Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.725
Filtrar
1.
J Agric Food Chem ; 72(38): 21166-21180, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39285157

RESUMO

A persistent challenge in brewing is the efficient utilization of hop bitter acids, with about 50% of these compounds precipitating with trub during wort boiling. This study aims to uncover the correlation between the barley cultivar proteome and hop bitter acid utilization during wort boiling. Therefore, comparative experiments were conducted using two cultivars, Liga and Solist, with varying proteomes to identify specific proteins' role in hop bitter acids precipitation. High-performance liquid chromatography (HPLC) was used to measure hop bitter acid content, while liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantify and identify proteins. The 107 protein groups, particularly enzymes linked to barley metabolic defense mechanisms, exhibited significant differences between the two cultivars. Results revealed significantly lower α- and iso-α-acid content in wort produced from the barley cultivar Liga. This study highlights the critical role of the barley proteome in optimizing process efficiency by enhancing hop utilization through barley cultivar selection.


Assuntos
Cerveja , Hordeum , Humulus , Proteínas de Plantas , Proteoma , Espectrometria de Massas em Tandem , Hordeum/química , Hordeum/metabolismo , Humulus/química , Humulus/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteoma/química , Cerveja/análise , Ácidos/metabolismo , Ácidos/análise , Cromatografia Líquida de Alta Pressão , Temperatura Alta
2.
J Mol Biol ; 436(17): 168617, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39237198

RESUMO

In recent years, advancements in deep learning techniques have significantly expanded the structural coverage of the human proteome. GalaxySagittarius-AF translates these achievements in structure prediction into target prediction for druglike compounds by incorporating predicted structures. This web server searches the database of human protein structures using both similarity- and structure-based approaches, suggesting potential targets for a given druglike compound. In comparison to its predecessor, GalaxySagittarius, GalaxySagittarius-AF utilizes an enlarged structure database, incorporating curated AlphaFold model structures alongside their binding sites and ligands, predicted using an updated version of GalaxySite. GalaxySagittarius-AF covers a large human protein space compared to many other available computational target screening methods. The structure-based prediction method enhances the use of expanded structural information, differentiating it from other target prediction servers that rely on ligand-based methods. Additionally, the web server has undergone enhancements, operating two to three times faster than its predecessor. The updated report page provides comprehensive information on the sequence and structure of the predicted protein targets. GalaxySagittarius-AF is accessible at https://galaxy.seoklab.org/sagittarius_af without the need for registration.


Assuntos
Proteoma , Humanos , Proteoma/química , Proteoma/metabolismo , Ligantes , Bases de Dados de Proteínas , Sítios de Ligação , Software , Biologia Computacional/métodos , Conformação Proteica , Aprendizado Profundo , Descoberta de Drogas/métodos , Modelos Moleculares , Proteínas/química , Proteínas/metabolismo
3.
Protein Sci ; 33(10): e5167, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39276010

RESUMO

Predicting the binding of ligands to the human proteome via reverse-docking methods enables the understanding of ligand's interactions with potential protein targets in the human body, thereby facilitating drug repositioning and the evaluation of potential off-target effects or toxic side effects of drugs. In this study, we constructed 11 reverse docking pipelines by integrating site prediction tools (PointSite and SiteMap), docking programs (Glide and AutoDock Vina), and scoring functions (Glide, Autodock Vina, RTMScore, DeepRMSD, and OnionNet-SFCT), and then thoroughly benchmarked their predictive capabilities. The results show that the Glide_SFCT (PS) pipeline exhibited the best target prediction performance based on the atomic structure models in AlphaFold2 human proteome. It achieved a success rate of 27.8% when considering the top 100 ranked prediction. This pipeline effectively narrows the range of potential targets within the human proteome, laying a foundation for drug target prediction, off-target assessment, and toxicity prediction, ultimately boosting drug development. By facilitating these critical aspects of drug discovery and development, our work has the potential to ultimately accelerate the identification of new therapeutic agents and improve drug safety.


