Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 469
Filtrar
1.
Mol Brain ; 17(1): 63, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223639

RESUMO

ATG9A is the only integral membrane protein among core autophagy-related (ATG) proteins. We previously found that ATG9A does not co-assemble into synaptophysin-positive vesicles, but rather, localizes to a distinct pool of vesicles within synapsin condensates in both fibroblasts and nerve terminals. The endocytic origin of these vesicles further suggests the existence of different intracellular sorting or segregation mechanisms for ATG9A and synaptophysin in cells. However, the precise underlying mechanism remains largely unknown. In this follow-up study, we investigated the endosomal localization of these two proteins by exploiting the advantages of a Rab5 mutant that induces the formation of enlarged endosomes. Notably, ATG9A and synaptophysin intermix perfectly and do not segregate on giant endosomes, indicating that the separation of these two proteins is not solely caused by the inherent properties of the proteins, but possibly by other unknown factors.


Assuntos
Proteínas Relacionadas à Autofagia , Endossomos , Mutação , Sinaptofisina , Proteínas rab5 de Ligação ao GTP , Endossomos/metabolismo , Mutação/genética , Sinaptofisina/metabolismo , Sinaptofisina/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Humanos , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Camundongos
2.
J Biol Chem ; 300(8): 107553, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002672

RESUMO

The plasma membrane (PM) is constantly exposed to various stresses from the extracellular environment, such as heat and oxidative stress. These stresses often cause the denaturation of membrane proteins and destabilize PM integrity, which is essential for normal cell viability and function. For maintenance of PM integrity, most eukaryotic cells have the PM quality control (PMQC) system, which removes damaged membrane proteins by endocytosis. Removal of damaged proteins from the PM by ubiquitin-mediated endocytosis is a key mechanism for the maintenance of PM integrity, but the importance of the early endosome in the PMQC system is still not well understood. Here we show that key proteins in early/sorting endosome function, Vps21p (yeast Rab5), Vps15p (phosphatidylinositol-3 kinase subunit), and Vps3p/8p (CORVET complex subunits), are involved in maintaining PM integrity. We found that Vps21p-enriched endosomes change the localization in the vicinity of the PM in response to heat stress and then rapidly fuse and form the enlarged compartments to efficiently transport Can1p to the vacuole. Additionally, we show that the deubiquitinating enzyme Doa4p is also involved in the PM integrity and its deletion causes the mislocalization of Vps21p to the vacuolar lumen. Interestingly, in cells lacking Doa4p or Vps21p, the amounts of free ubiquitin are decreased, and overexpression of ubiquitin restored defective cargo internalization in vps9Δ cells, suggesting that defective PM integrity in vps9Δ cells is caused by lack of free ubiquitin.


Assuntos
Membrana Celular , Endocitose , Endossomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas rab5 de Ligação ao GTP , Endocitose/fisiologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Membrana Celular/metabolismo , Endossomos/metabolismo , Resposta ao Choque Térmico/fisiologia , Vacúolos/metabolismo , Vacúolos/genética , Temperatura Alta , Ubiquitina/metabolismo , Proteínas rab de Ligação ao GTP
3.
Cell Mol Life Sci ; 81(1): 307, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048814

RESUMO

Natural killer cells (NK) are the "professional killer" of tumors and play a crucial role in anti-tumor immunotherapy. NK cell desensitization is a key mechanism of tumor immune escape. Dysregulated NKG2D-NKG2DL signaling is a primary driver of this desensitization process. However, the factors that regulate NK cell desensitization remain largely uncharacterized. Here, we present the first report that circular RNA circARAP2 (hsa_circ_0069396) is involved in the soluble MICA (sMICA)-induced NKG2D endocytosis in the NK cell desensitization model. CircARAP2 was upregulated during NK cell desensitization and the loss of circARAP2 alleviated NKG2D endocytosis and NK cell desensitization. Using Chromatin isolation by RNA purification (ChIRP) and RNA pull-down approaches, we identified that RAB5A, a molecular marker of early endosomes, was its downstream target. Notably, transcription factor CTCF was an intermediate functional partner of circARAP2. Mechanistically, we discovered that circARAP2 interacted with CTCF and inhibited the recruitment of CTCF-Polycomb Repressive Complex 2 (PRC2) to the promoter region of RAB5A, thereby erasing histone H3K27 and H3K9 methylation suppression to enhance RAB5A transcription. These data demonstrate that inhibition of circARAP2 effectively alleviates sMICA-induced NKG2D endocytosis and NK cell desensitization, providing a novel target for therapeutic intervention in tumor immune evasion.


