Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.881
Filtrar
1.
Nat Commun ; 15(1): 8241, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300056

RESUMO

Recent studies have established that cellular electrostatic interactions are more influential than assumed previously. Here, we use cryo-EM and perform steady-state kinetic studies to investigate electrostatic interactions between cytochrome (cyt.) c and the complex (C) III2-IV supercomplex from Saccharomyces cerevisiae at low salinity. The kinetic studies show a sharp transition with a Hill coefficient ≥2, which together with the cryo-EM data at 2.4 Å resolution indicate multiple cyt. c molecules bound along the supercomplex surface. Negatively charged loops of CIII2 subunits Qcr6 and Qcr9 become structured to interact with cyt. c. In addition, the higher resolution allows us to identify water molecules in proton pathways of CIV and, to the best of our knowledge, previously unresolved cardiolipin molecules. In conclusion, the lowered electrostatic screening renders engagement of multiple cyt. c molecules that are directed by electrostatically structured CIII2 loops to conduct electron transfer between CIII2 and CIV.


Assuntos
Microscopia Crioeletrônica , Citocromos c , Saccharomyces cerevisiae , Salinidade , Eletricidade Estática , Saccharomyces cerevisiae/metabolismo , Transporte de Elétrons , Citocromos c/química , Citocromos c/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Cinética , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/química , Modelos Moleculares , Cardiolipinas/química , Cardiolipinas/metabolismo
2.
Structure ; 32(9): 1296-1298, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39241761

RESUMO

Fumonisin B1 (FB1) targets sphingolipid biosynthesis, inhibiting ceramide synthases. In this issue of Structure, Zhang et al.1 determined the cryoelectron microscopic structures of yeast ceramide synthase in complex with FB1 and its acylated derivative, acyl-FB1, revealing a two-step "ping-pong" mechanism for the N-acylation of FB1 and how it inhibits ceramide synthase.


Assuntos
Microscopia Crioeletrônica , Fumonisinas , Oxirredutases , Fumonisinas/química , Fumonisinas/metabolismo , Oxirredutases/metabolismo , Oxirredutases/química , Oxirredutases/antagonistas & inibidores , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Acilação , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Esfingolipídeos/metabolismo , Esfingolipídeos/química
3.
Proc Natl Acad Sci U S A ; 121(37): e2322155121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39226345

RESUMO

Utilizing molecular dynamics and free energy perturbation, we examine the relative binding affinity of several covalent polycyclic aromatic hydrocarbon - DNA (PAH-DNA) adducts at the central adenine of NRAS codon-61, a mutational hotspot implicated in cancer risk. Several PAHs classified by the International Agency for Research on Cancer as probable, possible, or unclassifiable as to carcinogenicity are found to have greater binding affinity than the known carcinogen, benzo[a]pyrene (B[a]P). van der Waals interactions between the intercalated PAH and neighboring nucleobases, and minimal disruption of the DNA duplex drive increases in binding affinity. PAH-DNA adducts may be repaired by global genomic nucleotide excision repair (GG-NER), hence we also compute relative free energies of complexation of PAH-DNA adducts with RAD4-RAD23 (the yeast ortholog of human XPC-RAD23) which constitutes the recognition step in GG-NER. PAH-DNA adducts exhibiting the greatest DNA binding affinity also exhibit the least RAD4-RAD23 complexation affinity and are thus predicted to resist the GG-NER machinery, contributing to their genotoxic potential. In particular, the fjord region PAHs dibenzo[a,l]pyrene, benzo[g]chrysene, and benzo[c]phenanthrene are found to have greater binding affinity while having weaker RAD4-RAD23 complexation affinity than their respective bay region analogs B[a]P, chrysene, and phenanthrene. We also find that the bay region PAHs dibenzo[a,j]anthracene, dibenzo[a,c]anthracene, and dibenzo[a,h]anthracene exhibit greater binding affinity and weaker RAD4-RAD23 complexation affinity than B[a]P. Thus, the study of PAH genotoxicity likely needs to be substantially broadened, with implications for public policy and the health sciences. This approach can be broadly applied to assess factors contributing to the genotoxicity of other unclassified compounds.


