Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Med Virol ; 96(9): e29891, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39223933

RESUMO

The ubiquitin-proteasome system is frequently employed to degrade viral proteins, thereby inhibiting viral replication and pathogenicity. Through an analysis of the degradation kinetics of all the SARS-CoV-2 proteins, our study revealed rapid degradation of several proteins, particularly NSP5. Additionally, we identified FBXO22, an E3 ubiquitin ligase, as the primary regulator of NSP5 ubiquitination. Moreover, we validated the interaction between FBXO22 and NSP5, demonstrating that FBXO22-mediated ubiquitination of NSP5 facilitated its recognition by the proteasome, leading to subsequent degradation. Specifically, FBXO22 catalyzed the formation of K48-linked polyubiquitin chains on NSP5 at lysine residues 5 and 90. Knockdown of FBXO22 resulted in decreased NSP5 ubiquitination levels, increased stability, and enhanced ability to evade the host innate immune response. Notably, the protein level of FBXO22 were negatively correlated with SARS-CoV-2 load, highlighting its importance in inhibiting viral replication. This study elucidates the molecular mechanism by which FBXO22 mediates the degradation of NSP5 and underscores its critical role in limiting viral replication. The identification of FBXO22 as a regulator of NSP5 stability provides new insights and potential avenues for targeting NSP5 in antiviral strategies.


Assuntos
Complexo de Endopeptidases do Proteassoma , SARS-CoV-2 , Ubiquitinação , Replicação Viral , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , SARS-CoV-2/fisiologia , SARS-CoV-2/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Células HEK293 , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteólise , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Receptores Citoplasmáticos e Nucleares
2.
Front Cell Infect Microbiol ; 14: 1383917, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119292

RESUMO

Introduction: Oxysterol-binding protein (OSBP) is known for its crucial role in lipid transport, facilitating cholesterol exchange between the Golgi apparatus and endoplasmic reticulum membranes. Despite its established function in cellular processes, its involvement in coronavirus replication remains unclear. Methods: In this study, we investigated the role of OSBP in coronavirus replication and explored the potential of a novel OSBP-binding compound, ZJ-1, as an antiviral agent against coronaviruses, including SARS-CoV-2. We utilized a combination of biochemical and cellular assays to elucidate the interactions between OSBP and SARS-CoV-2 non-structural proteins (Nsps) and other viral proteins. Results: Our findings demonstrate that OSBP positively regulates coronavirus replication. Moreover, treatment with ZJ-1 resulted in reduced OSBP levels and exhibited potent antiviral effects against multiple coronaviruses. Through our investigation, we identified specific interactions between OSBP and SARS-CoV-2 Nsps, particularly Nsp3, Nsp4, and Nsp6, which are involved in double-membrane vesicle formation-a crucial step in viral replication. Additionally, we observed that Nsp3 a.a.1-1363, Nsp4, and Nsp6 target vesicle-associated membrane protein (VAMP)-associated protein B (VAP-B), which anchors OSBP to the ER membrane. Interestingly, the interaction between OSBP and VAP-B is disrupted by Nsp3 a.a.1-1363 and partially impaired by Nsp6. Furthermore, we identified SARS-CoV-2 orf7a, orf7b, and orf3a as additional OSBP targets, with OSBP contributing to their stabilization. Conclusion: Our study highlights the significance of OSBP in coronavirus replication and identifies it as a promising target for the development of antiviral therapies against SARS-CoV-2 and other coronaviruses. These findings underscore the potential of OSBP-targeted interventions in combating coronavirus infections.


Assuntos
Antivirais , Receptores de Esteroides , SARS-CoV-2 , Proteínas não Estruturais Virais , Replicação Viral , Replicação Viral/efeitos dos fármacos , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Antivirais/farmacologia , Receptores de Esteroides/metabolismo , Proteínas não Estruturais Virais/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Chlorocebus aethiops , Células Vero , Proteínas Virais/metabolismo , Células HEK293 , Animais , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Proteínas Viroporinas/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Ligação Proteica
3.
J Virol ; 98(9): e0085524, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39120134

