Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.970
Filtrar
1.
Front Immunol ; 15: 1405376, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015565

RESUMO

Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen capable of exploiting barriers and immune defects to cause chronic lung infections in conditions such as cystic fibrosis. In these contexts, host immune responses are ineffective at clearing persistent bacterial infection, instead driving a cycle of inflammatory lung damage. This review outlines key components of the host immune response to chronic P. aeruginosa infection within the lung, beginning with initial pathogen recognition, followed by a robust yet maladaptive innate immune response, and an ineffective adaptive immune response that propagates lung damage while permitting bacterial persistence. Untangling the interplay between host immunity and chronic P. aeruginosa infection will allow for the development and refinement of strategies to modulate immune-associated lung damage and potentiate the immune system to combat chronic infection more effectively.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/imunologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Doença Crônica , Animais , Interações Hospedeiro-Patógeno/imunologia , Imunidade Adaptativa , Pneumopatias/imunologia , Pneumopatias/microbiologia , Fibrose Cística/imunologia , Fibrose Cística/microbiologia , Fibrose Cística/complicações , Pulmão/imunologia , Pulmão/microbiologia
2.
Respir Res ; 25(1): 262, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951782

RESUMO

BACKGROUND: Donor-specific antibodies (DSAs) are common following lung transplantation (LuTx), yet their role in graft damage is inconclusive. Mean fluorescent intensity (MFI) is the main read-out of DSA diagnostics; however its value is often disregarded when analyzing unwanted post-transplant outcomes such as graft loss or chronic lung allograft dysfunction (CLAD). Here we aim to evaluate an MFI stratification method in these outcomes. METHODS: A cohort of 87 LuTx recipients has been analyzed, in which a cutoff of 8000 MFI has been determined for high MFI based on clinically relevant data. Accordingly, recipients were divided into DSA-negative, DSA-low and DSA-high subgroups. Both graft survival and CLAD-free survival were evaluated. Among factors that may contribute to DSA development we analyzed Pseudomonas aeruginosa (P. aeruginosa) infection in bronchoalveolar lavage (BAL) specimens. RESULTS: High MFI DSAs contributed to clinical antibody-mediated rejection (AMR) and were associated with significantly worse graft (HR: 5.77, p < 0.0001) and CLAD-free survival (HR: 6.47, p = 0.019) compared to low or negative MFI DSA levels. Analysis of BAL specimens revealed a strong correlation between DSA status, P. aeruginosa infection and BAL neutrophilia. DSA-high status and clinical AMR were both independent prognosticators for decreased graft and CLAD-free survival in our multivariate Cox-regression models, whereas BAL neutrophilia was associated with worse graft survival. CONCLUSIONS: P. aeruginosa infection rates are elevated in recipients with a strong DSA response. Our results indicate that the simultaneous interpretation of MFI values and BAL neutrophilia is a feasible approach for risk evaluation and may help clinicians when to initiate DSA desensitization therapy, as early intervention could improve prognosis.


Assuntos
Rejeição de Enxerto , Transplante de Pulmão , Infecções por Pseudomonas , Pseudomonas aeruginosa , Transplante de Pulmão/efeitos adversos , Transplante de Pulmão/mortalidade , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/diagnóstico , Infecções por Pseudomonas/mortalidade , Adulto , Pseudomonas aeruginosa/imunologia , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/diagnóstico , Doadores de Tecidos , Estudos Retrospectivos , Sobrevivência de Enxerto , Estudos de Coortes , Isoanticorpos/sangue , Idoso
3.
Front Immunol ; 15: 1405364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021568

RESUMO

Introduction: As the body's first line of defense against disease and infection, neutrophils must efficiently navigate to sites of inflammation; however, neutrophil dysregulation contributes to the pathogenesis of numerous diseases that leave people susceptible to infections. Many of these diseases are also associated with changes to the protein composition of the extracellular matrix. While it is known that neutrophils and endothelial cells, which play a key role in neutrophil activation, are sensitive to the mechanical and structural properties of the extracellular matrix, our understanding of how protein composition in the matrix affects the neutrophil response to infection is incomplete. Methods: To investigate the effects of extracellular matrix composition on the neutrophil response to infection, we used an infection-on-a-chip microfluidic device that replicates a portion of a blood vessel endothelium surrounded by a model extracellular matrix. Model blood vessels were fabricated by seeding human umbilical vein endothelial cells on 2, 4, or 6 mg/mL type I collagen hydrogels. Primary human neutrophils were loaded into the endothelial lumens and stimulated by adding the bacterial pathogen Pseudomonas aeruginosa to the surrounding matrix. Results: Collagen concentration did not affect the cell density or barrier function of the endothelial lumens. Upon infectious challenge, we found greater neutrophil extravasation into the 4 mg/mL collagen gels compared to the 6 mg/mL collagen gels. We further found that extravasated neutrophils had the highest migration speed and distance in 2mg/mL gels and that these values decreased with increasing collagen concentration. However, these phenomena were not observed in the absence of an endothelial lumen. Lastly, no differences in the percent of extravasated neutrophils producing reactive oxygen species were observed across the various collagen concentrations. Discussion: Our study suggests that neutrophil extravasation and migration in response to an infectious challenge are regulated by collagen concentration in an endothelial cell-dependent manner. The results demonstrate how the mechanical and structural aspects of the tissue microenvironment affect the neutrophil response to infection. Additionally, these findings underscore the importance of developing and using microphysiological systems for studying the regulatory factors that govern the neutrophil response.


