains. Researchers have aimed to discover alternative pest control mechanisms that are less harmful to the ecosystem than those currently used. We conduct the purification and characterization of a protease inhibitor from C. plumieri seeds and an in vitro evaluation of its insecticidal potential against the insect pest T. castaneum. The trypsin inhibitor was isolated from C. plumieri seeds in a single-step DEAE-Sepharose column chromatography and had a molecular mass of 50 kDA. When analyzed for interaction with different proteolytic enzymes, the inhibitor exhibited specificity against trypsin and no activity against other serine proteases such as chymotrypsin and elastase-2. The isolated inhibitor was able to inhibit digestive enzymes of T. castaneum from extracts of the intestine of this insect. Therefore, we conclude that the new protease inhibitor, specific in tryptic inhibition, of protein nature from the seeds of C. plumieri was effective in inhibiting the digestive enzymes of T. castaneum and is a promising candidate in the ecological control of pests.


Assuntos
Tribolium , Inibidores da Tripsina , Animais , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/química , Inibidores da Tripsina/isolamento & purificação , Tribolium/enzimologia , Tribolium/efeitos dos fármacos , Proteínas de Insetos/química , Proteínas de Insetos/isolamento & purificação , Proteínas de Insetos/antagonistas & inibidores , Sementes/química , Inseticidas/farmacologia , Inseticidas/química , Inseticidas/isolamento & purificação , Proteínas de Plantas/farmacologia , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/química
8.
PLoS One ; 19(5): e0298487, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38781174

RESUMO

Cannabis sativa (Hemp) seeds are used widely for cosmetic and therapeutic applications, and contain peptides with substantial therapeutic potential. Two key peptides, WVYY and PSLPA, extracted from hemp seed proteins were the focal points of this study. These peptides have emerged as pivotal contributors to the various biological effects of hemp seed extracts. Consistently, in the present study, the biological effects of WVYY and PSLPA were explored. We confirmed that both WVYY and PSLPA exert antioxidant and antibacterial effects and promote wound healing. We hypothesized the involvement of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in these observed effects, given that Nrf2 is reported to be a central player in the regulation of these observed effects. Molecular-level investigations unequivocally confirmed the role of the Nrf2 signaling pathway in the observed effects of WVYY and PSLPA, specifically their antioxidant effects. Our study highlights the therapeutic potential of hemp seed-derived peptides WVYY and PSLPA, particularly with respect to their antioxidant effects, and provides a nuanced understanding of their effects. Further, our findings can facilitate the investigation of targeted therapeutic applications and also underscore the broader significance of hemp extracts in biological contexts.


Assuntos
Antioxidantes , Cannabis , Queratinócitos , Fator 2 Relacionado a NF-E2 , Peptídeos , Sementes , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Cannabis/química , Humanos , Transdução de Sinais/efeitos dos fármacos , Sementes/química , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Peptídeos/farmacologia , Peptídeos/química , Proteínas de Plantas/farmacologia , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
9.
J Agric Food Chem ; 72(20): 11561-11576, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739709

RESUMO

The aim of this study is to validate the activity of hazelnut (Corylus avellana L.)-derived immunoactive peptides inhibiting the main protease (Mpro) of SARS-CoV-2 and further unveil their interaction mechanism using in vitro assays, molecular dynamics (MD) simulations, and binding free energy calculations. In general, the enzymatic hydrolysis components, especially molecular weight < 3 kDa, possess good immune activity as measured by the proliferation ability of mouse splenic lymphocytes and phagocytic activity of mouse peritoneal macrophages. Over 866 unique peptide sequences were isolated, purified, and then identified by nanohigh-performance liquid chromatography/tandem mass spectrometry (NANO-HPLC-MS/MS) from hazelnut protein hydrolysates, but Trp-Trp-Asn-Leu-Asn (WWNLN) and Trp-Ala-Val-Leu-Lys (WAVLK) in particular are found to increase the cell viability and phagocytic capacity of RAW264.7 macrophages as well as promote the secretion of the cytokines nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß). Fluorescence resonance energy transfer assay elucidated that WWNLN and WAVLK exhibit excellent inhibitory potency against Mpro, with IC50 values of 6.695 and 16.750 µM, respectively. Classical all-atom MD simulations show that hydrogen bonds play a pivotal role in stabilizing the complex conformation and protein-peptide interaction. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) calculation indicates that WWNLN has a lower binding free energy with Mpro than WAVLK. Furthermore, adsorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions illustrate favorable drug-likeness and pharmacokinetic properties of WWNLN compared to WAVLK. This study provides a new understanding of the immunomodulatory activity of hazelnut hydrolysates and sheds light on peptide inhibitors targeting Mpro.


