Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.878
Filtrar
1.
Food Chem ; 462: 140996, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39213962

RESUMO

The mechanisms of trypsin hydrolysis time on the structure of soy protein hydrolysate fibril aggregates (SPHFAs) and the stability of SPHFAs-high internal phase Pickering emulsions (HIPPEs) were investigated. SPHFAs were prepared using soy protein hydrolysate (SPH) with different trypsin hydrolysis time (0 min-120 min) to stabilize SPHFAs-HIPPEs. The results showed that moderate trypsin hydrolysis (30 min, hydrolysis degree of 2.31 %) induced SPH unfolding and increased the surface hydrophobicity of SPH, thereby promoting the formation of flexible SPHFAs with maximal thioflavin T intensity and ζ-potential. Moreover, moderate trypsin hydrolysis improved the viscoelasticity of SPHFAs-HIPPEs, and SPHFAs-HIPPEs remained stable after storage at 25 °C for 80 d and heating at 100 °C for 1 h. Excessive trypsin hydrolysis (> 30 min) decreased the stability of SPHFAs-HIPPEs. In conclusion, moderate trypsin hydrolysis promoted the formation of flexible SPHFAs with high surface charge by inducing SPH unfolding, thereby promoting the stability of SPHFAs-HIPPEs.


Assuntos
Emulsões , Interações Hidrofóbicas e Hidrofílicas , Hidrolisados de Proteína , Proteínas de Soja , Tripsina , Tripsina/química , Hidrólise , Emulsões/química , Proteínas de Soja/química , Hidrolisados de Proteína/química , Agregados Proteicos
2.
Food Chem ; 462: 141004, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39216378

RESUMO

This study assessed the effect of konjac glucomannan (KGM) on the aggregation of soy protein isolate (SPI) and its gel-related structure and properties. Raman results showed that KGM promoted the rearrangement of SPI to form more ß-sheets, contributing to the formation of an ordered structure. Atomic force microscopy, confocal laser scanning microscopy, and small-angle X-ray scattering results indicated that KGM reduced the size of SPI particles, narrowed their size distribution, and loosened the large aggregates formed by the stacking of SPI particles, improving the uniformity of gel system. As the hydrogen bonding between the KGM and SPI molecules enhanced, a well-developed network structure was obtained, further reducing the immobilized water's content (T22) and increasing the water-holding capacity (WHC) of SPI gel. Furthermore, this gel structure showed improved gel hardness and resistance to both small and large deformations. These findings facilitate the design and production of SPI-based gels with desired performance.


Assuntos
Géis , Mananas , Proteínas de Soja , Proteínas de Soja/química , Mananas/química , Géis/química , Tamanho da Partícula , Agregados Proteicos
3.
Food Chem ; 462: 140950, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39213968

RESUMO

ß-conglycinin (ß-CG) is a prominent storage protein belonging to the globulin family in soybean (Glycine max) seeds. Along with other soybean proteins, it serves as an important source of essential amino acids and high-quality nutrition. However, the digestibility and nutritional value of ß-CG are key factors affecting the nutritional profile of soy-based foods. The heterotrimeric, secondary, and quaternary structures of ß-CG, particularly the spatial arrangement of its α, α', and ß subunits, influence its functional properties. Considering these aspects, ß-CG emerges as a significant protein with diverse applications in the food and health sectors. Therefore, this review explores ß-CG's composition, structure, function, health implications, and industrial uses. Salient discussions are presented on its molecular structure, nutrition, digestibility, allergenicity, and techno-functions including emulsification, solubility, gelling, and structure-function complexities. Overall, the multifaceted potential of ß-CG in the healthcare sector and the food industry is evident.