Assuntos
Movimento Celular , Células Endoteliais da Veia Umbilical Humana , Neutrófilos , Humanos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/fisiologia , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/imunologia , Dispositivos Lab-On-A-Chip , Ativação de Neutrófilo , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/metabolismo , Células Cultivadas
4.
J Am Chem Soc ; 146(27): 18427-18439, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38946080

RESUMO

Pseudomonas aeruginosa bacteria are becoming increasingly resistant against multiple antibiotics. Therefore, the development of vaccines to prevent infections with these bacteria is an urgent medical need. While the immunological activity of lipopolysaccharide O-antigens in P. aeruginosa is well-known, the specific protective epitopes remain unidentified. Herein, we present the first chemical synthesis of highly functionalized aminoglycoside trisaccharide 1 and its acetamido derivative 2 found in the P. aeruginosa serotype O5 O-antigen. The synthesis of the trisaccharide targets is based on balancing the reactivity of disaccharide acceptors and monosaccharide donors. Glycosylations were analyzed by quantifying the reactivity of the hydroxyl group of the disaccharide acceptor using the orbital-weighted Fukui function and dual descriptor. The stereoselective formation of 1,2-cis-α-fucosylamine linkages was achieved through a combination of remote acyl participation and reagent modulation. The simultaneous SN2 substitution of azide groups at C2' and C2″ enabled the efficient synthesis of 1,2-cis-ß-linkages for both 2,3-diamino-D-mannuronic acids. Through a strategic orthogonal modification, the five amino groups on target trisaccharide 1 were equipped with a rare acetamidino (Am) and four acetyl (Ac) groups. Glycan microarray analyses of sera from patients infected with P. aeruginosa indicated that trisaccharides 1 and 2 are key antigenic epitopes of the serotype O5 O-antigen. The acetamidino group is not an essential determinant of antibody binding. The ß-D-ManpNAc3NAcA residue is a key motif for the antigenicity of serotype O5 O-antigen. These findings serve as a foundation for the development of glycoconjugate vaccines targeting P. aeruginosa serotype O5.


Assuntos
Aminoglicosídeos , Antígenos O , Pseudomonas aeruginosa , Trissacarídeos , Pseudomonas aeruginosa/imunologia , Antígenos O/química , Antígenos O/imunologia , Trissacarídeos/química , Trissacarídeos/imunologia , Trissacarídeos/síntese química , Aminoglicosídeos/química , Aminoglicosídeos/síntese química , Aminoglicosídeos/imunologia
5.
Toxins (Basel) ; 16(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38922165

RESUMO

Extensively drug-resistant Pseudomonas aeruginosa infections are emerging as a significant threat associated with adverse patient outcomes. Due to this organism's inherent properties of developing antibiotic resistance, we sought to investigate alternative strategies such as identifying "high value" antigens for immunotherapy-based purposes. Through extensive database mining, we discovered that numerous Gram-negative bacterial (GNB) genomes, many of which are known multidrug-resistant (MDR) pathogens, including P. aeruginosa, horizontally acquired the evolutionarily conserved gene encoding Zonula occludens toxin (Zot) with a substantial degree of homology. The toxin's genomic footprint among so many different GNB stresses its evolutionary importance. By employing in silico techniques such as proteomic-based phylogenetic tracing, in conjunction with comparative structural modeling, we discovered a highly conserved intermembrane associated stretch of 70 amino acids shared among all the GNB strains analyzed. The characterization of our newly identified antigen reveals it to be a "high value" vaccine candidate specific for P. aeruginosa. This newly identified antigen harbors multiple non-overlapping B- and T-cell epitopes exhibiting very high binding affinities and can adopt identical tertiary structures among the least genetically homologous P. aeruginosa strains. Taken together, using proteomic-driven reverse vaccinology techniques, we identified multiple "high value" vaccine candidates capable of eliciting a polarized immune response against all the P. aeruginosa genetic variants tested.