Assuntos
Corylus , Peptídeos , Animais , Camundongos , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Corylus/química , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Proteínas de Plantas/imunologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Células RAW 264.7 , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , SARS-CoV-2/química , Células Vero
10.
J Agric Food Chem ; 72(22): 12541-12554, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38785039

RESUMO

We investigated the protective effect of walnut peptides and YVPFPLP (YP-7) on scopolamine-induced memory impairment in mice and ß-amyloid (Aß)-induced excitotoxic injury in primary hippocampal neurons, respectively. Additionally, the protective mechanism of YP-7 on neuronal excitotoxicity was explored. Mouse behavioral and hippocampal slice morphology experiments indicate that YP-7 improves the learning and memory abilities of cognitively impaired mice and protects synaptic integrity. Immunofluorescence, western blotting, and electrophysiological experiments on primary hippocampal neurons indicate that YP-7 inhibits neuronal damage caused by excessive excitation of neurons induced by Aß. HT-22 cell treatment with peroxisome proliferator-activated receptor γ (PPARγ) activators and inhibitors showed that YP-7 activates PPARγ expression and maintains normal neuronal function by forming stable complexes with PPARγ to inhibit the extracellular regulated protein kinase pathway. Therefore, YP-7 can ameliorate glutamate-induced excitotoxicity and maintain neuronal signaling. This provides a theoretical basis for active peptides to ameliorate excitotoxicity and the development of functional foods.


Assuntos
Hipocampo , Juglans , Transtornos da Memória , Neurônios , Peptídeos , Animais , Humanos , Masculino , Camundongos , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Juglans/química , Memória/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , PPAR gama/metabolismo , PPAR gama/genética , Escopolamina
11.
Food Funct ; 15(12): 6488-6501, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38804660

RESUMO

Mustard seeds belong to the food category of mandatory labelling due to the severe reactions they can trigger in allergic patients. However, the mechanisms underlying allergic sensitization to mustard seeds are poorly understood. The aim of this work is to study type 2 immune activation induced by the mustard seed major allergen Sin a1 via the intestinal mucosa, employing an in vitro model mimicking allergen exposure via the intestinal epithelial cells (IECs). Sin a1 was isolated from the total protein extract and exposed to IEC, monocyte derived dendritic cells (DCs) or IEC/DC co-cultures. A system of consecutive co-cultures was employed to study the generic capacity of Sin a1 to induce type 2 activation leading to sensitization: IEC/DC, DC/T-cell, T/B-cell and stem cell derived mast cells (MCs) derived from healthy donors. Immune profiles were determined by ELISA and flow cytometry. Sin a1 activated IEC and induced type-2 cytokine secretion in IEC/DC co-culture or DC alone (IL-15, IL-25 and TSLP), and primed DC induced type 2 T-cell skewing. IgG secretion in the T-cell/B-cell phase was enhanced in the presence of Sin a1 in the first stages of the co-culture. Anti-IgE did not induce degranulation but promoted IL-13 and IL-4 release by MC primed with the supernatant from B-cells co-cultured with Sin a1-IEC/DC or -DC primed T-cells. Sin a1 enhanced the release of type-2 inflammatory mediators by epithelial and dendritic cells; the latter instructed generic type-2 responses in T-cells that resulted in B-cell activation, and finally MC activation upon anti-IgE exposure. This indicates that via activation of IEC and/or DC, mustard seed allergen Sin a1 is capable of driving type 2 immunity which may lead to allergic sensitization.