Assuntos
Adutos de DNA , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Adutos de DNA/química , Adutos de DNA/metabolismo , Adutos de DNA/genética , Humanos , Reparo do DNA , Mutagênicos/toxicidade , Mutagênicos/química , Simulação de Dinâmica Molecular , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Termodinâmica , Benzo(a)pireno/toxicidade , Benzo(a)pireno/química , Benzo(a)pireno/metabolismo , DNA/química , DNA/metabolismo , Benzopirenos/toxicidade , Benzopirenos/química , Benzopirenos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/química
4.
Life Sci Alliance ; 7(11)2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39260885

RESUMO

The yeast pre1-1(ß4-S142F) mutant accumulates late 20S proteasome core particle precursor complexes (late-PCs). We report a 2.1 Å cryo-EM structure of this intermediate with full-length Ump1 trapped inside, and Pba1-Pba2 attached to the α-ring surfaces. The structure discloses intimate interactions of Ump1 with ß2- and ß5-propeptides, which together fill most of the antechambers between the α- and ß-rings. The ß5-propeptide is unprocessed and separates Ump1 from ß6 and ß7. The ß2-propeptide is disconnected from the subunit by autocatalytic processing and localizes between Ump1 and ß3. A comparison of different proteasome maturation states reveals that maturation goes along with global conformational changes in the rings, initiated by structuring of the proteolytic sites and their autocatalytic activation. In the pre1-1 strain, ß2 is activated first enabling processing of ß1-, ß6-, and ß7-propeptides. Subsequent maturation of ß5 and ß1 precedes degradation of Ump1, tightening of the complex, and finally release of Pba1-Pba2.


Assuntos
Microscopia Crioeletrônica , Complexo de Endopeptidases do Proteassoma , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Subunidades Proteicas/metabolismo , Subunidades Proteicas/química , Modelos Moleculares , Conformação Proteica , Peptídeos/metabolismo , Peptídeos/química , Ligação Proteica , Chaperonas Moleculares
5.
Nat Commun ; 15(1): 8039, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271725

RESUMO

In eukaryotes, the origin recognition complex (ORC) faciliates the assembly of pre-replicative complex (pre-RC) at origin DNA for replication licensing. Here we show that the N-terminal intrinsically disordered region (IDR) of the yeast Orc2 subunit is crucial for this process. Removing a segment (residues 176-200) from Orc2-IDR or mutating a key isoleucine (194) significantly inhibits replication initiation across the genome. These Orc2-IDR mutants are capable of assembling the ORC-Cdc6-Cdt1-Mcm2-7 intermediate, which exhibits impaired ATP hydrolysis and fails to be convered into the subsequent Mcm2-7-ORC complex and pre-RC. These defects can be partially rescued by the Orc2-IDR peptide. Moreover, the phosphorylation of this Orc2-IDR region by S cyclin-dependent kinase blocks its binding to Mcm2-7 complex, causing a defective pre-RC assembly. Our findings provide important insights into the multifaceted roles of ORC in supporting origin licensing during the G1 phase and its regulation to restrict origin firing within the S phase.


Assuntos
Replicação do DNA , Complexo de Reconhecimento de Origem , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Complexo de Reconhecimento de Origem/metabolismo , Complexo de Reconhecimento de Origem/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Fosforilação , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Origem de Replicação/genética , Ligação Proteica , Mutação , Fase G1 , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/química , Motivos de Aminoácidos
6.
Protein Sci ; 33(10): e5175, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39276014

RESUMO

Millions of years of evolution have optimized many biosynthetic pathways by use of multi-step catalysis. In addition, multi-step metabolic pathways are commonly found in and on membrane-bound organelles in eukaryotic biochemistry. The fundamental mechanisms that facilitate these reaction processes provide strategies to bioengineer metabolic pathways in synthetic chemistry. Using Brownian dynamics simulations, here we modeled intermediate substrate transportation of colocalized yeast-ester biosynthesis enzymes on the membrane. The substrate acetate ion traveled from the pocket of aldehyde dehydrogenase to its target enzyme acetyl-CoA synthetase, then the substrate acetyl CoA diffused from Acs1 to the active site of the next enzyme, alcohol-O-acetyltransferase. Arranging two enzymes with the smallest inter-enzyme distance of 60 Å had the fastest average substrate association time as compared with anchoring enzymes with larger inter-enzyme distances. When the off-target side reactions were turned on, most substrates were lost, which suggests that native localization is necessary for efficient final product synthesis. We also evaluated the effects of intermolecular interactions, local substrate concentrations, and membrane environment to bring mechanistic insights into the colocalization pathways. The computation work demonstrates that creating spatially organized multi-enzymes on membranes can be an effective strategy to increase final product synthesis in bioengineering systems.