Assuntos
Antígenos de Plantas , Globulinas , Proteínas de Armazenamento de Sementes , Proteínas de Soja , Globulinas/química , Proteínas de Armazenamento de Sementes/química , Antígenos de Plantas/química , Proteínas de Soja/química , Relação Estrutura-Atividade , Humanos , Glycine max/química , Animais , Valor Nutritivo
4.
Food Microbiol ; 124: 104599, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39244358

RESUMO

Menaquinone-7 (MK-7) is a form of vitamin K2 with health-beneficial effects. A novel fermentation strategy based on combining soy protein hydrolysates (SPHs) with biofilm-based fermentation was investigated to enhance menaquinone-7 (MK-7) biosynthesis by Bacillus subtilis natto. Results showed the SPHs increased MK-7 yield by 199.4% in two-stage aeration fermentation as compared to the SP-based medium in submerged fermentation, which was related to the formation of robust biofilm with wrinkles and the enhancement of cell viability. Moreover, there was a significant correlation between key genes related to MK-7 and biofilm synthesis, and the quorum sensing (QS) related genes, Spo0A and SinR, were downregulated by 0.64-fold and 0.39-fold respectively, which promoted biofilm matrix synthesis. Meanwhile, SPHs also enhanced the MK-7 precursor, isoprene side chain, supply, and MK-7 assembly efficiency. Improved fermentation performances of bacterial cells during fermentation were attributed to abundant oligopeptides (Mw < 1 kDa) and moderate amino acids, particularly Arg, Asp, and Phe in SPHs. All these results revealed that SPHs were a potential and superior nitrogen source for MK-7 production by Bacillus subtilis natto.


Assuntos
Bacillus subtilis , Biofilmes , Fermentação , Hidrolisados de Proteína , Proteínas de Soja , Vitamina K 2 , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Biofilmes/crescimento & desenvolvimento , Vitamina K 2/análogos & derivados , Vitamina K 2/metabolismo , Hidrolisados de Proteína/metabolismo , Proteínas de Soja/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Percepção de Quorum
5.
Food Res Int ; 192: 114811, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147508

RESUMO

Advanced glycation end products (AGEs), a heterogeneous compound existed in processed foods, are related to chronic diseases when they are accumulated excessively in human organs. Protein-bound Nε-(carboxymethyl) lysine (CML) as a typical AGE, is widely determined to evaluate AGEs level in foods and in vivo. This study investigated the intestinal absorption of three protein-bound CML originated from main food raw materials (soybean, wheat and peanut). After in vitro gastrointestinal digestion, the three protein-bound CML digests were ultrafiltered and divided into four fractions: less than 1 kDa, between 1 and 3 kDa, between 3 and 5 kDa, greater than 5 kDa. Caco-2 cell monolayer model was further used to evaluate the intestinal absorption of these components. Results showed that the absorption rates of soybean protein isolate (SPI)-, glutenin (Glu)-, peanut protein isolate (PPI)-bound CML were 30.18%, 31.57% and 29.5%, respectively. The absorption rates of components with MW less than 5 kDa accounted for 19.91% (SPI-bound CML), 22.59% (Glu-bound CML), 23.64% (PPI-bound CML), respectively, and these samples were absorbed by paracellular route, transcytosis route and active route via PepT-1. Taken together, these findings demonstrated that all three protein-bound CML digests with different MW can be absorbed in diverse absorption pathways by Caco-2 cell monolayer model. This research provided a theoretical basis for scientific evaluation of digestion and absorption of AGEs in food.


Assuntos
Arachis , Digestão , Glutens , Absorção Intestinal , Lisina , Proteínas de Soja , Humanos , Células CACO-2 , Lisina/análogos & derivados , Lisina/metabolismo , Arachis/química , Absorção Intestinal/fisiologia , Proteínas de Soja/metabolismo , Proteínas de Soja/química , Glutens/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Proteínas de Plantas/metabolismo , Triticum/química
6.
Food Res Int ; 192: 114681, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147541

RESUMO

This study was conducted to formulate a conjugate of soy protein isolate (SPI) and peach gum (PG) with improved functional properties, interacting at mass ratios of 1:1, 1:2, 1:3, 2:1, and 2:3 by Maillard reaction via wet heating method. Conjugation efficiency was confirmed by grafting degree (DG) and browning index (BI). Results indicated that DG increased with increasing concentration of PG, and decreased with increasing pH, whereas no remarkable change was observed with increasing reaction time. The conjugates were optimized at a ratio of 1:3. SDS-PAGE confirmed conjugate formation, Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) verified conjugate secondary structural changes, and scanning electron microscopy (SEM) indicated significant overall structural changes. The functional properties, solubility, emulsifying stability, water holding, foaming, and antioxidant activity were significantly improved. This study revealed the wet heating method as an effective approach to improve the functional properties of soy protein.