Assuntos
Alérgenos , Células Dendríticas , Células Epiteliais , Mostardeira , Sementes , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Humanos , Sementes/química , Alérgenos/imunologia , Células Epiteliais/imunologia , Células Epiteliais/efeitos dos fármacos , Mucosa Intestinal/imunologia , Técnicas de Cocultura , Antígenos de Plantas/imunologia , Mastócitos/imunologia , Mastócitos/efeitos dos fármacos , Imunoglobulina E/imunologia , Citocinas/metabolismo , Proteínas de Plantas/imunologia , Proteínas de Plantas/farmacologia
12.
An Acad Bras Cienc ; 96(2): e20230043, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808874

RESUMO

Sesbania virgata (Cav.) Pers. seeds are protein sources with health and environmental benefits. In this research, proteins with lectin activity were identified in a protein fraction from S. virgata seeds (PFLA), as well its antioxidant and antimicrobial potentials, in addition to cytotoxic effects. To obtain PFLA, seed flour was homogenized in Glycine-NaOH (100 mM; pH 9.0; NaCl 150 mM) and precipitated in ammonium sulfate. PFLA concentrates bioactive lectins (32 HU/mL, 480 HU/gFa, 18.862 HU/mgP) and essential amino acids (13.36 g/100g protein). PFLA exerts antioxidant activity, acting as a promising metal chelating agent (~77% of activity). Analyzes of cell culture assay results suggest that antioxidant activity of PFLA may be associated with the recruitment of essential molecules to prevent the metabolic impairment of cells exposed to oxidative stress. PFLA (256 - 512 µg/mL) also exhibits antifungal activity, inhibiting the growth of Aspergillus flavus, Candida albicans, Candida tropicalis and Penicillium citrinum. Cytotoxic analysis indicates a tendency of low interference in the proliferation of 3T3 and HepG2 cells in the range of PFLA concentrations with biological activity. These findings support the notion that PFLA is a promising adjuvant to be applied in current policies on the management of metal ion chelation and fungal infections.


Assuntos
Antifúngicos , Antioxidantes , Sementes , Sesbania , Sementes/química , Antioxidantes/farmacologia , Antifúngicos/farmacologia , Antifúngicos/isolamento & purificação , Antifúngicos/química , Sesbania/química , Humanos , Proteínas de Plantas/farmacologia , Testes de Sensibilidade Microbiana , Animais , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células Hep G2
13.
BMC Complement Med Ther ; 24(1): 195, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769554

RESUMO

BACKGROUND: The burden of breast cancer, the second leading cause of death worldwide, is increasing at an alarming rate. Cuscuta, used in traditional medicine for different ailments, including cancer, is known for containing phytochemicals that exhibit anticancer activity; however, the bioactivities of proteins from this plant remain unexplored. This study aimed to screen the cytotoxic potential of proteins from the crude herbal product of Cuscuta epithymum(L.) (CE) harvested from the host plants Alhagi maurorum and Medicago sativa. METHODS: The proteins from CE were extracted using a salting-out method, followed by fractionation with a gel filtration chromatography column. Gel-free shotgun proteomics was subsequently performed for protein characterization. The viability assay using MTT was applied to deduce the cytotoxic potential of proteins against MCF-7 breast cancer cells, with further exploration of the effect of treatment on the expression of the apoptotic mediator BCL2-associated X protein (BAX) and B-cell lymphoma protein 2 (BCL-2) proteins, using western blotting to strengthen the findings from the in vitro viability assay. RESULTS: The crude proteins (CP) of CE were separated into four protein peaks (P1, P2, P3, and P4) by gel filtration chromatography. The evaluation of potency showed a dose-dependent decline in the MCF-7 cell line after CP, P1, P2, and P3 treatment with the respective IC50 values of 33.8, 43.1, 34.5, and 28.6 µg/ml. The percent viability of the cells decreased significantly upon treatment with 50 µg/ml CP, P1, P2, and P3 (P < 0.001). Western-blot analysis revealed upregulation of proapoptotic protein BAX in the cells treated with CP, P3 (P < 0.01), and P2 (P < 0.05); however, the antiapoptotic protein, BCL-2 was downregulated in the cells treated with CP and P3 (P < 0.01), but no significant change was detected in P2 treated cells. The observed cytotoxic effects of proteins in the CP, P1, P2, and P3 from the in vitro viability assay and western blot depicted the bioactivity potential of CE proteins. The database search revealed the identities of functionally important proteins, including nonspecific lipid transfer protein, superoxide dismutase, carboxypeptidase, RNase H domain containing protein, and polyribonucleotide nucleotidyltransferase, which have been previously reported from other plants to exhibit anticancer activity. CONCLUSION: This study indicated the cytotoxic activity of Cuscuta proteins against breast cancer MCF-7 cells and will be utilized for future investigations on the mechanistic effect of active proteins. The survey of CE proteins provided substantial data to encourage further exploration of biological activities exhibited by proteins in Cuscuta.