Assuntos
Filogenia , Infecções por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/genética , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Humanos , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/química , Vacinas contra Pseudomonas/imunologia , Vacinas contra Pseudomonas/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética
6.
PLoS Pathog ; 20(6): e1012252, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833496

RESUMO

Microbial pathogenicity often depends on the route of infection. For instance, P. aeruginosa or S. marcescens cause acute systemic infections when low numbers of bacteria are injected into D. melanogaster flies whereas flies succumb much slower to the continuous ingestion of these pathogens, even though both manage to escape from the gut compartment and reach the hemocoel. Here, we have developed a latent P. aeruginosa infection model by feeding flies on the bacteria for a short period. The bacteria stably colonize internal tissues yet hardly cause any damage since latently-infected flies live almost as long as noninfected control flies. The apparently dormant bacteria display particular characteristics in terms of bacterial colony morphology, composition of the outer cell wall, and motility. The virulence of these bacteria can however be reactivated upon wounding the host. We show that melanization but not the cellular or the systemic humoral response is the predominant host defense that establishes latency and may coerce the bacteria to a dormant state. In addition, the lasting activation of the melanization responses in latently-infected flies provides a degree of protection to the host against a secondary fungal infection. Latent infection by an ingested pathogen protects against a variety of homologous or heterologous systemic secondary infectious challenges, a situation previously described for the endosymbiotic Wolbachia bacteria, a guard against viral infections.


Assuntos
Drosophila melanogaster , Imunidade Inata , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Drosophila melanogaster/microbiologia , Drosophila melanogaster/imunologia , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/imunologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Virulência , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/imunologia
7.
J Immunol Methods ; 531: 113701, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852836

RESUMO

Flagellum-mediated motility is essential to Pseudomonas aeruginosa (P. aeruginosa) virulence. Antibody against flagellin reduces motility and inhibits the spread of the bacteria from the infection site. The standard soft-agar assay to demonstrate anti-flagella motility inhibition requires long incubation times, is difficult to interpret, and requires large amounts of antibody. We have developed a time-lapse video microscopy method to analyze anti-flagellin P. aeruginosa motility inhibition that has several advantages over the soft agar assay. Antisera from mice immunized with flagellin type A or B were incubated with Green Fluorescent Protein (GFP)-expressing P. aeruginosa strain PAO1 (FlaB+) and GFP-expressing P. aeruginosa strain PAK (FlaA+). We analyzed the motion of the bacteria in video taken in ten second time intervals. An easily measurable decrease in bacterial locomotion was observed microscopically within minutes after the addition of small volumes of flagellin antiserum. From data analysis, we were able to quantify the efficacy of anti-flagellin antibodies in the test serum that decreased P. aeruginosa motility. This new video microscopy method to assess functional activity of anti-flagellin antibodies required less serum, less time, and had more robust and reproducible endpoints than the standard soft agar motility inhibition assay.


Assuntos
Anticorpos Antibacterianos , Flagelos , Flagelina , Soros Imunes , Microscopia de Vídeo , Pseudomonas aeruginosa , Flagelina/imunologia , Pseudomonas aeruginosa/imunologia , Animais , Soros Imunes/imunologia , Anticorpos Antibacterianos/imunologia , Flagelos/imunologia , Camundongos , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia
8.
J Immunol ; 213(3): 317-327, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38905107

RESUMO

Obesity is associated with increased morbidity and mortality during bacterial pneumonia. Cyclooxygenase-2 (COX-2) and PGE2 have been shown to be upregulated in patients who are obese. In this study, we investigated the role of obesity and PGE2 in bacterial pneumonia and how inhibition of PGE2 improves antibacterial functions of macrophages. C57BL/6J male and female mice were fed either a normal diet (ND) or high-fat diet (HFD) for 16 wk. After this time, animals were infected with Pseudomonas aeruginosa in the lung. In uninfected animals, alveolar macrophages were extracted for either RNA analysis or to be cultured ex vivo for functional analysis. HFD resulted in changes in immune cell numbers in both noninfected and infected animals. HFD animals had increased bacterial burden compared with ND animals; however, male HFD animals had higher bacterial burden compared with HFD females. Alveolar macrophages from HFD males had decreased ability to phagocytize and kill bacteria and were shown to have increased cyclooxygenase-2 and PGE2. Treating male, but not female, alveolar macrophages with PGE2 leads to increases in cAMP and decreased bacterial phagocytosis. Treatment with lumiracoxib-conjugated nanocarriers targeting alveolar macrophages improves bacterial phagocytosis and clearance in both ND and HFD male animals. Our study highlights that obesity leads to worse morbidity during bacterial pneumonia in male mice because of elevated PGE2. In addition, we uncover a sex difference in both obesity and infection, because females produce high basal PGE2 but because of a failure to signal via cAMP do not display impaired phagocytosis.


