Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.050
Filtrar
1.
Nat Commun ; 15(1): 6853, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127720

RESUMO

Phytochromes (Phys) are a divergent cohort of bili-proteins that detect light through reversible interconversion between dark-adapted Pr and photoactivated Pfr states. While our understandings of downstream events are emerging, it remains unclear how Phys translate light into an interpretable conformational signal. Here, we present models of both states for a dimeric Phy with histidine kinase (HK) activity from the proteobacterium Pseudomonas syringae, which were built from high-resolution cryo-EM maps (2.8-3.4-Å) of the photosensory module (PSM) and its following signaling (S) helix together with lower resolution maps for the downstream output region augmented by RoseTTAFold and AlphaFold structural predictions. The head-to-head models reveal the PSM and its photointerconversion mechanism with strong clarity, while the HK region is interpretable but relatively mobile. Pr/Pfr comparisons show that bilin phototransformation alters PSM architecture culminating in a scissoring motion of the paired S-helices linking the PSMs to the HK bidomains that ends in reorientation of the paired catalytic ATPase modules relative to the phosphoacceptor histidines. This action apparently primes autophosphorylation enroute to phosphotransfer to the cognate DNA-binding response regulator AlgB which drives quorum-sensing behavior through transient association with the photoreceptor. Collectively, these models illustrate how light absorption conformationally translates into accelerated signaling by Phy-type kinases.


Assuntos
Proteínas de Bactérias , Histidina Quinase , Fitocromo , Pseudomonas syringae , Transdução de Sinais , Histidina Quinase/metabolismo , Histidina Quinase/química , Histidina Quinase/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Fitocromo/metabolismo , Fitocromo/química , Pseudomonas syringae/metabolismo , Modelos Moleculares , Microscopia Crioeletrônica , Conformação Proteica , Multimerização Proteica , Fotorreceptores Microbianos/metabolismo , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Luz
2.
Nat Commun ; 15(1): 7048, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147739

RESUMO

Plants possess cell surface-localized immune receptors that detect microbe-associated molecular patterns (MAMPs) and initiate defenses that provide effective resistance against microbial pathogens. Many MAMP-induced signaling pathways and cellular responses are known, yet how pattern-triggered immunity (PTI) limits pathogen growth in plants is poorly understood. Through a combined metabolomics and genetics approach, we discovered that plant-exuded proline is a virulence-inducing signal and nutrient for the bacterial pathogen Pseudomonas syringae, and that MAMP-induced depletion of proline from the extracellular spaces of Arabidopsis leaves directly contributes to PTI against P. syringae. We further show that MAMP-induced depletion of extracellular proline requires the amino acid transporter Lysine Histidine Transporter 1 (LHT1). This study demonstrates that depletion of a single extracellular metabolite is an effective component of plant induced immunity. Given the important role for amino acids as nutrients for microbial growth, their depletion at sites of infection may be a broadly effective means for defense against many pathogens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Reconhecimento da Imunidade Inata , Doenças das Plantas , Imunidade Vegetal , Pseudomonas syringae , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas/imunologia , Reconhecimento da Imunidade Inata/genética , Metabolômica , Moléculas com Motivos Associados a Patógenos/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/imunologia , Prolina/metabolismo , Pseudomonas syringae/imunologia , Pseudomonas syringae/patogenicidade , Transdução de Sinais , Virulência
3.
Sci Adv ; 10(33): eado6229, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39141726

RESUMO

The choline-glycine betaine pathway plays an important role in bacterial survival in hyperosmotic environments. Osmotic activation of the choline transporter BetT promotes the uptake of external choline for synthesizing the osmoprotective glycine betaine. Here, we report the cryo-electron microscopy structures of Pseudomonas syringae BetT in the apo and choline-bound states. Our structure shows that BetT forms a domain-swapped trimer with the C-terminal domain (CTD) of one protomer interacting with the transmembrane domain (TMD) of a neighboring protomer. The substrate choline is bound within a tryptophan prism at the central part of TMD. Together with functional characterization, our results suggest that in Pseudomonas species, including the plant pathogen P. syringae and the human pathogen Pseudomonas aeruginosa, BetT is locked at a low-activity state through CTD-mediated autoinhibition in the absence of osmotic stress, and its hyperosmotic activation involves the release of this autoinhibition.