Assuntos
Antioxidantes , Temperatura Alta , Reação de Maillard , Solubilidade , Proteínas de Soja , Proteínas de Soja/química , Antioxidantes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Gomas Vegetais/química , Emulsões , Microscopia Eletrônica de Varredura , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Eletroforese em Gel de Poliacrilamida , Água/química , Calefação , Manipulação de Alimentos/métodos
7.
Carbohydr Polym ; 343: 122499, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39174108

RESUMO

3D printing technology, especially coaxial 3D mode of multiple-component shaping, has great potential in the manufacture of personalized nutritional foods. However, integrating and stabilizing functional objectives of different natures remains a challenge for 3D customized foods. Here, we used starch nanoparticle (SNP) to assisted soy protein (SPI) emulsion to load hydrophilic and hydrophobic bioactives (anthocyanin, AC, and curcumin, Cur). The addition of SNP significantly improved the storage stability of the emulsion. Xanthan gum (XG) was also added to the SNP/SPI system to enhance its rheology and form an emulsion gel as inner core of coaxial 3D printing. Low field nuclear magnetic resonance and emulsification analyses showed that AC/Cur@SNP/SPI/XG functional inner core had a strong water binding state and good stability. After printing with outer layer, the SNP/SPI coaxial sample had the lowest deviation rate of 0.8 %. Also, SNP/SPI coaxial sample showed higher AC (90.2 %) and Cur (90.8 %) retention compared to pure starch (S), pure SNP, pure SPI, and S/SPI samples as well as SNP/SPI sample printed without outer layer. In summary, this study provides a new perspective for the manufacture of customized products as multifunctional foods, feeds and even potential delivery of drugs.


Assuntos
Curcumina , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas , Polissacarídeos Bacterianos , Impressão Tridimensional , Proteínas de Soja , Amido , Emulsões/química , Proteínas de Soja/química , Amido/química , Curcumina/química , Nanopartículas/química , Polissacarídeos Bacterianos/química , Géis/química , Reologia
8.
Food Chem ; 460(Pt 3): 140655, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39128365

RESUMO

This study primarily investigated the improvement of high-dose Epigallocatechin-3-Gallate (EGCG)-induced deterioration of MP gel by soy protein isolate (SPI) addition. The results showed that EGCG could interact with MP, SPI, and HSPI (heated), indicating the competitive ability of SPI/HSPI against EGCG with MP. EGCG was encapsulated by SPI/HSPI with high encapsulation efficiency and antioxidation, with antioxidant activities of 78.5% âˆ¼ 79.2%. FTIR and molecular docking results revealed that MP, SPI, and HSPI interacted with EGCG through hydrogen bonding and hydrophobic interactions. SPI/HSPI competed with MP for EGCG, leading to the restoration of MHC and Actin bands, alleviating the aggregation caused by EGCG and oxidation. Additionally, SPI/HSPI-E significantly reduced the high cooking loss (23.71 and 26.65%) and gel strength (13.60 and 17.02%) induced by EGCG. Hence, SPI competed with MP for EGCG binding site to ameliorate MP gel properties, thereby alleviating the detrimental changes in MP caused by high-dose EGCG and oxidation.


Assuntos
Catequina , Géis , Simulação de Acoplamento Molecular , Proteínas de Soja , Catequina/química , Catequina/análogos & derivados , Catequina/metabolismo , Catequina/farmacologia , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Géis/química , Antioxidantes/química , Antioxidantes/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Animais , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Culinária , Ligação Proteica
9.
Food Chem ; 460(Pt 2): 140628, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39089021

RESUMO

The study elucidates that the pH shifting treatment unfolds the conformation of soybean protein isolate (SPI), enabling it to intertwine with bacterial cellulose (BC) and form SPI/BC co-assemblies. Results from intrinsic fluorescence spectroscopy and surface hydrophobicity indicate that the SPI with pH shifting treatment shows a notable blue shift in maximum emission wavelength and increased surface hydrophobicity. It demonstrates that pH shifting treatment facilitates the unfolding of SPI's molecular conformation, promoting its entanglement with high aspect ratio BC. Particle size distribution and microstructural analysis further demonstrate that the pH shifting treatment facilitates the formation of SPI/BC co-assemblies. Evaluation of processing properties reveals that the SPI/BC co-assemblies exhibited exceptional gel and emulsification properties, with gel strength and emulsifying activity respectively six and two times higher than natural SPI. This enhancement is attributed to the thickening properties of BC with a high aspect ratio and the superior hydrophobicity of SPI in its molten globule state.