Assuntos
Dinoprostona , Macrófagos Alveolares , Camundongos Endogâmicos C57BL , Obesidade , Pneumonia Bacteriana , Infecções por Pseudomonas , Pseudomonas aeruginosa , Regulação para Cima , Animais , Feminino , Masculino , Macrófagos Alveolares/imunologia , Camundongos , Dinoprostona/metabolismo , Pseudomonas aeruginosa/imunologia , Obesidade/imunologia , Infecções por Pseudomonas/imunologia , Pneumonia Bacteriana/imunologia , Regulação para Cima/imunologia , Dieta Hiperlipídica/efeitos adversos , Ciclo-Oxigenase 2/metabolismo , Fagocitose/imunologia , Fatores Sexuais
9.
Front Immunol ; 15: 1398369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835759

RESUMO

Introduction: Although many studies have underscored the importance of T cells, phenotypically and functionally, fewer have studied the functions of myeloid cells in COVID disease. In particular, the potential role of myeloid cells such as monocytes and low-density neutrophils (LDNs) in innate responses and particular in the defense against secondary bacterial infections has been much less documented. Methods: Here, we compared, in a longitudinal study, healthy subjects, idiopathic fibrosis patients, COVID patients who were either hospitalized/moderate (M-) or admitted to ICU (COV-ICU) and patients in ICU hospitalized for other reasons (non-COV-ICU). Results: We show that COVID patients have an increased proportion of low-density neutrophils (LDNs), which produce high levels of proteases (particularly, NE, MMP-8 and MMP-9) (unlike non-COV-ICU patients), which are partly responsible for causing type II alveolar cell damage in co-culture experiments. In addition, we showed that M- and ICU-COVID monocytes had reduced responsiveness towards further live Pseudomonas aeruginosa (PAO1 strain) infection, an important pathogen colonizing COVID patients in ICU, as assessed by an impaired secretion of myeloid cytokines (IL-1, TNF, IL-8,…). By contrast, lymphoid cytokines (in particular type 2/type 3) levels remained high, both basally and post PAO1 infection, as reflected by the unimpaired capacity of T cells to proliferate, when stimulated with anti-CD3/CD28 beads. Discussion: Overall, our results demonstrate that COVID circulatory T cells have a biased type 2/3 phenotype, unconducive to proper anti-viral responses and that myeloid cells have a dual deleterious phenotype, through their LDN-mediated damaging effect on alveolar cells and their impaired responsiveness (monocyte-mediated) towards bacterial pathogens such as P. aeruginosa.


Assuntos
COVID-19 , Monócitos , Neutrófilos , Infecções por Pseudomonas , Pseudomonas aeruginosa , SARS-CoV-2 , Humanos , COVID-19/imunologia , Pseudomonas aeruginosa/imunologia , Monócitos/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Infecções por Pseudomonas/imunologia , Neutrófilos/imunologia , Idoso , Citocinas/metabolismo , Citocinas/imunologia , Adulto , Estudos Longitudinais , Leucócitos Mononucleares/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/microbiologia
10.
Front Immunol ; 15: 1418061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903499

RESUMO

Extracellular vesicles (EVs), characterized by low immunogenicity, high biocompatibility and targeting specificity along with excellent blood-brain barrier permeability, are increasingly recognized as promising drug delivery vehicles for treating a variety of diseases, such as cancer, inflammation and viral infection. However, recent findings demonstrate that the intracellular delivery efficiency of EVs fall short of expectations due to phagocytic clearance mediated by the host mononuclear phagocyte system through Fcγ receptors, complement receptors as well as non-opsonic phagocytic receptors. In this text, we investigate a range of bacterial virulence proteins that antagonize host phagocytic machinery, aiming to explore their potential in engineering EVs to counteract phagocytosis. Special emphasis is placed on IdeS secreted by Group A Streptococcus and ImpA secreted by Pseudomonas aeruginosa, as they not only counteract phagocytosis but also bind to highly upregulated surface biomarkers αVß3 on cancer cells or cleave the tumor growth and metastasis-promoting factor CD44, respectively. This suggests that bacterial anti-phagocytic proteins, after decorated onto EVs using pre-loading or post-loading strategies, can not only improve EV-based drug delivery efficiency by evading host phagocytosis and thus achieve better therapeutic outcomes but also further enable an innovative synergistic EV-based cancer therapy approach by integrating both phagocytosis antagonism and cancer targeting or deactivation.