Assuntos
Simulação de Dinâmica Molecular , Acetiltransferases/metabolismo , Acetiltransferases/química , Aldeído Desidrogenase/metabolismo , Aldeído Desidrogenase/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Acetato-CoA Ligase/metabolismo , Acetato-CoA Ligase/química , Acetato-CoA Ligase/genética , Acetilcoenzima A/metabolismo , Acetilcoenzima A/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Domínio Catalítico , Proteínas
7.
Nat Commun ; 15(1): 7854, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39245712

RESUMO

The 5´-3´ exoribonuclease Rat1/Xrn2 is responsible for the termination of eukaryotic mRNA transcription by RNAPII. Rat1 forms a complex with its partner proteins, Rai1 and Rtt103, and acts as a "torpedo" to bind transcribing RNAPII and dissociate DNA/RNA from it. Here we report the cryo-electron microscopy structures of the Rat1-Rai1-Rtt103 complex and three Rat1-Rai1-associated RNAPII complexes (type-1, type-1b, and type-2) from the yeast, Komagataella phaffii. The Rat1-Rai1-Rtt103 structure revealed that Rat1 and Rai1 form a heterotetramer with a single Rtt103 bound between two Rai1 molecules. In the type-1 complex, Rat1-Rai1 forms a heterodimer and binds to the RNA exit site of RNAPII to extract RNA into the Rat1 exonuclease active site. This interaction changes the RNA path in favor of termination (the "pre-termination" state). The type-1b and type-2 complexes have no bound DNA/RNA, likely representing the "post-termination" states. These structures illustrate the termination mechanism of eukaryotic mRNA transcription.


Assuntos
Microscopia Crioeletrônica , Exorribonucleases , Proteínas de Saccharomyces cerevisiae , Exorribonucleases/metabolismo , Exorribonucleases/química , Exorribonucleases/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Terminação da Transcrição Genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Modelos Moleculares , Ligação Proteica , Saccharomycetales/metabolismo , Saccharomycetales/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Transcrição Gênica
8.
Nat Cell Biol ; 26(9): 1504-1519, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39138317

RESUMO

The nuclear basket attaches to the nucleoplasmic side of the nuclear pore complex (NPC), coupling transcription to mRNA quality control and export. The basket expands the functional repertoire of a subset of NPCs in Saccharomyces cerevisiae by drawing a unique RNA/protein interactome. Yet, how the basket docks onto the NPC core remains unknown. By integrating AlphaFold-based interaction screens, electron microscopy and membrane-templated reconstitution, we uncovered a membrane-anchored tripartite junction between basket and NPC core. The basket subunit Nup60 harbours three adjacent short linear motifs, which connect Mlp1, a parallel homodimer consisting of coiled-coil segments interrupted by flexible hinges, and the Nup85 subunit of the Y-complex. We reconstituted the Y-complex•Nup60•Mlp1 assembly on a synthetic membrane and validated the protein interfaces in vivo. Here we explain how a short linear motif-based protein junction can substantially reshape NPC structure and function, advancing our understanding of compositional and conformational NPC heterogeneity.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Poro Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Ligação Proteica
9.
Biomolecules ; 14(8)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39199362

RESUMO

Here we review the functions of ribosomal proteins (RPs) in the nucleolar stages of large ribosomal subunit assembly in the yeast Saccharomyces cerevisiae. We summarize the effects of depleting RPs on pre-rRNA processing and turnover, on the assembly of other RPs, and on the entry and exit of assembly factors (AFs). These results are interpreted in light of recent near-atomic-resolution cryo-EM structures of multiple assembly intermediates. Results are discussed with respect to each neighborhood of RPs and rRNA. We identify several key mechanisms related to RP behavior. Neighborhoods of RPs can assemble in one or more than one step. Entry of RPs can be triggered by molecular switches, in which an AF is replaced by an RP binding to the same site. To drive assembly forward, rRNA structure can be stabilized by RPs, including clamping rRNA structures or forming bridges between rRNA domains.