Assuntos
Simulação de Acoplamento Molecular , Proteoma , Humanos , Proteoma/química , Proteoma/metabolismo , Benchmarking , Software , Ligantes , Ligação Proteica , Conformação Proteica
4.
J Agric Food Chem ; 72(36): 20153-20170, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39213608

RESUMO

Many factors, such as the farming systems and preslaughter rearing practices, can influence the physiological and metabolic functions of poultry with consequent effects on poultry meat quality. In this trial, label-free shotgun proteomics was used to analyze the early post-mortem Pectoralis major muscle proteomes of Ross 308 and Ranger Classic chicken strains raised under two divergent farming systems these being organic and antibiotic-free. The combination of chemometrics using partial-least-square discriminant analysis (PLS-DA) and shotgun proteomics allowed clear discrimination between the different groups. Chicken strains were discriminated by differences in the abundance of 73 and 62 proteins within the antibiotic-free and organic farming systems, respectively. The abundances of 71 and 52 proteins were impacted by the farming system within the Ross 308 and Ranger Classic chicken strains, respectively. The analyses allowed for the proposal of several putative biomarkers of meat authenticity, which were found to be related to muscle structure and energy metabolism pathways. This study is a significant step forward in elucidating the potential of proteomics profiling and chemometrics in chicken meat, which may provide opportunities for the efficient assessment of chicken authenticity.


Assuntos
Biomarcadores , Galinhas , Carne , Músculos Peitorais , Proteoma , Proteômica , Animais , Galinhas/metabolismo , Carne/análise , Biomarcadores/análise , Biomarcadores/metabolismo , Músculos Peitorais/metabolismo , Músculos Peitorais/química , Proteoma/metabolismo , Proteoma/química , Quimiometria , Agricultura Orgânica , Criação de Animais Domésticos/métodos , Antibacterianos
5.
Anal Chem ; 96(35): 14186-14196, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39171919

RESUMO

Protein S-sulfhydration involves the regulation of various protein functions, and resolving the S-sulfhydrated proteome (persulfidome) allows for a deeper exploration of various redox regulations. Therefore, we designed a reducible covalent capture method for isolating S-sulfhydrated proteins, which can analyze the persulfidome in biological samples and monitor specific S-sulfhydrated proteins. In this study, we applied this method to reveal the S-sulfhydration levels of proteins, including 3-phosphoglyceraldehyde dehydrogenase, NFκB/p65, and nucleolin. Furthermore, this technique can be used to enrich S-sulfhydrated peptides, aiding in the determination of protein S-sulfhydration modification sites. Finally, we observed that the S-sulfhydration and oxidation of nucleolin on the C543 residue correlate with its nuclear translocation, downstream regulation of p53, Bcl-xL, and Bcl-2 RNA levels and protein expression, as well as the protective function against oxidative stress. Therefore, this method may facilitate the understanding of the regulation of protein function by redox perturbation.


Assuntos
Nucleolina , Oxirredução , Fosfoproteínas , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/isolamento & purificação , Fosfoproteínas/metabolismo , Fosfoproteínas/química , Fosfoproteínas/análise , Humanos , Proteoma/análise , Proteoma/química
6.
Nature ; 632(8023): 166-173, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39020176

RESUMO

Gene expression in Arabidopsis is regulated by more than 1,900 transcription factors (TFs), which have been identified genome-wide by the presence of well-conserved DNA-binding domains. Activator TFs contain activation domains (ADs) that recruit coactivator complexes; however, for nearly all Arabidopsis TFs, we lack knowledge about the presence, location and transcriptional strength of their ADs1. To address this gap, here we use a yeast library approach to experimentally identify Arabidopsis ADs on a proteome-wide scale, and find that more than half of the Arabidopsis TFs contain an AD. We annotate 1,553 ADs, the vast majority of which are, to our knowledge, previously unknown. Using the dataset generated, we develop a neural network to accurately predict ADs and to identify sequence features that are necessary to recruit coactivator complexes. We uncover six distinct combinations of sequence features that result in activation activity, providing a framework to interrogate the subfunctionalization of ADs. Furthermore, we identify ADs in the ancient AUXIN RESPONSE FACTOR family of TFs, revealing that AD positioning is conserved in distinct clades. Our findings provide a deep resource for understanding transcriptional activation, a framework for examining function in intrinsically disordered regions and a predictive model of ADs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Domínios Proteicos , Fatores de Transcrição , Ativação Transcricional , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/metabolismo , Sequência Conservada/genética , Conjuntos de Dados como Assunto , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Proteínas Intrinsicamente Desordenadas , Anotação de Sequência Molecular , Redes Neurais de Computação , Proteoma/química , Proteoma/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética
7.
Protein Sci ; 33(8): e5112, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39031445