Assuntos
Celulose , Glycine max , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Soja , Proteínas de Soja/química , Celulose/química , Concentração de Íons de Hidrogênio , Glycine max/química , Tamanho da Partícula , Emulsões/química
10.
Food Chem ; 460(Pt 2): 140608, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39089031

RESUMO

This study explored the mechanism of interaction of pH-shifting combined ultrasonication and its effect on soybean lipophilic proteins (SLP) and the potential of modified SLP as the carrier for vitamin E (VE) and quercetin (QU). The spectroscopy results revealed that both VE and QU changed the SLP conformation and exposed hydrophobic groups. The loading rates of VE and QU by SLP with alkaline pH-shifting combined with ultrasonication (300 w,20 min) were 86.91% and 75.99%, respectively. According to the antioxidant analysis, with an increase in the ultrasonication power, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging capacity of the samples increased, where the DPPH and ABTS radical scavenging capacity of sample SQV-6 were 70.90% and 63.43%, respectively. The physicochemical properties, microstructure, and stability of the SLP-VE-QU complex improved significantly. Overall, the present findings broadened the application of simple structural carriers for co-encapsulating functional factors.


Assuntos
Glycine max , Quercetina , Proteínas de Soja , Vitamina E , Quercetina/química , Vitamina E/química , Glycine max/química , Concentração de Íons de Hidrogênio , Proteínas de Soja/química , Antioxidantes/química , Interações Hidrofóbicas e Hidrofílicas , Sonicação , Composição de Medicamentos
11.
Int J Biol Macromol ; 277(Pt 3): 134308, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094880

RESUMO

In order to reduce the quality loss of citrus and extend its storage time after harvest, it is essential to develop coated kraft papers with antibacterial and fresh-keeping properties. In this study, cinnamon essential oil (CEO)/soybean protein isolate (SPI) microcapsules were prepared by the coagulation method, and their properties were optimized. Then, the microcapsules were added to konjac glucomannan (KGM) as a coating solution to enhance the physical, and chemical properties of kraft paper by a coating method. The release behavior of CEO, tensile properties, antibacterial properties and preservation effects of the paper were investigated. The results show that when the ratio of wall to core was 7:3, the highest encapsulation rate was 92.20 ± 0.43 %. The coating treatment significantly reduced the oxygen and water vapor transmission rates of kraft paper. The shelf life of citrus treated with coated Kraft was extended by >10 days. Thus, the CEO/SPI microencapsulation and KGM coating could improve the properties of kraft paper and have the potential for citrus preservation.


Assuntos
Cápsulas , Cinnamomum zeylanicum , Citrus , Mananas , Óleos Voláteis , Proteínas de Soja , Citrus/química , Proteínas de Soja/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Mananas/química , Mananas/farmacologia , Cinnamomum zeylanicum/química , Papel , Conservação de Alimentos/métodos , Antibacterianos/química , Antibacterianos/farmacologia
12.
Int J Biol Macromol ; 277(Pt 3): 134315, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094886

RESUMO

With the increasing demand for food foaming, how to enhance the foaming properties of protein has gradually become the research focus. This work studied the effect of synephrine (SY) on foaming properties, structure properties, and physicochemical properties of soybean protein isolate (SPI). When the mass ratio of SY to SPI was 1:2, compared with SPI alone, the foam capacity and foam stability of the SY-SPI complex were significantly enhanced. Optical microscopy and confocal laser scanning microscope showed that the improvement in foaming performance was mainly due to the reduction of bubble size and uniform protein distribution. Circular dichroism spectrum and fluorescence spectra indicated that the hydrogen bond of SPI was destroyed and blue shifted with the addition of SY. What's more, the absolute value of Zeta potential, solubility, and hydrophobicity all increased, while the particle size decreased. As a result of molecular docking, surface hydrogen bonds, Van der Waals forces and hydrophobic interactions are the main driving forces. The addition of SY and SPI improved the specific volume and texture of angel cake. This study shows that SY has the potential to be developed into a new type of blowing agent.