Assuntos
RNA Ribossômico , Proteínas Ribossômicas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/química , RNA Ribossômico/metabolismo , RNA Ribossômico/química , RNA Ribossômico/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Nucléolo Celular/metabolismo
10.
Nat Commun ; 15(1): 7505, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39209885

RESUMO

The Cdc48 AAA+ ATPase is an abundant and essential enzyme that unfolds substrates in multiple protein quality control pathways. The enzyme includes two conserved AAA+ ATPase motor domains, D1 and D2, that assemble as hexameric rings with D1 stacked above D2. Here, we report an ensemble of native structures of Cdc48 affinity purified from budding yeast lysate in complex with the adaptor Shp1 in the act of unfolding substrate. Our analysis reveals a continuum of structural snapshots that spans the entire translocation cycle. These data uncover elements of Shp1-Cdc48 interactions and support a 'hand-over-hand' mechanism in which the sequential movement of individual subunits is closely coordinated. D1 hydrolyzes ATP and disengages from substrate prior to D2, while D2 rebinds ATP and re-engages with substrate prior to D1, thereby explaining the dominant role played by the D2 motor in substrate translocation/unfolding.


Assuntos
Desdobramento de Proteína , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteína com Valosina , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/química , Modelos Moleculares , Ligação Proteica , Hidrólise , Peptídeos e Proteínas de Sinalização Intracelular
11.
J Cell Biol ; 223(11)2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39105757

RESUMO

The characterization of lipid binding to lipid transfer proteins (LTPs) is fundamental to understand their molecular mechanism. However, several structures of LTPs, and notably those proposed to act as bridges between membranes, do not provide the precise location of their endogenous lipid ligands. To address this limitation, computational approaches are a powerful alternative methodology, but they are often limited by the high flexibility of lipid substrates. Here, we develop a protocol based on unbiased coarse-grain molecular dynamics simulations in which lipids placed away from the protein can spontaneously bind to LTPs. This approach accurately determines binding pockets in LTPs and provides a working hypothesis for the lipid entry pathway. We apply this approach to characterize lipid binding to bridge LTPs of the Vps13-Atg2 family, for which the lipid localization inside the protein is currently unknown. Overall, our work paves the way to determine binding pockets and entry pathways for several LTPs in an inexpensive, fast, and accurate manner.


Assuntos
Proteínas de Transporte , Simulação de Dinâmica Molecular , Ligação Proteica , Sítios de Ligação , Proteínas de Transporte/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Lipídeos/química , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/química
12.
Cell Rep ; 43(8): 114627, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39167489

RESUMO

Sphingolipid levels are crucial determinants of neurodegenerative disorders and therefore require tight regulation. The Orm protein family and ceramides inhibit the rate-limiting step of sphingolipid biosynthesis-the condensation of L-serine and palmitoyl-coenzyme A (CoA). The yeast isoforms Orm1 and Orm2 form a complex with the serine palmitoyltransferase (SPT). While Orm1 and Orm2 have highly similar sequences, they are differentially regulated, though the mechanistic details remain elusive. Here, we determine the cryoelectron microscopy structure of the SPT complex containing Orm2. Complementary in vitro activity assays and genetic experiments with targeted lipidomics demonstrate a lower activity of the SPT-Orm2 complex than the SPT-Orm1 complex. Our results suggest a higher inhibitory potential of Orm2, despite the similar structures of the Orm1- and Orm2-containing complexes. The high conservation of SPT from yeast to man implies different regulatory capacities for the three human ORMDL isoforms, which might be key for understanding their role in sphingolipid-mediated neurodegenerative disorders.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Serina C-Palmitoiltransferase , Serina C-Palmitoiltransferase/metabolismo , Serina C-Palmitoiltransferase/antagonistas & inibidores , Serina C-Palmitoiltransferase/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Esfingolipídeos/biossíntese , Humanos , Ligação Proteica
13.
J Agric Food Chem ; 72(36): 20014-20027, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39186792