Assuntos
Neoplasias da Mama , Cuscuta , Proteínas de Plantas , Proteômica , Humanos , Células MCF-7 , Proteínas de Plantas/farmacologia , Cuscuta/química , Neoplasias da Mama/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Feminino , Antineoplásicos Fitogênicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos
14.
Plant Foods Hum Nutr ; 79(2): 401-409, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38602652

RESUMO

This study focused on studying the bioaccesible phenolic compounds (PCs) from yellow pea flour (F) and protein isolate (I). Total phenolic contents (TPC), PCs composition and antioxidant activities were analysed in ethanol 60% extracts obtained by applying ultrasound assisted extraction (UAE, 15 min/40% amplitude). The preparation of I under alkaline conditions and the elimination of some soluble components at lower pH produced a change of PCs profile and antioxidant activity. After simulated gastrointestinal digestion (SGID) of both ingredients to obtain the digests FD and ID, notable changes in the PCs concentration and profiles could be demonstrated. FD presented a higher ORAC activity than ID (IC50 = 0.022 and 0.039 mg GAE/g dm, respectively), but lower ABTS•+ activity (IC50 = 0.8 and 0.3 mg GAE/g dm, respectively). After treatment with cholestyramine of extracts from FD and ID in order to eliminate bile salts and obtain the bioaccesible fractions FDb and IDb, ROS scavenging in H2O2-induced Caco2-TC7 cells was evaluated, registering a greater activity for ID respect to FD (IC50 = 0.042 and 0.017 mg GAE/mL, respectively). These activities could be attributed to the major bioaccesible PCs: OH-tyrosol, polydatin, trans-resveratrol, rutin, (-)-epicatechin and (-)-gallocatechin gallate for FD; syringic (the most concentrated) and ellagic acids, trans-resveratrol, and (-)-gallocatechin gallate for ID, but probably other compounds such as peptides or amino acids can also contribute.


Assuntos
Antioxidantes , Farinha , Fenóis , Pisum sativum , Antioxidantes/farmacologia , Antioxidantes/análise , Pisum sativum/química , Fenóis/análise , Fenóis/farmacologia , Farinha/análise , Humanos , Células CACO-2 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Proteínas de Plantas/análise , Proteínas de Ervilha/química , Digestão
15.
Environ Toxicol ; 39(7): 3991-4003, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38606910

RESUMO

In recent times, there has been growing attention towards exploring the nutritional and functional aspects of potato protein, along with its diverse applications. In the present study, we examined the anti-osteoclast properties of potato protein hydrolysate (PP902) in vitro. Murine macrophages (RAW264.7) were differentiated into osteoclasts by receptor activator of nuclear factor-κB ligand (RANKL), and PP902 was examined for its inhibitory effect. Initially, treatment with PP902 was found to significantly prevent RANKL-induced morphological changes in macrophage cells, as determined by tartrate-resistant acid phosphatase (TRAP) staining analysis. This notion was further supported by F-actin analysis using a confocal microscope. Furthermore, PP902 treatment effectively and dose-dependently down-regulated the expression of RANKL-induced osteoclastogenic marker genes, including TRAP, CTR, RANK, NFATc1, OC-STAMP, and c-Fos. These inhibitory effects were associated with suppressing NF-κB transcriptional activation and subsequent reduced nuclear translocation. The decrease in NF-κB activity resulted from reduced activation of its upstream kinases, including I-κBα and IKKα. Moreover, PP902 significantly inhibited RANKL-induced p38MAPK and ERK1/2 activities. Nevertheless, PP902 treatment prevents RANKL-induced intracellular reactive oxygen species generation via increased HO-1 activity. The combined antioxidant and anti-inflammatory effects of PP902 resulted in significant suppression of osteoclastogenesis, suggesting its potential as an adjuvant therapy for osteoclast-related diseases.