Assuntos
Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Polifenóis , Solubilidade , Proteínas de Soja , Proteínas de Soja/química , Polifenóis/química , Simulação de Acoplamento Molecular , Fenômenos Químicos , Tamanho da Partícula , Glycine max/química
13.
Int J Biol Macromol ; 278(Pt 1): 134678, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39137852

RESUMO

Inhibition of carbohydrate digestive enzymes is a key focus across diverse fields, given the prominence of α-glucosidase inhibitors as preferred oral hypoglycaemic drugs for diabetes treatment. ß-conglycinin is the most abundant functional protein in soy; however, it is unclear whether the peptides produced after its gastrointestinal digestion exhibit α-glucosidase inhibitory properties. Therefore, we examined the α-glucosidase inhibitory potential of soy peptides. Specifically, ß-conglycinin was subjected to simulated gastrointestinal digestion by enzymatically cleaving it into 95 peptides with gastric, pancreatic and chymotrypsin enzymes. Eight soybean peptides were selected based on their predicted activity; absorption, distribution, metabolism, excretion and toxicity score; and molecular docking analysis. The results indicated that hydrogen bonding and electrostatic interactions play important roles in inhibiting α-glucosidase, with the tripeptide SGR exhibiting the greatest inhibitory effect (IC50 = 10.57 µg/mL). In vitro studies revealed that SGR markedly improved glucose metabolism disorders in insulin-resistant HepG2 cells without affecting cell viability. Animal experiments revealed that SGR significantly improved blood glucose and decreased maltase activity in type 2 diabetic zebrafish larvae, but it did not result in the death of zebrafish larvae. Transcriptomic analysis revealed that SGR exerts its anti-diabetic and hypoglycaemic effects by attenuating the expression of several genes, including Slc2a1, Hsp70, Cpt2, Serpinf1, Sfrp2 and Ggt1a. These results suggest that SGR is a potential food-borne bioactive peptide for managing diabetes.


Assuntos
Antígenos de Plantas , Globulinas , Inibidores de Glicosídeo Hidrolases , Hipoglicemiantes , Larva , Proteínas de Armazenamento de Sementes , Proteínas de Soja , Peixe-Zebra , alfa-Glucosidases , Animais , Células Hep G2 , Humanos , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Proteínas de Armazenamento de Sementes/química , Proteínas de Armazenamento de Sementes/farmacologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Globulinas/química , Globulinas/farmacologia , Proteínas de Soja/química , Proteínas de Soja/farmacologia , Larva/efeitos dos fármacos , alfa-Glucosidases/metabolismo , Antígenos de Plantas/química , Antígenos de Plantas/farmacologia , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Peptídeos/química , Glicemia/efeitos dos fármacos
14.
Int J Biol Macromol ; 278(Pt 1): 134680, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142479

RESUMO

This study aimed to stabilize microcapsules with core materials of glyceryl monostearate (GMS) and octyl and decyl glycerate, and wall materials of soy protein isolates (SPI) and flaxseed gum (FG) by complex coacervation method to overcome the drawbacks of coenzyme Q10 (CoQ10). It was demonstrated by the study that the obtained microcapsules were irregular aggregates. Differential scanning calorimetry and x-ray diffraction patterns indicated that CoQ10 was entrapped inside the disordered semisolid cores of microcapsules. The CoQ10 loading and encapsulation efficiency analysis revealed that GMS and FG helped CoQ10 better encapsulated inside the microcapsules. The in vitro release curve showed a "burst" release of CoQ10 absorbed on the surface of microcapsules for the first 180 min, followed by a sustained release of the encapsulated CoQ10. GMS and FG contributed to the sustained release and the release mechanism of the microcapsules was Fickian diffusion. The in vitro simulated digestion demonstrated that the constructed microcapsules improved the bio-accessibility of CoQ10. Finally, due to the protection of GMS and FG, microcapsules had good storage stability. In conclusion, this study emphasized the potential of using new microcapsules to deliver and protect lipophilic ingredients, providing valuable information for developing functional foods with higher bioavailability.