RESUMO

This study aimed to rapidly develop novel umami peptides using yeast protein as an alternative protein source. Yeast protein hydrolysates exhibiting pronounced umami intensity were produced using flavorzyme under optimum conditions determined via a sensory-guided response surface methodology. Six out of 2138 peptides predicted to possess umami taste by composite machine learning and assessed as nontoxic, nonallergenic, water-soluble, and stable using integrated bioinformatics were screened as potential umami peptides. Sensory evaluation results revealed these peptides exhibited multiple taste attributes (detection threshold: 0.37 ± 0.10-1.1 ± 0.30 mmol/L), including umami. In light of the molecular docking outcomes, it is inferred that hydrogen bond, hydrophobic, and electrostatic interactions enhanced the theoretically stable binding of peptides to T1R1/T1R3, with their contributions gradually diminishing. Hydrophilic amino acids within T1R1/T1R3, especially Ser, may play a particularly pivotal role in binding with umami peptides. Future research will involve establishing heterologous cell models expressing T1R1 and T1R3 to delve into the cellular physiology of umami peptides. Peptide sequences (FADL, LPDP, and LDIGGDF) also had synergistic saltiness-enhancing effects; to overcome the limitation of not investigating the saltiness enhancement mechanism, comprehensive experiments at the molecular and cellular levels will also be conducted. This study offers a rapid umami peptide development framework and lays the groundwork for exploring yeast protein taste compounds.


Assuntos
Aromatizantes , Simulação de Acoplamento Molecular , Peptídeos , Paladar , Peptídeos/química , Peptídeos/metabolismo , Humanos , Aromatizantes/química , Aromatizantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Masculino , Feminino , Adulto , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Adulto Jovem , Simulação por Computador , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Endopeptidases
14.
Methods Mol Biol ; 2845: 27-37, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39115655

RESUMO

Synthetic tethering approaches induced by chemical means offer precise control over protein interactions in cells. They enable the manipulation of when, where, and how proteins interact, making it possible to study their functions, dynamics, and cellular consequences at a molecular level. These methods are versatile, reversible, and adaptable, allowing the dissection of complex cellular processes and the engineering of cellular functions. Here, we describe two chemically induced dimerization systems in the model organism Saccharomyces cerevisiae. Using the autophagy pathway as an example, we show how these approaches can be used to dissect molecular events in cells.


Assuntos
Autofagia , Multimerização Proteica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
15.
Proc Natl Acad Sci U S A ; 121(35): e2409628121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39163341

RESUMO

Protein kinase Gcn2 attenuates protein synthesis in response to amino acid starvation while stimulating translation of a transcriptional activator of amino acid biosynthesis. Gcn2 activation requires a domain related to histidyl-tRNA synthetase (HisRS), the enzyme that aminoacylates tRNAHis. While evidence suggests that deacylated tRNA binds the HisRS domain for kinase activation, ribosomal P-stalk proteins have been implicated as alternative activating ligands on stalled ribosomes. We report crystal structures of the HisRS domain of Chaetomium thermophilum Gcn2 that reveal structural mimicry of both catalytic (CD) and anticodon-binding (ABD) domains, which in authentic HisRS bind the acceptor stem and anticodon loop of tRNAHis. Elements for forming histidyl adenylate and aminoacylation are lacking, suggesting that Gcn2HisRS was repurposed for kinase activation, consistent with mutations in the CD that dysregulate yeast Gcn2 function. Substituting conserved ABD residues well positioned to contact the anticodon loop or that form a conserved ABD-CD interface impairs Gcn2 function in starved cells. Mimicry in Gcn2HisRS of two highly conserved structural domains for binding both ends of tRNA-each crucial for Gcn2 function-supports that deacylated tRNAs activate Gcn2 and exemplifies how a metabolic enzyme is repurposed to host new local structures and sequences that confer a novel regulatory function.


Assuntos
Chaetomium , Histidina-tRNA Ligase , Proteínas Serina-Treonina Quinases , Chaetomium/enzimologia , Chaetomium/genética , Chaetomium/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Histidina-tRNA Ligase/metabolismo , Histidina-tRNA Ligase/química , Histidina-tRNA Ligase/genética , Estresse Fisiológico , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Cristalografia por Raios X , Modelos Moleculares , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
16.
Life Sci Alliance ; 7(11)2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39209537