Assuntos
Fator de Ligação a CCCTC , Antígenos de Histocompatibilidade Classe I , Células Matadoras Naturais , RNA Circular , Proteínas rab5 de Ligação ao GTP , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Humanos , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , RNA Circular/genética , RNA Circular/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Endocitose , Endossomos/metabolismo , Camundongos , Animais
4.
Nat Commun ; 15(1): 5227, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898033

RESUMO

Cells depend on their endolysosomal system for nutrient uptake and downregulation of plasma membrane proteins. These processes rely on endosomal maturation, which requires multiple membrane fusion steps. Early endosome fusion is promoted by the Rab5 GTPase and its effector, the hexameric CORVET tethering complex, which is homologous to the lysosomal HOPS. How these related complexes recognize their specific target membranes remains entirely elusive. Here, we solve the structure of CORVET by cryo-electron microscopy and revealed its minimal requirements for membrane tethering. As expected, the core of CORVET and HOPS resembles each other. However, the function-defining subunits show marked structural differences. Notably, we discover that unlike HOPS, CORVET depends not only on Rab5 but also on phosphatidylinositol-3-phosphate (PI3P) and membrane lipid packing defects for tethering, implying that an organelle-specific membrane code enables fusion. Our data suggest that both shape and membrane interactions of CORVET and HOPS are conserved in metazoans, thus providing a paradigm how tethering complexes function.


Assuntos
Microscopia Crioeletrônica , Endossomos , Fosfatos de Fosfatidilinositol , Endossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fusão de Membrana , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Humanos , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Membrana Celular/metabolismo , Animais , Lisossomos/metabolismo
5.
FASEB J ; 38(11): e23716, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38847490

RESUMO

Tumor hypoxia has been associated with cancer progression, angiogenesis, and metastasis via modifications in the release and cargo composition of extracellular vesicles secreted by tumor cells. Indeed, hypoxic extracellular vesicles are known to trigger a variety of angiogenic responses via different mechanisms. We recently showed that hypoxia promotes endosomal signaling in tumor cells via HIF-1α-dependent induction of the guanine exchange factor ALS2, which activates Rab5, leading to downstream events involved in cell migration and invasion. Since Rab5-dependent signaling is required for endothelial cell migration and angiogenesis, we explored the possibility that hypoxia promotes the release of small extracellular vesicles containing ALS2, which in turn activate Rab5 in recipient endothelial cells leading to pro-angiogenic properties. In doing so, we found that hypoxia promoted ALS2 expression and incorporation as cargo within small extracellular vesicles, leading to subsequent transfer to recipient endothelial cells and promoting cell migration, tube formation, and downstream Rab5 activation. Consequently, ALS2-containing small extracellular vesicles increased early endosome size and number in recipient endothelial cells, which was followed by subsequent sequestration of components of the ß-catenin destruction complex within endosomal compartments, leading to stabilization and nuclear localization of ß-catenin. These events converged in the expression of ß-catenin target genes involved in angiogenesis. Knockdown of ALS2 in donor tumor cells precluded its incorporation into small extracellular vesicles, preventing Rab5-downstream events and endothelial cell responses, which depended on Rab5 activity and guanine exchange factor activity of ALS2. These findings indicate that vesicular ALS2, secreted in hypoxia, promotes endothelial cell events leading to angiogenesis. Finally, these events might explain how tumor angiogenesis proceeds in hypoxic conditions.


Assuntos
Movimento Celular , Vesículas Extracelulares , Fatores de Troca do Nucleotídeo Guanina , Transdução de Sinais , beta Catenina , Proteínas rab5 de Ligação ao GTP , Humanos , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , beta Catenina/metabolismo , Vesículas Extracelulares/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Linhagem Celular Tumoral
6.
Kidney Int ; 106(3): 419-432, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38797325