RESUMO

The missense tolerance ratio (MTR) was developed as a novel approach to assess the deleteriousness of variants. Its three-dimensional successor, MTR3D, was demonstrated powerful at discriminating pathogenic from benign variants. However, its reliance on experimental structures and homologs limited its coverage of the proteome. We have now utilized AlphaFold2 models to develop MTR3D-AF2, which covers 89.31% of proteins and 85.39% of residues across the human proteome. This work has improved MTR3D's ability to distinguish clinically established pathogenic from benign variants. MTR3D-AF2 is freely available as an interactive web server at https://biosig.lab.uq.edu.au/mtr3daf2/.


Assuntos
Mutação de Sentido Incorreto , Proteoma , Humanos , Proteoma/química , Proteoma/genética , Proteoma/análise , Proteoma/metabolismo , Software , Modelos Moleculares , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Bases de Dados de Proteínas
8.
Anal Chim Acta ; 1317: 342916, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39030013

RESUMO

BACKGROUND: Protein misfolding and aggregation can lead to various diseases. Recent studies have shed light on the aggregated protein in breast cancer pathology, which suggests that it is crucial to design chemical sensors that visualize protein aggregates in breast cancer, especially in clinical patient-derived samples. However, most reported sensors are constrained in cultured cell lines. RESULTS: In this work, we present the development of two isophorone-based crystallization-induced-emission fluorophores for detecting proteome aggregation in breast cancer cell line and tissues biopsied from diseased patients, designated as A1 and A2. These probes exhibited viscosity sensitivity and recovered their fluorescence strongly at crystalline state. Moreover, A1 and A2 exhibit selective binding capacity and strong fluorescence for various aggregated proteins. Utilizing these probes, we detect protein aggregation in stressed breast cancer cells, xenograft mouse model of human breast cancer and clinical patient-derived samples. Notably, the fluorescence intensity of both probes light up in tumor tissues. SIGNIFICANCE: The synthesized isophorone-based crystallization-induced-emission fluorophores, A1 and A2, enable sensitive detection of protein aggregation in breast cancer cells and tissues. In the future, aggregated proteins are expected to become indicators for early diagnosis and clinical disease monitoring of breast cancer.


Assuntos
Neoplasias da Mama , Cristalização , Corantes Fluorescentes , Proteoma , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Animais , Feminino , Corantes Fluorescentes/química , Proteoma/análise , Proteoma/química , Camundongos , Agregados Proteicos , Linhagem Celular Tumoral , Camundongos Nus
9.
J Am Chem Soc ; 146(30): 20823-20836, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39018468

RESUMO

The evolving use of covalent ligands as chemical probes and therapeutic agents could greatly benefit from an expanded array of cysteine-reactive electrophiles for efficient and versatile proteome profiling. Herein, to expand the current repertoire of cysteine-reactive electrophiles, we developed a new class of strain-enabled electrophiles based on cyclopropanes. Proteome profiling has unveiled that C163 of lactate dehydrogenase A (LDHA) and C88 of adhesion regulating molecule 1 (ADRM1) are ligandable residues to modulate the protein functions. Moreover, fragment-based ligand discovery (FBLD) has revealed that one fragment (Y-35) shows strong reactivity toward C66 of thioredoxin domain-containing protein 12 (TXD12), and its covalent binding has been demonstrated to impact its downstream signal pathways. TXD12 plays a pivotal role in enabling Y-35 to exhibit its antisurvival and antiproliferative effects. Finally, dicarbonitrile-cyclopropane has been demonstrated to be an electrophilic warhead in the development of GSTO1-involved dual covalent inhibitors, which is promising to alleviate drug resistance.