RESUMO

A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes mild-to-severe respiratory symptoms, including acute respiratory distress. Despite remarkable efforts to investigate the virological and pathological impacts of SARS-CoV-2, many of the characteristics of SARS-CoV-2 infection still remain unknown. The interferon-inducible ubiquitin-like protein ISG15 is covalently conjugated to several viral proteins to suppress their functions. It was reported that SARS-CoV-2 utilizes its papain-like protease (PLpro) to impede ISG15 conjugation, ISGylation. However, the role of ISGylation in SARS-CoV-2 infection remains unclear. We aimed to elucidate the role of ISGylation in SARS-CoV-2 replication. We observed that the SARS-CoV-2 nucleocapsid protein is a target protein for the HERC5 E3 ligase-mediated ISGylation in cultured cells. Site-directed mutagenesis reveals that the residue K374 within the C-terminal spacer B-N3 (SB/N3) domain is required for nucleocapsid-ISGylation, alongside conserved lysine residue in MERS-CoV (K372) and SARS-CoV (K375). We also observed that the nucleocapsid-ISGylation results in the disruption of nucleocapsid oligomerization, thereby inhibiting viral replication. Knockdown of ISG15 mRNA enhanced SARS-CoV-2 replication in the SARS-CoV-2 reporter replicon cells, while exogenous expression of ISGylation components partially hampered SARS-CoV-2 replication. Taken together, these results suggest that SARS-CoV-2 PLpro inhibits ISGylation of the nucleocapsid protein to promote viral replication by evading ISGylation-mediated disruption of the nucleocapsid oligomerization.IMPORTANCEISG15 is an interferon-inducible ubiquitin-like protein that is covalently conjugated to the viral protein via specific Lys residues and suppresses viral functions and viral propagation in many viruses. However, the role of ISGylation in SARS-CoV-2 infection remains largely unclear. Here, we demonstrated that the SARS-CoV-2 nucleocapsid protein is a target protein for the HERC5 E3 ligase-mediated ISGylation. We also found that the residue K374 within the C-terminal spacer B-N3 (SB/N3) domain is required for nucleocapsid-ISGylation. We obtained evidence suggesting that nucleocapsid-ISGylation results in the disruption of nucleocapsid-oligomerization, thereby suppressing SARS-CoV-2 replication. We discovered that SARS-CoV-2 papain-like protease inhibits ISG15 conjugation of nucleocapsid protein via its de-conjugating enzyme activity. The present study may contribute to gaining new insight into the roles of ISGylation-mediated anti-viral function in SARS-CoV-2 infection and may lead to the development of more potent and selective inhibitors targeted to SARS-CoV-2 nucleocapsid protein.


Assuntos
COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , Proteases Semelhantes à Papaína de Coronavírus , Citocinas , SARS-CoV-2 , Ubiquitina-Proteína Ligases , Ubiquitinas , Replicação Viral , Humanos , Ubiquitinas/metabolismo , Ubiquitinas/genética , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Citocinas/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/genética , COVID-19/virologia , COVID-19/imunologia , COVID-19/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Células HEK293 , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Evasão da Resposta Imune , Proteínas do Nucleocapsídeo/metabolismo , Proteases 3C de Coronavírus/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular
4.
J Med Chem ; 67(16): 13681-13702, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39102360

RESUMO

The SARS-CoV-2 papain-like protease (PLpro), essential for viral processing and immune response disruption, is a promising target for treating acute infection of SARS-CoV-2. To date, there have been no reports of PLpro inhibitors with both submicromolar potency and animal model efficacy. To address the challenge of PLpro's featureless active site, a noncovalent inhibitor library with over 50 new analogs was developed, targeting the PLpro active site by modulating the BL2-loop and engaging the BL2-groove. Notably, compounds 42 and 10 exhibited strong antiviral effects and were further analyzed pharmacokinetically. 10, in particular, showed a significant lung accumulation, up to 12.9-fold greater than plasma exposure, and was effective in a mouse model of SARS-CoV-2 infection, as well as against several SARS-CoV-2 variants. These findings highlight the potential of 10 as an in vivo chemical probe for studying PLpro inhibition in SARS-CoV-2 infection.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Proteases Semelhantes à Papaína de Coronavírus , SARS-CoV-2 , Animais , Humanos , Camundongos , Antivirais/farmacologia , Antivirais/química , Antivirais/farmacocinética , Antivirais/síntese química , Domínio Catalítico , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , COVID-19/virologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacocinética , Inibidores de Proteases/síntese química , SARS-CoV-2/efeitos dos fármacos , Relação Estrutura-Atividade
5.
Viruses ; 16(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39205213

RESUMO

Emergence of newer variants of SARS-CoV-2 underscores the need for effective antivirals to complement the vaccination program in managing COVID-19. The multi-functional papain-like protease (PLpro) of SARS-CoV-2 is an essential viral protein that not only regulates the viral replication but also modulates the host immune system, making it a promising therapeutic target. To this end, we developed an in vitro interferon stimulating gene 15 (ISG15)-based Förster resonance energy transfer (FRET) assay and screened the National Cancer Institute (NCI) Diversity Set VI compound library, which comprises 1584 small molecules. Subsequently, we assessed the PLpro enzymatic activity in the presence of screened molecules. We identified three potential PLpro inhibitors, namely, NSC338106, 651084, and 679525, with IC50 values in the range from 3.3 to 6.0 µM. These molecules demonstrated in vitro inhibition of the enzyme activity and exhibited antiviral activity against SARS-CoV-2, with EC50 values ranging from 0.4 to 4.6 µM. The molecular docking of all three small molecules to PLpro suggested their specificity towards the enzyme's active site. Overall, our study contributes promising prospects for further developing potential antivirals to combat SARS-CoV-2 infection.