RESUMO

Many ATP-binding cassette transporters are regulated by phosphorylation on long and disordered loops which presents a challenge to visualize with structural methods. We have trapped an activated state of the regulatory domain (R-domain) of yeast cadmium factor 1 (Ycf1) by enzymatically enriching the phosphorylated state. A 3.23 Å cryo-EM structure reveals an R-domain structure with four phosphorylated residues and the position for the entire R-domain. The structure reveals key R-domain interactions including a bridging interaction between NBD1 and NBD2 and an interaction with the R-insertion, another regulatory region. We scanned these interactions by systematically replacing segments along the entire R-domain with scrambled combinations of alanine, glycine, and glutamine and probing function under cellular conditions that require the Ycf1 function. We find a close match with these interactions and interacting regions on our R-domain structure that points to the importance of most well-structured segments for function. We propose a model where the R-domain stabilizes a transport-competent state upon phosphorylation by enveloping NBD1 entirely.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Domínio Catalítico , Microscopia Crioeletrônica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Microscopia Crioeletrônica/métodos , Fosforilação , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Modelos Moleculares , Domínios Proteicos , Conformação Proteica
17.
J Mol Biol ; 436(16): 168695, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38969056

RESUMO

Proliferating cell nuclear antigen (PCNA), the homotrimeric eukaryotic sliding clamp protein, recruits and coordinates the activities of a multitude of proteins that function on DNA at the replication fork. Chromatin assembly factor 1 (CAF-1), one such protein, is a histone chaperone that deposits histone proteins onto DNA immediately following replication. The interaction between CAF-1 and PCNA is essential for proper nucleosome assembly at silenced genomic regions. Most proteins that bind PCNA contain a PCNA-interacting peptide (PIP) motif, a conserved motif containing only eight amino acids. Precisely how PCNA is able to discriminate between binding partners at the replication fork using only these small motifs remains unclear. Yeast CAF-1 contains a PIP motif on its largest subunit, Cac1. We solved the crystal structure of the PIP motif of CAF-1 bound to PCNA using a new strategy to produce stoichiometric quantities of one PIP motif bound to each monomer of PCNA. The PIP motif of CAF-1 binds to the hydrophobic pocket on the front face of PCNA in a similar manner to most known PIP-PCNA interactions. However, several amino acids immediately flanking either side of the PIP motif bind the IDCL or C-terminus of PCNA, as observed for only a couple other known PIP-PCNA interactions. Furthermore, mutational analysis suggests positively charged amino acids in these flanking regions are responsible for the low micromolar affinity of CAF-1 for PCNA, whereas the presence of a negative charge upstream of the PIP prevents a more robust interaction with PCNA. These results provide additional evidence that positive charges within PIP-flanking regions of PCNA-interacting proteins are crucial for specificity and affinity of their recruitment to PCNA at the replication fork.


Assuntos
Fator 1 de Modelagem da Cromatina , Modelos Moleculares , Antígeno Nuclear de Célula em Proliferação , Ligação Proteica , Saccharomyces cerevisiae , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Fator 1 de Modelagem da Cromatina/metabolismo , Fator 1 de Modelagem da Cromatina/química , Fator 1 de Modelagem da Cromatina/genética , Cristalografia por Raios X , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/genética , Conformação Proteica , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
18.
J Bacteriol ; 206(8): e0018224, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39082862

RESUMO

Saccharomyces cerevisiae Mdm38 and Ylh47 are homologs of the Ca2+/H+ antiporter Letm1, a candidate gene for seizures associated with Wolf-Hirschhorn syndrome in humans. Mdm38 is important for K+/H+ exchange across the inner mitochondrial membrane and contributes to membrane potential formation and mitochondrial protein translation. Ylh47 also localizes to the inner mitochondrial membrane. However, knowledge of the structures and detailed transport activities of Mdm38 and Ylh47 is limited. In this study, we conducted characterization of the ion transport activities and related structural properties of Mdm38 and Ylh47. Growth tests using Na+/H+ antiporter-deficient Escherichia coli strain TO114 showed that Mdm38 and Ylh47 had Na+ efflux activity. Measurement of transport activity across E. coli-inverted membranes showed that Mdm38 and Ylh47 had K+/H+, Na+/H+, and Li+/H+ antiport activity, but unlike Letm1, they lacked Ca2+/H+ antiport activity. Deletion of the ribosome-binding domain resulted in decreased Na+ efflux activity in Mdm38. Structural models of Mdm38 and Ylh47 identified a highly conserved glutamic acid in the pore-forming membrane-spanning region. Replacement of this glutamic acid with alanine, a non-polar amino acid, significantly impaired the ability of Mdm38 and Ylh47 to complement the salt sensitivity of E. coli TO114. These findings not only provide important insights into the structure and function of the Letm1-Mdm38-Ylh47 antiporter family but by revealing their distinctive properties also shed light on the physiological roles of these transporters in yeast and animals. IMPORTANCE: The inner membrane of mitochondria contains numerous ion transporters, including those facilitating H+ transport by the electron transport chain and ATP synthase to maintain membrane potential. Letm1 in the inner membrane of mitochondria in animals functions as a Ca2+/H+ antiporter. However, this study reveals that homologous antiporters in mitochondria of yeast, Mdm38 and Ylh47, do not transport Ca2+ but instead are selective for K+ and Na+. Additionally, the identification of conserved amino acids crucial for antiporter activity further expanded our understanding of the structure and function of the Letm1-Mdm38-Ylh47 antiporter family.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Escherichia coli/metabolismo , Escherichia coli/genética , Cátions Monovalentes/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/química , Transporte de Íons , Sódio/metabolismo , Antiporters/metabolismo , Antiporters/genética , Antiporters/química , Membranas Mitocondriais/metabolismo
19.
J Colloid Interface Sci ; 674: 753-765, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38955007