Assuntos
Vesículas Extracelulares , Fagocitose , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Fagocitose/imunologia , Humanos , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/metabolismo , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/imunologia , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/imunologia , Pseudomonas aeruginosa/imunologia
11.
Am J Respir Crit Care Med ; 210(1): 35-46, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754132

RESUMO

Rationale: Pseudomonas aeruginosa infection is associated with worse outcomes in bronchiectasis. Impaired neutrophil antimicrobial responses contribute to bacterial persistence. Gremubamab is a bivalent, bispecific monoclonal antibody targeting Psl exopolysaccharide and the type 3 secretion system component PcrV. Objectives: This study evaluated the efficacy of gremubamab to enhance killing of P. aeruginosa by neutrophils from patients with bronchiectasis and to prevent P. aeruginosa-associated cytotoxicity. Methods: P. aeruginosa isolates from a global bronchiectasis cohort (n = 100) underwent whole-genome sequencing to determine target prevalence. Functional activity of gremubamab against selected isolates was tested in vitro and in vivo. Patients with bronchiectasis (n = 11) and control subjects (n = 10) were enrolled, and the effect of gremubamab in peripheral blood neutrophil opsonophagocytic killing (OPK) assays against P. aeruginosa was evaluated. Serum antibody titers to Psl and PcrV were determined (n = 30; 19 chronic P. aeruginosa infection, 11 no known P. aeruginosa infection), as was the effect of gremubamab treatment in OPK and anti-cytotoxic activity assays. Measurements and Main Results: Psl and PcrV were conserved in isolates from chronically infected patients with bronchiectasis. Seventy-three of 100 isolates had a full psl locus, and 99 of 100 contained the pcrV gene, with 20 distinct full-length PcrV protein subtypes identified. PcrV subtypes were successfully bound by gremubamab and the monoclonal antibody-mediated potent protective activity against tested isolates. Gremubamab increased bronchiectasis patient neutrophil-mediated OPK (+34.6 ± 8.1%) and phagocytosis (+70.0 ± 48.8%), similar to effects observed in neutrophils from control subjects (OPK, +30.1 ± 7.6%). No evidence of competition between gremubamab and endogenous antibodies was found, with protection against P. aeruginosa-induced cytotoxicity and enhanced OPK demonstrated with and without addition of patient serum. Conclusions: Gremubamab enhanced bronchiectasis patient neutrophil phagocytosis and killing of P. aeruginosa and reduced virulence.


Assuntos
Anticorpos Biespecíficos , Bronquiectasia , Neutrófilos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Bronquiectasia/imunologia , Bronquiectasia/microbiologia , Pseudomonas aeruginosa/imunologia , Neutrófilos/imunologia , Neutrófilos/efeitos dos fármacos , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Biespecíficos/farmacologia , Feminino , Masculino , Infecções por Pseudomonas/imunologia , Pessoa de Meia-Idade , Idoso , Adulto , Antígenos de Bactérias , Toxinas Bacterianas , Proteínas Citotóxicas Formadoras de Poros
13.
STAR Protoc ; 5(2): 103070, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38768031

RESUMO

The nematode Caenorhabditis elegans is a powerful model organism for studying the molecular and cellular mechanisms of innate immunity governed by the intestine. Here, we present a protocol to perform C. elegans survival assays to infection by the bacterial pathogen Pseudomonas aeruginosa PA14. Specifically, we describe steps for preparing C. elegans strains and PA14 bacteria for survival assays. This protocol will assist researchers to study genes involved in intestinal innate immunity and gut defense against pathogen infection. For complete details on the use and execution of this protocol, please refer to Liu et al.1 and Zheng et al.2.


Assuntos
Caenorhabditis elegans , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Caenorhabditis elegans/microbiologia , Caenorhabditis elegans/imunologia , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/imunologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Imunidade Inata
14.
Microbiol Immunol ; 68(7): 224-236, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797913

RESUMO

Pathogenic bacteria form biofilms on epithelial cells, and most bacterial biofilms show increased production of membrane vesicles (MVs), also known as outer membrane vesicles in Gram-negative bacteria. Numerous studies have investigated the MVs released under planktonic conditions; however, the impact of MVs released from biofilms on immune responses remains unclear. This study aimed to investigate the characteristics and immunomodulatory activity of MVs obtained from both planktonic and biofilm cultures of Pseudomonas aeruginosa PAO1. The innate immune responses of macrophages to planktonic-derived MVs (p-MVs) and biofilm-derived MVs (b-MVs) were investigated by measuring the mRNA expression of proinflammatory cytokines. Our results showed that b-MVs induced a higher expression of inflammatory cytokines, including Il1b, Il6, and Il12p40, than p-MVs. The mRNA expression levels of Toll-like receptor 4 (Tlr4) differed between the two types of MVs, but not Tlr2. Polymyxin B significantly neutralized b-MV-mediated cytokine induction, suggesting that lipopolysaccharide of native b-MVs is the origin of the immune response. In addition, heat-treated or homogenized b-MVs induced the mRNA expression of cytokines, including Tnfa, Il1b, Il6, and Il12p40. Heat treatment of MVs led to increased expression of Tlr2 but not Tlr4, suggesting that TLR2 ligands play a role in detecting the pathogen-associated molecular patterns in lysed MVs. Taken together, our data indicate that potent immunomodulatory MVs are produced in P. aeruginosa biofilms and that this behavior could be a strategy for the bacteria to infect host cells. Furthermore, our findings would contribute to developing novel vaccines using MVs.