Assuntos
NF-kappa B , Osteoclastos , Hidrolisados de Proteína , Ligante RANK , Solanum tuberosum , Animais , Camundongos , Osteoclastos/efeitos dos fármacos , Células RAW 264.7 , NF-kappa B/metabolismo , Hidrolisados de Proteína/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proteínas de Plantas/farmacologia
16.
Toxins (Basel) ; 16(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38668617

RESUMO

The control of crop diseases caused by fungi remains a major problem and there is a need to find effective fungicides that are environmentally friendly. Plants are an excellent source for this purpose because they have developed defense mechanisms to cope with fungal infections. Among the plant proteins that play a role in defense are ribosome-inactivating proteins (RIPs), enzymes obtained mainly from angiosperms that, in addition to inactivating ribosomes, have been studied as antiviral, fungicidal, and insecticidal proteins. In this review, we summarize and discuss the potential use of RIPs (and other proteins with similar activity) as antifungal agents, with special emphasis on RIP/fungus specificity, possible mechanisms of antifungal action, and the use of RIP genes to obtain fungus-resistant transgenic plants. It also highlights the fact that these proteins also have antiviral and insecticidal activity, which makes them very versatile tools for crop protection.


Assuntos
Antifúngicos , Proteínas Inativadoras de Ribossomos , Proteínas Inativadoras de Ribossomos/farmacologia , Antifúngicos/farmacologia , Proteínas de Plantas/farmacologia , Proteínas de Plantas/genética , Fungos/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Plantas Geneticamente Modificadas , Animais , Fungicidas Industriais/farmacologia
17.
Int J Biol Macromol ; 268(Pt 2): 131632, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643911

RESUMO

Advanced glycation end products (AGEs) can be caused during a glycoxidation reaction. This reaction is associated with complications of diabetes and the consequences of health problems. Therefore, we are exploring the prohibitory effect of highland barley protein hydrolysates (HBPHs) on AGE formation. Herein, first extracted the protein from highland barley with various pH conditions and then hydrolyzed using four different proteolytic enzymes (flavourzyme, trypsin, papain, pepsin) under different degrees of hydrolysis. We assessed three degrees of hydrolysates (lowest, middle, highest) of enzymes used to characterize the antioxidant activity and physicochemical properties. Among all the hydrolysates, flavourzyme-treated hydrolysates F-1, F-2, and F-3 indicated the high ability to scavenge DPPH (IC50 values of 0.97 %, 0.63 %, and 0.90 %), structural and functional properties. Finally, the inhibitory effect of the most active hydrolysates F-1, F-2, and F-3 against the AGEs formation was evaluated in multiple glucose-glycated bovine serum albumin (BSA) systems. Additionally, in a BSA system, F-3 exhibited the strong antiglycation activity, effectively suppressed the non-fluorescent AGE (CML), and the fructosamine level. Moreover, it decreased carbonyl compounds while also preventing the loss of thiol groups. Our results would be beneficial in the application of the food industry as a potential antiglycation agent for several chronic diseases.


Assuntos
Produtos Finais de Glicação Avançada , Hordeum , Proteínas de Plantas , Hidrolisados de Proteína , Soroalbumina Bovina , Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Hordeum/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Soroalbumina Bovina/química , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Hidrólise , Antioxidantes/farmacologia , Antioxidantes/química , Animais , Glicosilação/efeitos dos fármacos
18.
Food Funct ; 15(9): 4818-4831, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38606579

RESUMO

Gamma-aminobutyric acid (GABA) is the predominant amino acid in litchi pulp, known for its neuroregulatory effects and anti-inflammatory properties. Although previous research has highlighted the pro-inflammatory characteristics of litchi thaumatin-like protein (LcTLP), interplay between GABA and LcTLP in relation to inflammation remains unclear. This study aims to explore the hepatoprotective effects of the litchi pulp-derived GABA extract (LGE) against LcTLP-induced liver inflammation in mice and LO2 cells. In vivo experiments demonstrated that LGE significantly reduced the levels of aspartate transaminase and alanine transaminase, and protected the liver against infiltration of CD4+ and CD8+ T cells and histological injury induced by LcTLP. Pro-inflammatory cytokines including interleukin-6, interleukin-1ß, and tumor necrosis factor-α were also diminished by LGE. The LGE appeared to modulate the mitogen-activated protein kinase (MAPK) signaling pathway to exert its anti-inflammatory effects, as evidenced by a reduction of 47%, 35%, and 31% in phosphorylated p38, JNK, and ERK expressions, respectively, in the liver of the high-dose LGE group. Additionally, LGE effectively improved the translocation of gut microbiota by modulating its microbiological composition and abundance. In vitro studies have shown that LGE effectively counteracts the increase in reactive oxygen species, calcium ions, and pro-inflammatory cytokines induced by LcTLP. These findings may offer new perspectives on the health benefits and safety of litchi consumption.