RESUMO

The recent coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spurred intense research efforts to develop new materials with antiviral activity. In this study, we genetically engineered amyloid-based nanofibrils for capturing and neutralizing SARS-CoV-2. Building upon the amyloid properties of a short Sup35 yeast prion sequence, we fused it to SARS-CoV-2 receptor-binding domain (RBD) capturing proteins, LCB1 and LCB3. By tuning the reaction conditions, we achieved the spontaneous self-assembly of the Sup35-LCB1 fusion protein into a highly homogeneous and well-dispersed amyloid-like fibrillar material. These nanofibrils exhibited high affinity for the SARS-CoV-2 RBD, effectively inhibiting its interaction with the angiotensin-converting enzyme 2 (ACE2) receptor, the primary entry point for the virus into host cells. We further demonstrate that this functional nanomaterial entraps and neutralizes SARS-CoV-2 virus-like particles (VLPs), with a potency comparable to that of therapeutic antibodies. As a proof of concept, we successfully fabricated patterned surfaces that selectively capture SARS-CoV-2 RBD protein on wet environments. Collectively, these findings suggest that these protein-only nanofibrils hold promise as disinfecting coatings endowed with selective SARS-CoV-2 neutralizing properties to combat viral spread or in the development of sensitive viral sampling and diagnostic tools.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Nanofibras , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , Humanos , Nanofibras/química , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , COVID-19/virologia , Proteínas de Saccharomyces cerevisiae/química , Anticorpos Neutralizantes/imunologia , Amiloide/química , Amiloide/metabolismo , Fatores de Terminação de Peptídeos
20.
J Biol Chem ; 300(8): 107519, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38950860

RESUMO

The mitochondrial ribosome (mitoribosome) is responsible for the synthesis of key oxidative phosphorylation subunits encoded by the mitochondrial genome. Defects in mitoribosomal function therefore can have serious consequences for the bioenergetic capacity of the cell. Mutation of the conserved mitoribosomal mL44 protein has been directly linked to childhood cardiomyopathy and progressive neurophysiology issues. To further explore the functional significance of the mL44 protein in supporting mitochondrial protein synthesis, we have performed a mutagenesis study of the yeast mL44 homolog, the MrpL3/mL44 protein. We specifically investigated the conserved hydrophobic pocket region of the MrpL3/mL44 protein, where the known disease-related residue in the human mL44 protein (L156R) is located. While our findings identify a number of residues in this region critical for MrpL3/mL44's ability to support the assembly of translationally active mitoribosomes, the introduction of the disease-related mutation into the equivalent position in the yeast protein (residue A186) was found to not have a major impact on function. The human and yeast mL44 proteins share many similarities in sequence and structure; however results presented here indicate that these two proteins have diverged somewhat in evolution. Finally, we observed that mutation of the MrpL3/mL44 does not impact the translation of all mitochondrial encoded proteins equally, suggesting the mitochondrial translation system may exhibit a transcript hierarchy and prioritization.


Assuntos
Proteínas Mitocondriais , Ribossomos Mitocondriais , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Humanos , Ribossomos Mitocondriais/metabolismo , Ribossomos Mitocondriais/química , Interações Hidrofóbicas e Hidrofílicas , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/química , Mitocôndrias/metabolismo , Mitocôndrias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...