Assuntos
Proteínas de Bactérias , Colina , Microscopia Crioeletrônica , Proteínas de Membrana Transportadoras , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/química , Colina/metabolismo , Colina/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Pseudomonas syringae/metabolismo , Modelos Moleculares , Osmorregulação , Pressão Osmótica , Betaína/metabolismo , Conformação Proteica , Ligação Proteica , Relação Estrutura-Atividade , Domínios Proteicos
4.
BMC Plant Biol ; 24(1): 670, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004723

RESUMO

The most effective strategy for managing wheat bacterial blight caused by Pseudomonas syringae pv. syringae is believed to be the use of resistant cultivars. Researching the correlation between molecular markers and stress resistance can expedite the plant breeding process. The current study aims to evaluate the response of 27 bread wheat cultivars to bacterial blight disease in order to identify resistant and susceptible cultivars and to pinpoint ISSR molecular markers associated with bacterial blight resistance genes. ISSR markers are recommended for assessing a plant's disease resistance. This experiment is focused on identifying ISSR molecular markers linked to bacterial blight resistance. After applying the bacterial solution to the leaves, we performed sampling to determine the infection percentage in the leaves at different intervals (7, 14, and 18 days after spraying). In most cultivars, the average leaf infection percentage decreased 18 days after spraying on young leaves. However, in some cultivars such as Niknegad, Darab2, and Zarin, leaf infection increased in older leaves and reached up to 100% necrosis. In our study, 12 ISSR primers generated a total of 170 bands, with 156 being polymorphic. The primers F10 and F5 showed the highest polymorphism, while the F7 primer exhibited the lowest polymorphism. Cluster analysis grouped these cultivars into four categories. The resistant group included Qods, Omid, and Atrak cultivars, while the semi-resistant and susceptible groups comprised the rest of the cultivars. Through binary logistic analysis, we identified three Super oxide dismutase-related genes that contribute to plant resistance to bacterial blight. These genes were linked to the F3, F5, and F12 primers in regions I (1500 bp), T (1000 bp), and G (850 bp), respectively. We also identified seven susceptibility-associated genes. Atrak, Omid, and Qods cultivars exhibited resistance against bacterial blight, and three genes associated with this resistance were linked to the F3, F5, and F12 primers. These markers can be used for screening or transferring tolerance to other wheat cultivars in breeding programs.


Assuntos
Resistência à Doença , Doenças das Plantas , Pseudomonas syringae , Triticum , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Pseudomonas syringae/fisiologia , Marcadores Genéticos , Folhas de Planta/microbiologia , Folhas de Planta/genética , Modelos Logísticos
5.
Plant Physiol Biochem ; 214: 108933, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39033650

RESUMO

WRKY transcription factors are essential for coping with various biotic stresses. Pseudomonas syringae pv. actinidiae (Psa)-induced kiwifruit canker is a major problem restricting kiwifruit yield. Nevertheless, it's unclear how the kiwifruit WRKY genes respond to Psa. Through genome-wide identification, 112 WRKY members were found in 'Hongyang' genome in this work. Promoter analysis revealed that there were many cis-acting elements associated with stress responses in the AcWRKY gene's promoter region. According to transcriptomic analysis, 90 of the AcWRKY genes were differently expressed following Psa, salicylic acid (SA), or methyl jasmonate (MeJA) treatments. Almost all group III WRKYs were responsive to at least one of these treatments, with tissue-specific expression patterns. Quantitative RT-PCR study provided more evidence that Psa and SA treatments significantly induced the expression of the group III WRKY gene AcWRKY94, whereas MeJA treatment repressed it. AcWRKY94 was a transcriptionally active protein localized in the nucleus. Transient overexpression of AcWRKY94 in the leaves of 'Hongyang' enhanced the resistance of kiwifruit to Psa. Overexpression of AcWRKY94 in kiwifruit callus remarkably promoted the expression of PR and JAZ genes associated with SA and JA signals, respectively. These data imply that AcWRKY94 controls the signaling pathway dependent on SA and JA, thereby enhancing resistance to Psa. Taken together, this study establishes the basis for functional research on WRKY genes and provides important information for elucidating the resistance mechanism of kiwifruit canker disease.