Assuntos
Ciclopropanos , Proteoma , Ciclopropanos/química , Ciclopropanos/farmacologia , Ligantes , Humanos , Proteoma/química , Proteoma/metabolismo , Descoberta de Drogas , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química
10.
Protein J ; 43(4): 711-717, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38980536

RESUMO

Determining the physicochemical properties of a protein can reveal important insights in their structure, biological functions, stability, and interactions with other molecules. Although tools for computing properties of proteins already existed, we could not find a comprehensive tool that enables the calculations of multiple properties for multiple input proteins on the proteome level at once. Facing this limitation, we developed Multiple Protein Profiler (MPP) 1.0 as an integrated tool that allows the profiling of 12 individual properties of multiple proteins in a significant manner. MPP provides a tabular and graphic visualization of properties of multiple proteins. The tool is freely accessible at https://mproteinprofiler.microbiologyandimmunology.dal.ca/ .


Assuntos
Proteoma , Software , Proteoma/química , Proteoma/análise , Proteínas/química , Proteínas/metabolismo , Proteínas/análise , Internet , Bases de Dados de Proteínas
11.
Nature ; 631(8020): 449-458, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38898281

RESUMO

De novo design of complex protein folds using solely computational means remains a substantial challenge1. Here we use a robust deep learning pipeline to design complex folds and soluble analogues of integral membrane proteins. Unique membrane topologies, such as those from G-protein-coupled receptors2, are not found in the soluble proteome, and we demonstrate that their structural features can be recapitulated in solution. Biophysical analyses demonstrate the high thermal stability of the designs, and experimental structures show remarkable design accuracy. The soluble analogues were functionalized with native structural motifs, as a proof of concept for bringing membrane protein functions to the soluble proteome, potentially enabling new approaches in drug discovery. In summary, we have designed complex protein topologies and enriched them with functionalities from membrane proteins, with high experimental success rates, leading to a de facto expansion of the functional soluble fold space.


Assuntos
Desenho Assistido por Computador , Aprendizado Profundo , Proteínas de Membrana , Dobramento de Proteína , Solubilidade , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Estabilidade Proteica , Proteoma/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Motivos de Aminoácidos , Estudo de Prova de Conceito
12.
Nature ; 629(8014): 1174-1181, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720073

RESUMO

Phosphorylation of proteins on tyrosine (Tyr) residues evolved in metazoan organisms as a mechanism of coordinating tissue growth1. Multicellular eukaryotes typically have more than 50 distinct protein Tyr kinases that catalyse the phosphorylation of thousands of Tyr residues throughout the proteome1-3. How a given Tyr kinase can phosphorylate a specific subset of proteins at unique Tyr sites is only partially understood4-7. Here we used combinatorial peptide arrays to profile the substrate sequence specificity of all human Tyr kinases. Globally, the Tyr kinases demonstrate considerable diversity in optimal patterns of residues surrounding the site of phosphorylation, revealing the functional organization of the human Tyr kinome by substrate motif preference. Using this information, Tyr kinases that are most compatible with phosphorylating any Tyr site can be identified. Analysis of mass spectrometry phosphoproteomic datasets using this compendium of kinase specificities accurately identifies specific Tyr kinases that are dysregulated in cells after stimulation with growth factors, treatment with anti-cancer drugs or expression of oncogenic variants. Furthermore, the topology of known Tyr signalling networks naturally emerged from a comparison of the sequence specificities of the Tyr kinases and the SH2 phosphotyrosine (pTyr)-binding domains. Finally we show that the intrinsic substrate specificity of Tyr kinases has remained fundamentally unchanged from worms to humans, suggesting that the fidelity between Tyr kinases and their protein substrate sequences has been maintained across hundreds of millions of years of evolution.