Assuntos
Cápsulas , Liberação Controlada de Fármacos , Glicerídeos , Proteínas de Soja , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/química , Proteínas de Soja/química , Glicerídeos/química , Digestão , Linho/química , Gomas Vegetais/química , Difração de Raios X
15.
Food Chem ; 461: 140794, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146680

RESUMO

This study aimed to prepare soy protein isolate-xanthan gum complexes (SPI-XG) at pH 7.0 and as emulsifiers to prepare Pickering emulsions for delivering quercetin (Que). The results showed that SPI-XG exhibited a gel network structure in which protein particles were embedded. Fourier transform infrared spectroscopy (FTIR) and molecular docking elucidated that SPI-XG formed through hydrogen bonding, hydrophobic, and electrostatic interactions. Three-phase contact angle (θo/w) of SPI-XG approached 90° with biphasic wettability. SPI-XG adsorbed at the oil-water interface to form an interfacial layer with a gel network structure, which prevented droplet aggregation. Following in vitro simulated digestion, Que displayed higher bioaccessibility in SPI-XG stabilized Pickering emulsions (SPI-XG PEs) than SPI stabilized Pickering emulsions. In conclusion, SPI-XG PEs were a promising system for Que delivery.


Assuntos
Emulsões , Polissacarídeos Bacterianos , Quercetina , Proteínas de Soja , Emulsões/química , Quercetina/química , Proteínas de Soja/química , Polissacarídeos Bacterianos/química , Simulação de Acoplamento Molecular , Interações Hidrofóbicas e Hidrofílicas , Emulsificantes/química , Tamanho da Partícula
16.
Food Chem ; 461: 140829, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146685

RESUMO

Soybean could greatly improve stability of quinoa milk substitute. However, the key compound and underlying mechanisms remained unclear. Here we showed that soybean protein was the key component for improving quinoa milk substitute stability but not oil or okara. Supplementary level of soybean protein at 0%, 2%, 4%, and 8% of quinoa (w/w) was optimized. Median level at 4% could effectively enhance physical stability, reduce particle size, narrow down particle size distribution, and decrease apparent viscosity of quinoa milk substitute. Microscopic observation further confirmed that soybean protein could prevent phase separation. Besides, soybean protein showed increased surface hydrophobicity. Molecular docking simulated that soybean protein but not quinoa protein, could provide over 10 anchoring points for the most abundant quinoa vanillic acid, through hydrogen bond and Van-der-Waals. These results contribute to improve stability of quinoa based milk substitute, and provide theoretical basis for the interaction of quinoa phenolics and soybean protein.


Assuntos
Chenopodium quinoa , Simulação de Acoplamento Molecular , Proteínas de Soja , Chenopodium quinoa/química , Proteínas de Soja/química , Interações Hidrofóbicas e Hidrofílicas , Viscosidade , Tamanho da Partícula
17.
Int J Biol Macromol ; 278(Pt 2): 134762, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39151845

RESUMO

In this study, oregano essential oil (OEO)-loaded soluble soybean polysaccharide (SSPS) -nisin nanoparticles (ONSNPs) were formulated through electrostatic attraction-driven and hydrophobic interactions utilizing SSPS, nisin, and OEO as raw materials. ONSNPs were integrated into polyvinyl alcohol (PVA) and soybean protein isolate (SPI) matrices to create composite pads (PS-ONSNPs) by physically cross-linked using a simple freeze-thaw cycling process. The effects of ONSNPs content on the structure and physicochemical properties were evaluated. The results revealed that strong intermolecular interactions between ONSNPs and the PS matrices affected the crystallinity, microstructure, and thermal stability of the pads. Upon incorporating 5 % to 15 % ONSNPs, the structure of composite pads became denser, and the mechanical properties and water resistance were enhanced. Concurrently, the PS-ONSNPs pads facilitated the protection and controlled release of OEO. Furthermore, ONSNPs significantly improved the antioxidant activity of the pads and effectively inhibited the growth of Staphylococcus aureus and Escherichia coli. The prepared PS-ONSNPs 15 % pad was applied to storage experiments of fresh pork, which could extend the shelf life of meat to 10-12 days under 4 °C storage conditions. Therefore, the composite pad devised in this research holds promise as a viable option for intelligent active packaging of fresh meat.