Assuntos
Actinidia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas , Pseudomonas syringae , Fatores de Transcrição , Actinidia/microbiologia , Actinidia/genética , Pseudomonas syringae/patogenicidade , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Acetatos/farmacologia , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Frutas/microbiologia , Frutas/genética , Resistência à Doença/genética , Regiões Promotoras Genéticas/genética
6.
Physiol Plant ; 176(4): e14456, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39072778

RESUMO

Receptor-like cytoplasmic kinases (RLCKs) represent a distinct class of receptor-like kinases crucial for various aspects of plant biology, including growth, development, and stress responses. This study delves into the characterization of RLCK VII-8 members within cucurbits, particularly in melon, examining both structural features and the phylogenetic relationships of these genes/proteins. The investigation extends to their potential involvement in disease resistance by employing ectopic overexpression in Arabidopsis. The promoters of CmRLCK VII-8 genes harbor multiple phytohormone- and stress-responsive cis-acting elements, with the majority (excluding CmRLCK39) displaying upregulated expression in response to defense hormones and fungal infection. Subcellular localization studies reveal that CmRLCK VII-8 proteins predominantly reside on the plasma membrane, with CmRLCK29 and CmRLCK30 exhibiting additional nuclear distribution. Notably, Arabidopsis plants overexpressing CmRLCK30 manifest dwarfing and delayed flowering phenotypes. Overexpression of CmRLCK27, CmRLCK30, and CmRLCK34 in Arabidopsis imparts enhanced resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000, concomitant with the strengthened expression of defense genes and reactive oxygen species accumulation. The CmRLCK VII-8 members actively participate in chitin- and flg22-triggered immune responses. Furthermore, CmRLCK30 interacts with CmMAPKKK1 and CmARFGAP, adding a layer of complexity to the regulatory network. In summary, this functional characterization underscores the regulatory roles of CmRLCK27, CmRLCK30, and CmRLCK34 in immune responses by influencing pathogen-induced defense gene expression and ROS accumulation.


Assuntos
Arabidopsis , Botrytis , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas , Pseudomonas syringae , Arabidopsis/genética , Arabidopsis/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Botrytis/fisiologia , Botrytis/patogenicidade , Pseudomonas syringae/fisiologia , Pseudomonas syringae/patogenicidade , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cucurbitaceae/microbiologia , Cucurbitaceae/genética , Filogenia , Plantas Geneticamente Modificadas
7.
J Nanobiotechnology ; 22(1): 446, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075467

RESUMO

Bacterial diseases are one of the most common issues that result in crop loss worldwide, and the increasing usage of chemical pesticides has caused the occurrence of resistance in pathogenic bacteria and environmental pollution problems. Nanomaterial mediated gene silencing is starting to display powerful efficiency and environmental friendliness for improving plant disease resistance. However, the internalization of nanomaterials and the physiological mechanisms behind nano-improved plant disease resistance are still rarely understood. We engineered the polyethyleneimine (PEI) functionalized gold nanoparticles (PEI-AuNPs) with fluorescent properties and ROS scavenging activity to act as siRNA delivery platforms. Besides the loading, protection, and delivery of nucleic acid molecules in plant mature leaf cells by PEI-AuNPs, its fluorescent property further enables the traceability of the distribution of the loaded nucleic acid molecules in cells. Additionally, the PEI-AuNPs-based RNAi delivery system successfully mediated the silencing of defense-regulated gene AtWRKY1. Compared to control plants, the silenced plants performed better resistance to Pseudomonas syringae, showing a reduced bacterial number, decreased ROS content, increased antioxidant enzyme activities, and improved chlorophyll fluorescence performance. Our results showed the advantages of AuNP-based RNAi technology in improving plant disease resistance, as well as the potential of plant nanobiotechnology to protect agricultural production.


Assuntos
Resistência à Doença , Ouro , Nanopartículas Metálicas , Doenças das Plantas , Pseudomonas syringae , RNA Interferente Pequeno , Espécies Reativas de Oxigênio , Ouro/química , Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio/metabolismo , Doenças das Plantas/microbiologia , Polietilenoimina/química , Inativação Gênica , Arabidopsis/genética
8.
J Agric Food Chem ; 72(26): 14581-14591, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957087

RESUMO

Plants withstand pathogen attacks by recruiting beneficial bacteria to the rhizosphere and passing their legacy on to the next generation. However, the underlying mechanisms involved in this process remain unclear. In our study, we combined microbiomic and transcriptomic analyses to reveal how the rhizosphere microbiome assembled through multiple generations and defense-related genes expressed in Arabidopsis thaliana under pathogen attack stress. Our results showed that continuous exposure to the pathogen Pseudomonas syringae pv tomato DC3000 led to improved growth and increased disease resistance in a third generation of rps2 mutant Arabidopsis thaliana. It could be attributed to the enrichment of specific rhizosphere bacteria, such as Bacillus and Bacteroides. Pathways associated with plant immunity and growth in A. thaliana, such as MAPK signaling pathways, phytohormone signal transduction, ABC transporter proteins, and flavonoid biosynthesis, were activated under the influence of rhizosphere bacterial communities. Our findings provide a scientific basis for explaining the relationship between beneficial microbes and defense-related gene expression. Understanding microbial communities and the mechanisms involved in plant responses to disease can contribute to better plant management and reduction of pesticide use.