Assuntos
Fosfotirosina , Proteínas Tirosina Quinases , Especificidade por Substrato , Tirosina , Animais , Humanos , Motivos de Aminoácidos , Evolução Molecular , Espectrometria de Massas , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Proteínas Tirosina Quinases/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Proteoma/química , Proteoma/metabolismo , Proteômica , Transdução de Sinais , Domínios de Homologia de src , Tirosina/metabolismo , Tirosina/química
13.
Artigo em Inglês | MEDLINE | ID: mdl-38759531

RESUMO

Depending on the respective research question, LC-MS/MS based bottom-up proteomics poses challenges from the initial biological sample all the way to data evaluation. The focus of this study was to investigate the influence of sample preparation techniques and data analysis parameters on protein identification in Tribolium castaneum by applying free software proteomics platform Max Quant. Multidimensional protein extraction strategies in combination with electrophoretic or chromatographic off-line protein pre-fractionation were applied to enhance the spectrum of isolated proteins from T. castaneum and reduce the effect of co-elution and ion suppression effects during nano-LC-MS/MS measurements of peptides. For comprehensive data analysis, MaxQuant was used for protein identification and R for data evaluation. A wide range of parameters were evaluated to gain reproducible, reliable, and significant protein identifications. A simple phosphate buffer, pH 8, containing protease and phosphatase inhibitor cocktail and application of gentle extraction conditions were used as a first extraction step for T.castaneum proteins. Furthermore, a two-dimensional extraction procedure in combination with electrophoretic pre-fractionation of extracted proteins and subsequent in-gel digest resulted in almost 100% increase of identified proteins when compared to chromatographic fractionation as well as one-pot-analysis. The additionally identified proteins could be assigned to new molecular functions or cell compartments, emphasizing the positive effect of extended sample preparation in bottom-up proteomics. Besides the number of peptides during post-processing, MaxQuant's Match between Runs exhibited a crucial effect on the number of identified proteins. A maximum relative standard deviation of 2% must be considered for the data analysis. Our work with Tribolium castaneum larvae demonstrates that sometimes - depending on matrix and research question - more complex and time-consuming sample preparation can be advantageous for isolation and identification of additional proteins in bottom-up proteomics.


Assuntos
Proteínas de Insetos , Proteômica , Espectrometria de Massas em Tandem , Tribolium , Animais , Proteômica/métodos , Tribolium/química , Espectrometria de Massas em Tandem/métodos , Proteínas de Insetos/análise , Proteínas de Insetos/química , Cromatografia Líquida/métodos , Biologia Computacional/métodos , Proteoma/análise , Proteoma/química
14.
Food Chem ; 451: 139295, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729042

RESUMO

Information regarding protein expression and phosphorylation modifications in the bovine milk fat globule membrane is scarce, particularly throughout various lactation periods. This study employed a complete proteome and phosphoproteome between bovine colostrum and mature milk. A total of 11 proteins were seen in both protein expression and phosphorylation levels. There were 400 proteins identified in only protein expression, and 104 phosphoproteins identified in only phosphorylation levels. A total of 232 significant protein characteristics were identified within the proteome and significant phosphorylation sites within 86 phosphoproteins of the phosphoproteome. Biological activities and pathways primarily exhibited associations with the immune system. Simultaneously, a comprehensive analysis of proteins and phosphorylation sites using a multi-omics approach. Hence, the data we have obtained has the potential to expand our understanding of how the bovine milk fat globule membrane might be utilized as a beneficial component in dairy products.


Assuntos
Glicolipídeos , Glicoproteínas , Lactação , Gotículas Lipídicas , Leite , Fosfoproteínas , Proteômica , Animais , Bovinos , Glicoproteínas/química , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Glicolipídeos/química , Glicolipídeos/metabolismo , Feminino , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Leite/química , Proteínas do Leite/química , Proteínas do Leite/metabolismo , Proteínas do Leite/imunologia , Fosforilação , Proteoma/química , Proteoma/imunologia , Proteoma/análise
15.
PLoS Comput Biol ; 20(5): e1011372, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38748749