Assuntos
Biofilmes , Citocinas , Macrófagos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/fisiologia , Biofilmes/crescimento & desenvolvimento , Citocinas/metabolismo , Camundongos , Animais , Macrófagos/imunologia , Macrófagos/microbiologia , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Imunidade Inata , Polimixina B/farmacologia , Células RAW 264.7 , Fatores Imunológicos/metabolismo , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Lipopolissacarídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
mBio ; 15(6): e0061624, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38771052

RESUMO

Pseudomonas aeruginosa is one of the most common nosocomial pathogens worldwide, known for its virulence, drug resistance, and elaborate sensor-response network. The primary challenge encountered by pathogens during the initial stages of infection is the immune clearance arising from the host. The resident macrophages of barrier organs serve as the frontline defense against these pathogens. Central to our understanding is the mechanism by which bacteria modify their behavior to circumvent macrophage-mediated clearance, ensuring their persistence and colonization. To successfully evade macrophage-mediated phagocytosis, bacteria must possess an adaptive response mechanism. Two-component systems provide bacteria the agility to navigate diverse environmental challenges, translating external stimuli into cellular adaptive responses. Here, we report that the well-documented histidine kinase, LadS, coupled to a cognate two-component response regulator, PA0034, governs the expression of a vital adhesin called chaperone-usher pathway pilus cupA. The LadS/PA0034 system is susceptible to interference from the reactive oxygen species likely to be produced by macrophages and further lead to a poor adhesive phenotype with scantily cupA pilus, impairing the phagocytosis efficiency of macrophages during acute infection. This dynamic underscores the intriguing interplay: as macrophages deploy reactive oxygen species to combat bacterial invasion, the bacteria recalibrate their exterior to elude these defenses. IMPORTANCE: The notoriety of Pseudomonas aeruginosa is underscored by its virulence, drug resistance, and elaborate sensor-response network. Yet, the mechanisms by which P. aeruginosa maneuvers to escape phagocytosis during acute infections remain elusive. This study pinpoints a two-component response regulator, PA0034, coupled with the histidine kinase LadS, and responds to macrophage-derived reactive oxygen species. The macrophage-derived reactive oxygen species can impair the LadS/PA0034 system, resulting in reduced expression of cupA pilus in the exterior of P. aeruginosa. Since the cupA pilus is an important adhesin of P. aeruginosa, its deficiency reduces bacterial adhesion and changes their behavior to adopt a planktonic lifestyle, subsequently inhibiting the phagocytosis of macrophages by interfering with bacterial adhesion. Briefly, reactive oxygen species may act as environmental cues for the LadS/PA0034 system. Upon recognition, P. aeruginosa may transition to a poorly adhesive state, efficiently avoiding engulfment by macrophages.


Assuntos
Macrófagos , Fagocitose , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/metabolismo , Macrófagos/microbiologia , Macrófagos/imunologia , Camundongos , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/imunologia , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/genética , Regulação Bacteriana da Expressão Gênica , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Histidina Quinase/metabolismo , Histidina Quinase/genética , Humanos , Células RAW 264.7
16.
Front Immunol ; 15: 1372349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698863

RESUMO

Pseudomonas aeruginosa (Pa) is an opportunistic bacterial pathogen responsible for severe hospital acquired infections in immunocompromised and elderly individuals. Emergence of increasingly drug resistant strains and the absence of a broad-spectrum prophylactic vaccine against both T3SA+ (type III secretion apparatus) and ExlA+/T3SA- Pa strains worsen the situation in a post-pandemic world. Thus, we formulated a candidate subunit vaccine (called ExlA/L-PaF/BECC/ME) against both Pa types. This bivalent vaccine was generated by combining the C-terminal active moiety of exolysin A (ExlA) produced by non-T3SA Pa strains with our T3SA-based vaccine platform, L-PaF, in an oil-in-water emulsion. The ExlA/L-PaF in ME (MedImmune emulsion) was then mixed with BECC438b, an engineered lipid A analogue and a TLR4 agonist. This formulation was administered intranasally (IN) to young and elderly mice to determine its potency across a diverse age-range. The elderly mice were used to mimic the infection seen in elderly humans, who are more susceptible to serious Pa disease compared to their young adult counterparts. After Pa infection, mice immunized with ExlA/L-PaF/BECC/ME displayed a T cell-mediated adaptive response while PBS-vaccinated mice experienced a rapid onset inflammatory response. Important genes and pathways were observed, which give rise to an anti-Pa immune response. Thus, this vaccine has the potential to protect aged individuals in our population from serious Pa infection.