Assuntos
Arabidopsis , Resistência à Doença , Doenças das Plantas , Pseudomonas syringae , Rizosfera , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Microbiota , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Microbiologia do Solo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Adaptação Fisiológica , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Sci Adv ; 10(27): eadn6606, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959312

RESUMO

Ice-nucleating proteins (INpro) trigger the freezing of supercooled water droplets relevant to atmospheric, biological, and technological applications. The high ice nucleation activity of INpro isolated from the bacteria Pseudomonas syringae could be linked to the aggregation of proteins at the bacterial membrane or at the air-water interface (AWI) of droplets. Here, we imaged freezing onsets, providing direct evidence of these proposed mechanisms. High-speed cryo-microscopy identified the onset location of freezing in droplets between two protein-repellent glass slides. INpro from sterilized P. syringae (Snomax) statistically favored nucleation at the AWI of the droplets. Removing cellular fragments by filtration or adding surfactants increased the frequency of nucleation events at the AWI. On the other hand, cultivated intact bacteria cells or lipid-free droplets nucleated ice without an affinity to the AWI. Overall, we provide visual evidence that INpro from P. syringae trigger freezing at hydrophobic interfaces, such as the AWI or the bacterial membrane, with important mechanistic implications for applications of INpro.


Assuntos
Congelamento , Interações Hidrofóbicas e Hidrofílicas , Pseudomonas syringae , Pseudomonas syringae/metabolismo , Pseudomonas syringae/química , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Gelo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
10.
Antonie Van Leeuwenhoek ; 117(1): 92, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949726

RESUMO

Biological control is a promising approach to enhance pathogen and pest control to ensure high productivity in cash crop production. Therefore, PGPR biofertilizers are very suitable for application in the cultivation of tea plants (Camellia sinensis) and tobacco, but it is rarely reported so far. In this study, production of a consortium of three strains of PGPR were applied to tobacco and tea plants. The results demonstrated that plants treated with PGPR exhibited enhanced resistance against the bacterial pathogen Pseudomonas syringae (PstDC3000). The significant effect in improving the plant's ability to resist pathogen invasion was verified through measurements of oxygen activity, bacterial colony counts, and expression levels of resistance-related genes (NPR1, PR1, JAZ1, POD etc.). Moreover, the application of PGPR in the tea plantation showed significantly reduced population occurrences of tea green leafhoppers (Empoasca onukii Matsuda), tea thrips (Thysanoptera:Thripidae), Aleurocanthus spiniferus (Quaintanca) and alleviated anthracnose disease in tea seedlings. Therefore, PGPR biofertilizers may serve as a viable biological control method to improve tobacco and tea plant yield and quality. Our findings revealed part of the mechanism by which PGPR helped improve plant biostresses resistance, enabling better application in agricultural production.


Assuntos
Nicotiana , Controle Biológico de Vetores , Doenças das Plantas , Pseudomonas syringae , Animais , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Nicotiana/microbiologia , Pseudomonas syringae/fisiologia , Controle Biológico de Vetores/métodos , Camellia sinensis/microbiologia , Camellia sinensis/crescimento & desenvolvimento , Insetos/microbiologia , Tisanópteros/microbiologia , Resistência à Doença , Desenvolvimento Vegetal , Agentes de Controle Biológico , Hemípteros/microbiologia
11.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928022

RESUMO

Various metabolites, including phytohormones, phytoalexins, and amino acids, take part in the plant immune system. Herein, we analyzed the effects of L-methionine (Met), a sulfur-containing amino acid, on the plant immune system in tomato. Treatment with low concentrations of Met enhanced the resistance of tomato to a broad range of diseases caused by the hemi-biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) and the necrotrophic fungal pathogen Botrytis cinerea (Bc), although it did not induce the production of any antimicrobial substances against these pathogens in tomato leaf tissues. Analyses of gene expression and phytohormone accumulation indicated that Met treatment alone did not activate the defense signals mediated by salicylic acid, jasmonic acid, and ethylene. However, the salicylic acid-responsive defense gene and the jasmonic acid-responsive gene were induced more rapidly in Met-treated plants after infection with Pst and Bc, respectively. These findings suggest that low concentrations of Met have a priming effect on the phytohormone-mediated immune system in tomato.