RESUMO

ZFYVE21 is an ancient, endosome-associated protein that is highly expressed in endothelial cells (ECs) but whose function(s) in vivo are undefined. Here, we identified ZFYVE21 as an essential regulator of vascular barrier function in the aging kidney. ZFYVE21 levels significantly decline in ECs in aged human and mouse kidneys. To investigate attendant effects, we generated EC-specific Zfyve21-/- reporter mice. These knockout mice developed accelerated aging phenotypes including reduced endothelial nitric oxide (ENOS) activity, failure to thrive, and kidney insufficiency. Kidneys from Zfyve21 EC-/- mice showed interstitial edema and glomerular EC injury. ZFYVE21-mediated phenotypes were not programmed developmentally as loss of ZFYVE21 in ECs during adulthood phenocopied its loss prenatally, and a nitric oxide donor normalized kidney function in adult hosts. Using live cell imaging and human kidney organ cultures, we found that in a GTPase Rab5- and protein kinase Akt-dependent manner, ZFYVE21 reduced vesicular levels of inhibitory caveolin-1 and promoted transfer of Golgi-derived ENOS to a perinuclear Rab5+ vesicular population to functionally sustain ENOS activity. Thus, our work defines a ZFYVE21- mediated trafficking mechanism sustaining ENOS activity and demonstrates the relevance of this pathway for maintaining kidney function with aging.


Assuntos
Envelhecimento , Caveolina 1 , Células Endoteliais , Rim , Óxido Nítrico Sintase Tipo III , Óxido Nítrico , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Caveolina 1/metabolismo , Caveolina 1/genética , Células Endoteliais/metabolismo , Complexo de Golgi/metabolismo , Rim/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Insuficiência Renal/metabolismo , Insuficiência Renal/fisiopatologia , Insuficiência Renal/genética
7.
J Biol Chem ; 300(3): 105750, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360271

RESUMO

Extracellular vesicles-mediated exchange of miRNA cargos between diverse types of mammalian cells is a major mechanism of controlling cellular miRNA levels and activity, thus regulating the expression of miRNA-target genes in both donor and recipient cells. Despite tremendous excitement related to extracellular vesicles-associated miRNAs as biomarkers or having therapeutic potential, the mechanism of selective packaging of miRNAs into endosomes and multivesicular bodies for subsequent extracellular export is poorly studied due to the lack of an in vitro assay system. Here, we have developed an in vitro assay with endosomes isolated from mammalian macrophage cells to follow miRNA packaging into endocytic organelles. The synthetic miRNAs, used in the assay, get imported inside the isolated endosomes during the in vitro reaction and become protected from RNase in a time- and concentration-dependent manner. The selective miRNA accumulation inside endosomes requires both ATP and GTP hydrolysis and the miRNA-binding protein HuR. The HuR-miRNA complex binds and stimulates the endosomal RalA GTPase to facilitate the import of miRNAs into endosomes and their subsequent export as part of the extracellular vesicles. The endosomal targeting of miRNAs is also very much dependent on the endosome maturation process that is controlled by Rab5 protein and ATP. In summary, we provide an in vitro method to aid in the investigation of the mechanism of miRNA packaging process for its export from mammalian macrophage cells.


Assuntos
Proteína Semelhante a ELAV 1 , Endossomos , Macrófagos , MicroRNAs , Proteínas ral de Ligação ao GTP , Trifosfato de Adenosina/metabolismo , Endossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Humanos , Proteínas ral de Ligação ao GTP/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Macrófagos/metabolismo , Células HEK293
8.
J Gene Med ; 26(1): e3649, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282155

RESUMO

BACKGROUND: Ovarian cancer is one of the most common cancers in women. Profiles changes of microRNAs (miRNAs) are closely linked to malignant tumors. In the present study, we investigated expression of miR-451a in high-grade serous ovarian cancer (HGSOC). We also investigated the potential pathological roles and the likely mechanism of miR-451a in the development of HGSOC using animal models and cell lines. METHODS: Using bioinformatics techniques and a real-time PCR, we analyzed differently expressed miRNAs in HGSOC compared to normal tissue. MTT (i.e. 3-[4, 5-dimethyl thiazol-2-yl]-2,5-diphenyl tetrazolium bromide), EDU (i.e. 5-ethynyl-2'-deoxyuridine) and transwell assays were performed to investigate the effect of miR-451a on the proliferation and migration of HGSOC SKOV-3 cells. A dual luciferase reporter assay was performed to verify the targeting relationship of miR-451 and RAB5A (one of the Rab GTPase proteins that regulates endocytosis and vesicle transport). Also, we analyzed levels of the RAB5A mRNA and protein by real-time PCR, western blotting and immunohistochemistry assays in HGSOC cells and tissues. Finally, we performed in vivo experiments using HGSOC mice. RESULTS: miR-451a was substantially upregulated in HGSOC and associated with favorable clinical characteristics. miR-451a knockdown significantly increased growth and metastasis of HGSOC cell line SKOV-3 through Ras/Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling. In addition, RAB5A, an early endosome marker, was shown to be a direct target of miR-451a. Moreover, RAB5A is correlated with unfavorable clinical features and shows independent prognostic significance in HGSOC. CONCLUSIONS: We found that the miR-451a/RAB5A axis is associated with tumorigenesis and progression through the Ras/Raf/MEK/ERK pathway, providing prognostic indicators and therapeutic targets for patients with HGSOC.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Proteínas rab5 de Ligação ao GTP , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases/genética , MicroRNAs/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Neoplasias Ovarianas/genética , Proteínas rab5 de Ligação ao GTP/genética
9.
J Biol Chem ; 299(11): 105311, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797694