Assuntos
Antivirais , Proteases Semelhantes à Papaína de Coronavírus , Citocinas , Ensaios de Triagem em Larga Escala , SARS-CoV-2 , Ubiquitinas , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Antivirais/farmacologia , Antivirais/química , Humanos , Ensaios de Triagem em Larga Escala/métodos , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Citocinas/metabolismo , Ubiquitinas/metabolismo , Ubiquitinas/química , Ubiquitinas/antagonistas & inibidores , Simulação de Acoplamento Molecular , Tratamento Farmacológico da COVID-19 , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Transferência Ressonante de Energia de Fluorescência , COVID-19/virologia
6.
Sci Adv ; 10(35): eado4288, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39213347

RESUMO

Vaccines and first-generation antiviral therapeutics have provided important protection against COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, there remains a need for additional therapeutic options that provide enhanced efficacy and protection against potential viral resistance. The SARS-CoV-2 papain-like protease (PLpro) is one of the two essential cysteine proteases involved in viral replication. While inhibitors of the SARS-CoV-2 main protease have demonstrated clinical efficacy, known PLpro inhibitors have, to date, lacked the inhibitory potency and requisite pharmacokinetics to demonstrate that targeting PLpro translates to in vivo efficacy in a preclinical setting. Here, we report the machine learning-driven discovery of potent, selective, and orally available SARS-CoV-2 PLpro inhibitors, with lead compound PF-07957472 (4) providing robust efficacy in a mouse-adapted model of COVID-19 infection.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Proteases Semelhantes à Papaína de Coronavírus , Modelos Animais de Doenças , SARS-CoV-2 , Animais , Camundongos , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Antivirais/farmacocinética , Antivirais/uso terapêutico , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Humanos , COVID-19/virologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/uso terapêutico , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Aprendizado de Máquina , Feminino , Replicação Viral/efeitos dos fármacos
7.
J Enzyme Inhib Med Chem ; 39(1): 2387417, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39163165

RESUMO

Papain-like protease (PLpro) is an attractive anti-coronavirus target. The development of PLpro inhibitors, however, is hampered by the limitations of the existing PLpro assay and the scarcity of validated active compounds. We developed a novel in-cell PLpro assay based on BRET and used it to evaluate and discover SARS-CoV-2 PLpro inhibitors. The developed assay demonstrated remarkable sensitivity for detecting the reduction of intracellular PLpro activity while presenting high reliability and performance for inhibitor evaluation and high-throughput screening. Using this assay, three protease inhibitors were identified as novel PLpro inhibitors that are structurally disparate from those previously known. Subsequent enzymatic assays and ligand-protein interaction analysis based on molecular docking revealed that ceritinib directly inhibited PLpro, showing high geometric complementarity with the substrate-binding pocket in PLpro, whereas CA-074 methyl ester underwent intracellular hydrolysis, exposing a free carboxyhydroxyl group essential for hydrogen bonding with G266 in the BL2 groove, resulting in PLpro inhibition.


Assuntos
Simulação de Acoplamento Molecular , Pirimidinas , SARS-CoV-2 , Sulfonas , Humanos , SARS-CoV-2/enzimologia , SARS-CoV-2/efeitos dos fármacos , Sulfonas/farmacologia , Sulfonas/química , Pirimidinas/química , Pirimidinas/farmacologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/química , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Estrutura Molecular , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade
8.
Int J Biol Macromol ; 277(Pt 4): 134476, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111477

RESUMO

The single-stranded RNA genome of SARS-CoV-2 encodes several structural and non-structural proteins, among which the papain-like protease (PLpro) is crucial for viral replication and immune evasion and has emerged as a promising therapeutic target. The current study aims to discover new inhibitors of PLpro that can simultaneously disrupt its protease and deubiquitinase activities. Using multiple computational approaches, six compounds (CP1-CP6) were selected from our in-house compounds database, with higher docking scores (-7.97 kcal/mol to -8.14 kcal/mol) and fitted well in the active pocket of PLpro. Furthermore, utilizing microscale molecular dynamics simulations (MD), the dynamic behavior of selected compounds was studied. Those molecules strongly binds at the PLpro active site and forms stable complexes. The dynamic motions suggest that the binding of CP1-CP6 brought the protein to a closed conformational state, thereby altering its normal function. In an in vitro evaluation, CP2 showed the most significant inhibitory potential for PLpro (protease activity = 2.71 ± 0.33 µM and deubiquitinase activity = 3.11 ± 0.75 µM), followed by CP1, CP5, CP4 and CP6. Additionally, CP1-CP6 showed no cytotoxicity at a concentration of 30 µM in the human BJ cell line.