RESUMO

Low-complexity domains (LCDs) in proteins are typically enriched in one or two predominant amino acids. As a result, LCDs often exhibit unusual structural/biophysical tendencies and can occupy functional niches. However, for each organism, protein sequences must be compatible with intracellular biomolecules and physicochemical environment, both of which vary from organism to organism. This raises the possibility that LCDs may occupy sequence spaces in select organisms that are otherwise prohibited in most organisms. Here, we report a comprehensive survey and functional analysis of LCDs in all known reference proteomes (>21k organisms), with added focus on rare and unusual types of LCDs. LCDs were classified according to both the primary amino acid and secondary amino acid in each LCD sequence, facilitating detailed comparisons of LCD class frequencies across organisms. Examination of LCD classes at different depths (i.e., domain of life, organism, protein, and per-residue levels) reveals unique facets of LCD frequencies and functions. To our surprise, all 400 LCD classes occur in nature, although some are exceptionally rare. A number of rare classes can be defined for each domain of life, with many LCD classes appearing to be eukaryote-specific. Certain LCD classes were consistently associated with identical functions across many organisms, particularly in eukaryotes. Our analysis methods enable simultaneous, direct comparison of all LCD classes between individual organisms, resulting in a proteome-scale view of differences in LCD frequencies and functions. Together, these results highlight the remarkable diversity and functional specificity of LCDs across all known life forms.


Assuntos
Biologia Computacional , Proteoma , Proteoma/química , Proteoma/metabolismo , Animais , Biologia Computacional/métodos , Humanos , Domínios Proteicos , Sequência de Aminoácidos , Proteínas/química , Proteínas/metabolismo , Aminoácidos/química , Bases de Dados de Proteínas , Proteômica/métodos
16.
Nucleic Acids Res ; 52(W1): W182-W186, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38747341

RESUMO

AlphaFind is a web-based search engine that provides fast structure-based retrieval in the entire set of AlphaFold DB structures. Unlike other protein processing tools, AlphaFind is focused entirely on tertiary structure, automatically extracting the main 3D features of each protein chain and using a machine learning model to find the most similar structures. This indexing approach and the 3D feature extraction method used by AlphaFind have both demonstrated remarkable scalability to large datasets as well as to large protein structures. The web application itself has been designed with a focus on clarity and ease of use. The searcher accepts any valid UniProt ID, Protein Data Bank ID or gene symbol as input, and returns a set of similar protein chains from AlphaFold DB, including various similarity metrics between the query and each of the retrieved results. In addition to the main search functionality, the application provides 3D visualizations of protein structure superpositions in order to allow researchers to instantly analyze the structural similarity of the retrieved results. The AlphaFind web application is available online for free and without any registration at https://alphafind.fi.muni.cz.


Assuntos
Bases de Dados de Proteínas , Proteoma , Software , Proteoma/química , Proteoma/genética , Internet , Ferramenta de Busca , Aprendizado de Máquina , Conformação Proteica , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Dobramento de Proteína , Modelos Moleculares , Homologia Estrutural de Proteína
17.
J Proteome Res ; 23(5): 1593-1602, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38626392

RESUMO

With the rapid expansion of sequencing of genomes, the functional annotation of proteins becomes a bottleneck in understanding proteomes. The Chromosome-centric Human Proteome Project (C-HPP) aims to identify all proteins encoded by the human genome and find functional annotations for them. However, until now there are still 1137 identified human proteins without functional annotation, called uPE1 proteins. Sequence alignment was insufficient to predict their functions, and the crystal structures of most proteins were unavailable. In this study, we demonstrated a new functional annotation strategy, AlphaFun, based on structural alignment using deep-learning-predicted protein structures. Using this strategy, we functionally annotated 99% of the human proteome, including the uPE1 proteins and missing proteins, which have not been identified yet. The accuracy of the functional annotations was validated using the known-function proteins. The uPE1 proteins shared similar functions to the known-function PE1 proteins and tend to express only in very limited tissues. They are evolutionally young genes and thus should conduct functions only in specific tissues and conditions, limiting their occurrence in commonly studied biological models. Such functional annotations provide hints for functional investigations on the uPE1 proteins. This proteome-wide-scale functional annotation strategy is also applicable to any other species.