Assuntos
Emulsões , Infecções por Pseudomonas , Vacinas contra Pseudomonas , Pseudomonas aeruginosa , Vacinas de Subunidades Antigênicas , Animais , Pseudomonas aeruginosa/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Camundongos , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/prevenção & controle , Vacinas contra Pseudomonas/imunologia , Vacinas contra Pseudomonas/administração & dosagem , Feminino , Desenvolvimento de Vacinas , Humanos , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/sangue , Modelos Animais de Doenças , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética
17.
Nanoscale ; 16(21): 10306-10317, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727538

RESUMO

As a highly contagious opportunistic pathogen, Pseudomonas aeruginosa (P. aeruginosa) is one of the main causes of healthcare-associated infections. The drug-resistant nature of P. aeruginosa can render antibiotic treatments ineffective, leading to a high morbidity and mortality. Higher specificity and reduced toxicity are features of immunotherapy, which can generate robust immune responses and preserve long-term immunological memory to completely eradicate infections. In this study, we developed a type of P. aeruginosa vaccine based on a metal-organic framework. Specifically, MIL-101-Al nanoparticles were synthesized to encapsulate antigens derived from the bacterial lysate (BL) of PAO1, a drug-resistant P. aeruginosa, and the adjuvant unmethylated cytosine-phosphate-guanine oligonucleotide (CpG), which were then modified with palmitic acid (PAA) to obtain MIL-BC@PAA. The stability and biocompatibility were significantly increased by capping with PAA. Moreover, MIL-BC@PAA showed significantly enhanced uptake by antigen presenting cells (APCs), and promoted their maturation. Importantly, immunity studies revealed the greatly elicited antigen-specific humoral and cellular responses, and a protection rate of about 70% was observed in P. aeruginosa-challenged mice. Overall, these results demonstrate the promising potential of MIL-BC@PAA as an ideal nanovaccine for P. aeruginosa vaccination.


Assuntos
Adjuvantes Imunológicos , Estruturas Metalorgânicas , Ácido Palmítico , Infecções por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Camundongos , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/prevenção & controle , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Ácido Palmítico/química , Feminino , Nanopartículas/química , Camundongos Endogâmicos BALB C , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/farmacologia
18.
Eur J Cell Biol ; 103(2): 151416, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636185

RESUMO

Airway epithelial cells form a physical barrier against inhaled pathogens and coordinate innate immune responses in the lungs. Bronchial cells in people with cystic fibrosis (pwCF) are colonized by Pseudomonas aeruginosa because of the accumulation of mucus in the lower airways and an altered immune response. This leads to chronic inflammation, lung tissue damage, and accelerated decline in lung function. Thus, identifying the molecular factors involved in the host response in the airways is crucial for developing new therapeutic strategies. The septin (SEPT) cytoskeleton is involved in tissue barrier integrity and anti-infective responses. SEPT7 is critical for maintaining SEPT complexes and for sensing pathogenic microbes. In the lungs, SEPT7 may be involved in the epithelial barrier resistance to infection; however, its role in cystic fibrosis (CF) P. aeruginosa infection is unknown. This study aimed to investigate the role of SEPT7 in controlling P. aeruginosa infection in bronchial epithelial cells, particularly in CF. The study findings showed that SEPT7 encages P. aeruginosa in bronchial epithelial cells and its inhibition downregulates the expression of other SEPTs. In addition, P. aeruginosa does not regulate SEPT7 expression. Finally, we found that inhibiting SEPT7 expression in bronchial epithelial cells (BEAS-2B 16HBE14o- and primary cells) resulted in higher levels of internalized P. aeruginosa and decreased IL-6 production during infection, suggesting a crucial role of SEPT7 in the host response against this bacterium. However, these effects were not observed in the CF cells (16HBE14o-/F508del and primary cells) which may explain the persistence of infection in pwCF. The study findings suggest the modification of SEPT7 expression as a potential approach for the anti-infective control of P. aeruginosa, particularly in CF.


Assuntos
Brônquios , Fibrose Cística , Células Epiteliais , Pseudomonas aeruginosa , Septinas , Pseudomonas aeruginosa/imunologia , Fibrose Cística/microbiologia , Fibrose Cística/imunologia , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Humanos , Septinas/metabolismo , Septinas/genética , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Brônquios/microbiologia , Brônquios/patologia , Brônquios/metabolismo , Brônquios/imunologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/metabolismo , Linhagem Celular
19.
Gene Ther ; 31(7-8): 400-412, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678160