Assuntos
Proteases Semelhantes à Papaína de Coronavírus , Enzimas Desubiquitinantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2 , SARS-CoV-2/enzimologia , SARS-CoV-2/efeitos dos fármacos , Humanos , Enzimas Desubiquitinantes/metabolismo , Enzimas Desubiquitinantes/química , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Domínio Catalítico , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Antivirais/farmacologia , Antivirais/química , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , Ligação Proteica
9.
J Virol ; 98(9): e0086924, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39194248

RESUMO

Interferon (IFN)-stimulated gene 15 (ISG15), a ubiquitin-like protein, is covalently conjugated to host immune proteins such as MDA5 and IRF3 in a process called ISGylation, thereby promoting type I IFN induction to limit the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, whether SARS-CoV-2 proteins can be directly targeted for ISGylation remains elusive. In this study, we identified the nucleocapsid (N) protein of SARS-CoV-2 as a major substrate of ISGylation catalyzed by the host E3 ligase HERC5; however, N ISGylation is readily removed through deISGylation by the papain-like protease (PLpro) activity of NSP3. Mass spectrometry analysis identified that the N protein undergoes ISGylation at four lysine residues (K266, K355, K387, and K388), and mutational analysis of these sites in the context of a SARS-CoV-2 replicon (N-4KR) abolished N ISGylation and alleviated ISGylation-mediated inhibition of viral RNA synthesis. Furthermore, our results indicated that HERC5 targets preferentially phosphorylated N protein for ISGylation to regulate its oligomeric assembly. These findings reveal a novel mechanism by which the host ISGylation machinery directly targets SARS-CoV-2 proteins to restrict viral replication and illuminate how an intricate interplay of host (HERC5) and viral (PLpro) enzymes coordinates viral protein ISGylation and thereby regulates virus replication.IMPORTANCEThe role of protein ISGylation in regulating host cellular processes has been studied extensively; however, how ISG15 conjugation influences the activity of viral proteins, particularly coronaviral proteins, is largely unknown. Our study uncovered that the nucleocapsid (N) protein of SARS-CoV-2 is ISGylated by the HERC5 ISGylation machinery and that this modification impedes the functional assembly of N into oligomers ultimately inhibiting viral RNA synthesis. This antiviral restriction mechanism is antagonized by the PLpro deISGylation activity of SARS-CoV-2 NSP3. This study deepens our understanding of SARS-CoV-2 protein regulation by posttranslational modifications and may open new avenues for designing antiviral strategies for COVID-19.


Assuntos
Proteínas do Nucleocapsídeo de Coronavírus , Proteases Semelhantes à Papaína de Coronavírus , Citocinas , RNA Viral , SARS-CoV-2 , Ubiquitina-Proteína Ligases , Ubiquitinas , Replicação Viral , Humanos , Ubiquitinas/metabolismo , Ubiquitinas/genética , SARS-CoV-2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , RNA Viral/metabolismo , RNA Viral/genética , Citocinas/metabolismo , Células HEK293 , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Fosfoproteínas/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Peptídeos e Proteínas de Sinalização Intracelular
10.
Nat Commun ; 15(1): 6219, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043718

RESUMO

Papain-like protease (PLpro) is an attractive drug target for SARS-CoV-2 because it is essential for viral replication, cleaving viral poly-proteins pp1a and pp1ab, and has de-ubiquitylation and de-ISGylation activities, affecting innate immune responses. We employ Deep Mutational Scanning to evaluate the mutational effects on PLpro enzymatic activity and protein stability in mammalian cells. We confirm features of the active site and identify mutations in neighboring residues that alter activity. We characterize residues responsible for substrate binding and demonstrate that although residues in the blocking loop are remarkably tolerant to mutation, blocking loop flexibility is important for function. We additionally find a connected network of mutations affecting activity that extends far from the active site. We leverage our library to identify drug-escape variants to a common PLpro inhibitor scaffold and predict that plasticity in both the S4 pocket and blocking loop sequence should be considered during the drug design process.


Assuntos
Mutação , SARS-CoV-2 , SARS-CoV-2/genética , Humanos , Proteases Semelhantes à Papaína de Coronavírus/genética , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/química , Domínio Catalítico , Antivirais/farmacologia , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , COVID-19/virologia , Tratamento Farmacológico da COVID-19 , Modelos Moleculares , Células HEK293
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...