Assuntos
Antioxidantes , Conservação de Alimentos , Nanopartículas , Álcool de Polivinil , Proteínas de Soja , Álcool de Polivinil/química , Antioxidantes/química , Antioxidantes/farmacologia , Nanopartículas/química , Animais , Proteínas de Soja/química , Conservação de Alimentos/métodos , Suínos , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Nisina/química , Nisina/farmacologia , Carne de Porco , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia
18.
Food Chem ; 461: 140927, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39181049

RESUMO

In recent years, oleogel as a viscoelastic semi-solid to replace trans fatty acids and reduce saturated fatty acids in food has received more and more attention. Herein, an emulsion template method was used to produce soybean oil-based oleogels with seven different ester emulsifiers and soy protein isolate as oleogelators. The chemical and physical characteristics of oleogels produced via various crosslinking factors were comparatively examined. Results revealed that all oleogels generated ß-type needle crystals and exhibited high oil-holding capacity (>80 %), among which glycerol monolaurate G2 and diacetyl tartaric acid ester of mono-diglycerides G6 exhibited the strongest oil-holding capacity (96.6 % and 96.2 %, respectively). Furthermore, all oleogels exhibited strong thixotropic recovery, high thermal stability, as well as high gel strength (G' > G''). Of these, G2 and G6 exhibited the highest thixotropic recovery rates at 74.54 % and 78.19 %, respectively. Additionally, in accelerated oxidation trials, the peroxide value and thiobarbituric acid reactive substances of all oleogels had low oxidation rates, indicating high oxidative stability. These results contribute to a better understanding of oleogels for formulating trans-free and low-saturated foodstuffs with desired physical and functional properties.


Assuntos
Emulsificantes , Compostos Orgânicos , Proteínas de Soja , Compostos Orgânicos/química , Proteínas de Soja/química , Emulsificantes/química , Óleo de Soja/química , Oxirredução , Ésteres/química , Emulsões/química
19.
Int J Biol Macromol ; 278(Pt 4): 134988, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39181369

RESUMO

Soy proteins are seen as a promising alternative food source for meat with environmentally friendly properties. The problem is that the functional properties of soy proteins do not meet the needs of the food industry, and some existing modification technologies have adverse effects. Recently, cavitation jet technology (CJT) has been studied because it generates high heat, high pressure, strong shear and strong shock waves. This review summarizes the history and mechanism of cavitation jets. The energy generated during the cavitation jet process can open molecular structures, and the shock waves and microjets generated can pulverize the materials by erosion. The impact of the CJT on the morphology, structure, and functionality of soy proteins is discussed. The impact of combining CJT with other techniques on the production of soy proteins was also reviewed. The modification of proteins using two or more methods with complementary strengths, avoiding the disadvantages of certain techniques, makes the modification of proteins more effective. One of the most prominent effects is the combined treatment of cavitation jets with physical techniques. Finally, the review provides a comprehensive analysis of the application of modified soy proteins in the food industry and highlights promising avenues for future research.


Assuntos
Proteínas de Soja , Proteínas de Soja/química , Manipulação de Alimentos/métodos
20.
Food Chem ; 460(Pt 3): 140709, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39098220

RESUMO

With an increasing emphasis on health and environmental consciousness, there is a growing inclination toward plant protein-based meat substitutes as viable alternatives to animal meat. In the pursuit of creating diverse and functional plant protein-based substitutes, innovative plant proteins have been introduced in conjunction with soy protein isolate (SPI), encompassing pea protein isolate (PPI), rice bran protein (RBP), fava bean protein isolate (FPI), and spirulina protein isolate (SPPI). Notably, SPI-WG extrudates and SPI-PPI extrudates exhibited superior fiber structures (fiber degrees were 1.72 and 1.88, respectively), with coarse fibers in SPI-WG extrudates and fine, dense fibers in SPI-PPI extrudates. The addition of RBP, FPI and SPPI had minimal effect on fiber structure. Fresh SPI-FPI displayed the slowest rate of water loss, losing about 7.11% of their total weight in 5 h. Different plant proteins can be selected for the preparation of plant protein-based meat substitutes according to practical needs.


Assuntos
Proteínas de Plantas , Proteínas de Plantas/química , Proteínas de Soja/química , Oryza/química , Manipulação de Alimentos , Animais , Produtos da Carne/análise , Carne/análise , Spirulina/química , Substitutos da Carne
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...