Assuntos
Anotação de Sequência Molecular , Proteoma , Humanos , Proteoma/genética , Proteoma/metabolismo , Proteoma/análise , Proteoma/química , Aprendizado Profundo , Alinhamento de Sequência , Genoma Humano , Proteômica/métodos , Bases de Dados de Proteínas
18.
J Proteome Res ; 23(6): 2186-2194, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38664393

RESUMO

Tandem mass tags (TMT) are widely used in proteomics to simultaneously quantify multiple samples in a single experiment. The tags can be easily added to the primary amines of peptides/proteins through chemical reactions. In addition to amines, TMT reagents also partially react with the hydroxyl groups of serine, threonine, and tyrosine residues under alkaline conditions, which significantly compromises the analytical sensitivity and precision. Under alkaline conditions, reducing the TMT molar excess can partially mitigate overlabeling of histidine-free peptides, but has a limited effect on peptides containing histidine and hydroxyl groups. Here, we present a method under acidic conditions to suppress overlabeling while efficiently labeling amines, using only one-fifth of the TMT amount recommended by the manufacturer. In a deep-scale analysis of a yeast/human two-proteome sample, we systematically evaluated our method against the manufacturer's method and a previously reported TMT-reduced method. Our method reduced overlabeled peptides by 9-fold and 6-fold, respectively, resulting in the substantial enhancement in peptide/protein identification rates. More importantly, the quantitative accuracy and precision were improved as overlabeling was reduced, endowing our method with greater statistical power to detect 42% and 12% more statistically significant yeast proteins compared to the standard and TMT-reduced methods, respectively. Mass spectrometric data have been deposited in the ProteomeXchange Consortium via the iProX partner repository with the data set identifier PXD047052.


Assuntos
Aminas , Proteoma , Proteômica , Espectrometria de Massas em Tandem , Proteoma/análise , Proteoma/química , Proteômica/métodos , Humanos , Aminas/química , Espectrometria de Massas em Tandem/métodos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Peptídeos/química , Peptídeos/análise , Análise Custo-Benefício , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/química , Coloração e Rotulagem/métodos
19.
Nucleic Acids Res ; 52(W1): W221-W232, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38567734

RESUMO

E3 ubiquitin ligases recognize substrates through their short linear motifs termed degrons. While degron-signaling has been a subject of extensive study, resources for its systematic screening are limited. To bridge this gap, we developed DEGRONOPEDIA, a web server that searches for degrons and maps them to nearby residues that can undergo ubiquitination and disordered regions, which may act as protein unfolding seeds. Along with an evolutionary assessment of degron conservation, the server also reports on post-translational modifications and mutations that may modulate degron availability. Acknowledging the prevalence of degrons at protein termini, DEGRONOPEDIA incorporates machine learning to assess N-/C-terminal stability, supplemented by simulations of proteolysis to identify degrons in newly formed termini. An experimental validation of a predicted C-terminal destabilizing motif, coupled with the confirmation of a post-proteolytic degron in another case, exemplifies its practical application. DEGRONOPEDIA can be freely accessed at degronopedia.com.


Assuntos
Internet , Processamento de Proteína Pós-Traducional , Proteólise , Proteoma , Software , Ubiquitina-Proteína Ligases , Ubiquitinação , Proteoma/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Humanos , Aprendizado de Máquina , Motivos de Aminoácidos , Degrons
20.
Expert Rev Mol Med ; 26: e6, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38604802

RESUMO

Target deconvolution can help understand how compounds exert therapeutic effects and can accelerate drug discovery by helping optimise safety and efficacy, revealing mechanisms of action, anticipate off-target effects and identifying opportunities for therapeutic expansion. Chemoproteomics, a combination of chemical biology with mass spectrometry has transformed target deconvolution. This review discusses modification-free chemoproteomic approaches that leverage the change in protein thermodynamics induced by small molecule ligand binding. Unlike modification-based methods relying on enriching specific protein targets, these approaches offer proteome-wide evaluations, driven by advancements in mass spectrometry sensitivity, increasing proteome coverage and quantitation methods. Advances in methods based on denaturation/precipitation by thermal or chemical denaturation, or by protease degradation are evaluated, emphasising the evolving landscape of chemoproteomics and its potential impact on future drug-development strategies.


Assuntos
Descoberta de Drogas , Proteoma , Humanos , Proteoma/análise , Proteoma/química , Proteoma/metabolismo , Descoberta de Drogas/métodos , Espectrometria de Massas , Desenvolvimento de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...