RESUMO

Pseudomonas aeruginosa poses a significant threat to immunocompromised individuals and those with cystic fibrosis. Treatment relies on antibiotics, but persistent infections occur due to intrinsic and acquired resistance of P. aeruginosa towards multiple classes of antibiotics. To date, there are no licensed vaccines for this pathogen, prompting the urgent need for novel treatment approaches to combat P. aeruginosa infection and persistence. Here we validated AAV vectored immunoprophylaxis as a strategy to generate long-term plasma and mucosal expression of highly protective monoclonal antibodies (mAbs) targeting the exopolysaccharide Psl (Cam-003) and the PcrV (V2L2MD) component of the type-III secretion system injectosome either as single mAbs or together as a bispecific mAb (MEDI3902) in a mouse model. When administered intramuscularly, AAV-αPcrV, AAV-αPsl, and AAV-MEDI3902 significantly protected mice challenged intranasally with a lethal dose of P. aeruginosa strains PAO1 and PA14 and reduced bacterial burden and dissemination to other organs. While all AAV-mAbs provided protection, AAV-αPcrV and AAV-MEDI3902 provided 100% and 87.5% protection from a lethal challenge with 4.47 × 107 CFU PAO1 and 87.5% and 75% protection from a lethal challenge with 3 × 107 CFU PA14, respectively. Serum concentrations of MEDI3902 were ~10× lower than that of αPcrV, but mice treated with this vector showed a greater reduction in bacterial dissemination to the liver, lung, spleen, and blood compared to other AAV-mAbs. These results support further investigation into the use of AAV vectored immunoprophylaxis to prevent and treat P. aeruginosa infections and other bacterial pathogens of public health concern for which current treatment strategies are limited.


Assuntos
Anticorpos Monoclonais , Dependovirus , Vetores Genéticos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Dependovirus/genética , Dependovirus/imunologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/genética , Camundongos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Infecções por Pseudomonas/prevenção & controle , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/terapia , Anticorpos Monoclonais/imunologia , Anticorpos Biespecíficos , Feminino , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Pneumonia Bacteriana/prevenção & controle , Pneumonia Bacteriana/terapia , Pneumonia Bacteriana/imunologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Humanos , Toxinas Bacterianas , Proteínas Citotóxicas Formadoras de Poros
20.
mBio ; 15(5): e0342923, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38624208

RESUMO

The Hippo kinases MST1 and MST2 initiate a highly conserved signaling cascade called the Hippo pathway that limits organ size and tumor formation in animals. Intriguingly, pathogens hijack this host pathway during infection, but the role of MST1/2 in innate immune cells against pathogens is unclear. In this report, we generated Mst1/2 knockout macrophages to investigate the regulatory activities of the Hippo kinases in immunity. Transcriptomic analyses identified differentially expressed genes (DEGs) regulated by MST1/2 that are enriched in biological pathways, such as systemic lupus erythematosus, tuberculosis, and apoptosis. Surprisingly, pharmacological inhibition of the downstream components LATS1/2 in the canonical Hippo pathway did not affect the expression of a set of immune DEGs, suggesting that MST1/2 control these genes via alternative inflammatory Hippo signaling. Moreover, MST1/2 may affect immune communication by influencing the release of cytokines, including TNFα, CXCL10, and IL-1ra. Comparative analyses of the single- and double-knockout macrophages revealed that MST1 and MST2 differentially regulate TNFα release and expression of the immune transcription factor MAF, indicating that the two homologous Hippo kinases individually play a unique role in innate immunity. Notably, both MST1 and MST2 can promote apoptotic cell death in macrophages upon stimulation. Lastly, we demonstrate that the Hippo kinases are critical factors in mammalian macrophages and single-cell amoebae to restrict infection by Legionella pneumophila, Escherichia coli, and Pseudomonas aeruginosa. Together, these results uncover non-canonical inflammatory Hippo signaling in macrophages and the evolutionarily conserved role of the Hippo kinases in the anti-microbial defense of eukaryotic hosts. IMPORTANCE: Identifying host factors involved in susceptibility to infection is fundamental for understanding host-pathogen interactions. Clinically, individuals with mutations in the MST1 gene which encodes one of the Hippo kinases experience recurrent infection. However, the impact of the Hippo kinases on innate immunity remains largely undetermined. This study uses mammalian macrophages and free-living amoebae with single- and double-knockout in the Hippo kinase genes and reveals that the Hippo kinases are the evolutionarily conserved determinants of host defense against microbes. In macrophages, the Hippo kinases MST1 and MST2 control immune activities at multiple levels, including gene expression, immune cell communication, and programmed cell death. Importantly, these activities controlled by MST1 and MST2 in macrophages are independent of the canonical Hippo cascade that is known to limit tissue growth and tumor formation. Together, these findings unveil a unique inflammatory Hippo signaling pathway that plays an essential role in innate immunity.


Assuntos
Via de Sinalização Hippo , Imunidade Inata , Macrófagos , Proteínas Serina-Treonina Quinases , Serina-Treonina Quinase 3 , Transdução de Sinais , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Camundongos , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/metabolismo , Fagócitos/imunologia , Fagócitos/microbiologia , Fagócitos/metabolismo , Camundongos Knockout , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Infecções Bacterianas/genética , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Pseudomonas aeruginosa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...