RESUMO

While the role of endocytosis in focal adhesion turnover-coupled cell migration has been established in addition to its conventional role in cellular functions, the molecular regulators and precise molecular mechanisms that underlie this process remain largely unknown. In this study, we report that proto-oncoprotein hematopoietic PBX-interacting protein (HPIP) localizes to focal adhesions as well as endosomal compartments along with RUN FYVE domain-containing protein 3 (RUFY3) and Rab5, an early endosomal protein. HPIP contains two coiled-coil domains (CC1 and CC2) that are necessary for its association with Rab5 and RUFY3 as CC domain double mutant, that is, mtHPIPΔCC1-2 failed to support it. Furthermore, we show that HPIP and RUFY3 activate Rab5 by serving as noncanonical guanine nucleotide exchange factors of Rab5. In support of this, either deletion of coiled-coil domains or silencing of HPIP or RUFY3 impairs Rab5 activation and Rab5-dependent cell migration. Mechanistic studies further revealed that loss of HPIP or RUFY3 expression severely impairs Rab5-mediated focal adhesion disassembly, FAK activation, fibronectin-associated-ß1 integrin trafficking, and thus cell migration. Together, this study underscores the importance of HPIP and RUFY3 as noncanonical guanine nucleotide exchange factors of Rab5 and in integrin trafficking and focal adhesion turnover, which implicates in cell migration.


Assuntos
Adesões Focais , Fatores de Troca do Nucleotídeo Guanina , Movimento Celular , Endocitose , Adesões Focais/genética , Adesões Focais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Humanos , Linhagem Celular , Linhagem Celular Tumoral
10.
Hum Mol Genet ; 32(21): 3063-3077, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37552066

RESUMO

Rab GTPases are important regulators of intracellular vesicular trafficking. RAB5C is a member of the Rab GTPase family that plays an important role in the endocytic pathway, membrane protein recycling and signaling. Here we report on 12 individuals with nine different heterozygous de novo variants in RAB5C. All but one patient with missense variants (n = 9) exhibited macrocephaly, combined with mild-to-moderate developmental delay. Patients with loss of function variants (n = 2) had an apparently more severe clinical phenotype with refractory epilepsy and intellectual disability but a normal head circumference. Four missense variants were investigated experimentally. In vitro biochemical studies revealed that all four variants were damaging, resulting in increased nucleotide exchange rate, attenuated responsivity to guanine exchange factors and heterogeneous effects on interactions with effector proteins. Studies in C. elegans confirmed that all four variants were damaging in vivo and showed defects in endocytic pathway function. The variant heterozygotes displayed phenotypes that were not observed in null heterozygotes, with two shown to be through a dominant negative mechanism. Expression of the human RAB5C variants in zebrafish embryos resulted in defective development, further underscoring the damaging effects of the RAB5C variants. Our combined bioinformatic, in vitro and in vivo experimental studies and clinical data support the association of RAB5C missense variants with a neurodevelopmental disorder characterized by macrocephaly and mild-to-moderate developmental delay through disruption of the endocytic pathway.


Assuntos
Deficiência Intelectual , Megalencefalia , Transtornos do Neurodesenvolvimento , Animais , Humanos , Criança , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Caenorhabditis elegans/metabolismo , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Fenótipo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Megalencefalia/genética , Deficiências do Desenvolvimento/genética , Mutação de Sentido Incorreto/genética , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...