Assuntos
Litchi , Extratos Vegetais , Ácido gama-Aminobutírico , Animais , Camundongos , Litchi/química , Extratos Vegetais/farmacologia , Masculino , Ácido gama-Aminobutírico/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Proteínas de Plantas/farmacologia , Inflamação/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Frutas/química , Aspartato Aminotransferases
19.
J Agric Food Chem ; 72(18): 10439-10450, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38676695

RESUMO

Trypsin inhibitors derived from plants have various pharmacological activities and promising clinical applications. In our previous study, a Bowman-Birk-type major trypsin inhibitor from foxtail millet bran (FMB-BBTI) was extracted with antiatherosclerotic activity. Currently, we found that FMB-BBTI possesses a prominent anticolorectal cancer (anti-CRC) activity. Further, a recombinant FMB-BBTI (rFMB-BBTI) was successfully expressed in a soluble manner in host strain Escherichia coli. BL21 (DE3) was induced by isopropyl-ß-d-thiogalactoside (0.1 mM) at 37 °C for 3.5 h by the pET28a vector system. Fortunately, a purity greater than 93% of rFMB-BBTI with anti-CRC activity was purified by nickel-nitrilotriacetic acid affinity chromatography. Subsequently, we found that rFMB-BBTI displays a strikingly anti-CRC effect, characterized by the inhibition of cell proliferation and clone formation ability, cell cycle arrest at the G2/M phase, and induction of cell apoptosis. It is interesting that the rFMB-BBTI treatment had no obvious effect on normal colorectal cells in the same concentration range. Importantly, the anti-CRC activity of rFMB-BBTI was further confirmed in the xenografted nude mice model. Taken together, our study highlights the anti-CRC activity of rFMB-BBTI in vitro and in vivo, uncovering the clinical potential of rFMB-BBTI as a targeted agent for CRC in the future.


Assuntos
Neoplasias Colorretais , Extratos Vegetais , Proteínas de Plantas , Setaria (Planta) , Inibidores da Tripsina , Animais , Humanos , Masculino , Camundongos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Expressão Gênica , Camundongos Endogâmicos BALB C , Camundongos Nus , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Setaria (Planta)/genética , Setaria (Planta)/química , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/isolamento & purificação , Inibidores da Tripsina/química
20.
Food Funct ; 15(10): 5315-5328, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38605685

RESUMO

In this study, walnut protein was hydrolyzed, separated by ultrafiltration, purified by RP-HPLC, identified by LC-MS/MS, and screened by molecular docking to finally obtain three novel antioxidant peptides HGEPGQQQR (1189.584 Da), VAPFPEVFGK (1089.586 Da) and HNVADPQR (949.473 Da). These three peptides exhibited excellent cellular antioxidant activity (CAA) with EC50 values of 0.0120 mg mL-1, 0.0068 mg mL-1, and 0.0069 mg mL-1, respectively, which were superior to that of the positive control GSH (EC50: 0.0122 mg mL-1). In the ethanol injury model, three antioxidant peptides enhanced the survival of cells treated with ethanol from 47.36% to 62.69%, 57.06% and 71.64%, respectively. Molecular docking results showed that the three antioxidant peptides could effectively bind to Keap1, CYP2E1 and TLR4 proteins. These results suggested that walnut-derived antioxidant peptides could be potential antioxidants and hepatoprotective agents for application in functional foods.


Assuntos
Antioxidantes , Juglans , Simulação de Acoplamento Molecular , Peptídeos , Hidrolisados de Proteína , Juglans/química , Antioxidantes/farmacologia , Antioxidantes/química , Peptídeos/farmacologia , Peptídeos/química , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteínas de Plantas/farmacologia , Proteínas de Plantas/química , Etanol , Receptor 4 Toll-Like/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química , Nozes/química , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...