Assuntos
Botrytis , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Metionina , Doenças das Plantas , Reguladores de Crescimento de Plantas , Pseudomonas syringae , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/genética , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Metionina/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Pseudomonas syringae/patogenicidade , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Imunidade Vegetal/efeitos dos fármacos , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/imunologia , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo
12.
mBio ; 15(7): e0087124, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38899869

RESUMO

Chemosensory systems allow bacteria to respond and adapt to environmental conditions. Many bacteria contain more than one chemosensory system, but knowledge of their specific roles in regulating different functions remains scarce. Here, we address this issue by analyzing the function of the F6, F8, and alternative (non-motility) cellular functions (ACF) chemosensory systems of the model plant pathogen Pseudomonas syringae pv. tomato. In this work, we assign PsPto chemoreceptors to each chemosensory system, and we visualize for the first time the F6 and F8 chemosensory systems of PsPto using cryo-electron tomography. We confirm that chemotaxis and swimming motility are controlled by the F6 system, and we demonstrate how different components from the F8 and ACF systems also modulate swimming motility. We also determine how the kinase and response regulators from the F6 and F8 chemosensory systems do not work together in the regulation of biofilm, whereas both components from the ACF system contribute together to regulate these traits. Furthermore, we show how the F6, F8, and ACF kinases interact with the ACF response regulator WspR, supporting crosstalk among chemosensory systems. Finally, we reveal how all chemosensory systems play a role in regulating virulence. IMPORTANCE: Chemoperception through chemosensory systems is an essential feature for bacterial survival, as it allows bacterial interaction with its surrounding environment. In the case of plant pathogens, it is especially relevant to enter the host and achieve full virulence. Multiple chemosensory systems allow bacteria to display a wider plasticity in their response to external signals. Here, we perform a deep characterization of the F6, F8, and alternative (non-motility) cellular functions chemosensory systems in the model plant pathogen Pseudomonas syringae pv. tomato DC3000. These chemosensory systems regulate key virulence-related traits, like motility and biofilm formation. Furthermore, we unveil an unexpected crosstalk among these chemosensory systems at the level of the interaction between kinases and response regulators. This work shows novel results that contribute to the knowledge of chemosensory systems and their role in functions alternative to chemotaxis.


Assuntos
Proteínas de Bactérias , Biofilmes , Quimiotaxia , Pseudomonas syringae , Solanum lycopersicum , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/metabolismo , Pseudomonas syringae/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Virulência , Doenças das Plantas/microbiologia , Regulação Bacteriana da Expressão Gênica
13.
J Gen Virol ; 105(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833289

RESUMO

Relatively few phages that infect plant pathogens have been isolated and investigated. The Pseudomonas syringae species complex is present in various environments, including plants. It can cause major crop diseases, such as bacterial canker on apricot trees. This study presents a collection of 25 unique phage genomes that infect P. syringae. These phages were isolated from apricot orchards with bacterial canker symptoms after enrichment with 21 strains of P. syringae. This collection comprises mostly virulent phages, with only three being temperate. They belong to 14 genera, 11 of which are newly discovered, and 18 new species, revealing great genetic diversity within this collection. Novel DNA packaging systems have been identified bioinformatically in one of the new phage species, but experimental confirmation is required to define the precise mechanism. Additionally, many phage genomes contain numerous potential auxiliary metabolic genes with diversified putative functions. At least three phages encode genes involved in bacterial tellurite resistance, a toxic metalloid. This suggests that viruses could play a role in bacterial stress tolerance. This research emphasizes the significance of continuing the search for new phages in the agricultural ecosystem to unravel novel ecological diversity and new gene functions. This work contributes to the foundation for future fundamental and applied research on phages infecting phytopathogenic bacteria.


Assuntos
Genoma Viral , Doenças das Plantas , Fagos de Pseudomonas , Pseudomonas syringae , Pseudomonas syringae/virologia , Pseudomonas syringae/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Fagos de Pseudomonas/genética , Filogenia , Variação Genética
14.
Methods Mol Biol ; 2832: 205-212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38869797

RESUMO

One of the major plant stress level indicators is reactive oxygen species (ROS). They have been known to play a central role in regulating plant responses to various environmental stresses. This book chapter specifically covers abiotic stress induced by a drought hormone abscisic acid and biotic stress induced by Pseudomonas syringe DC3000 on single cell-type guard cells. We describe in detail the measurement of ROS production starting from sample preparation to data analysis by fluorescence intensity acquisition using ImageJ software. We discussed the problems faced while performing the experiment and addressed how to overcome them by providing specific guidelines to ensure high quality repeatable data.


Assuntos
Arabidopsis , Espécies Reativas de Oxigênio , Estresse Fisiológico , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Ácido Abscísico/metabolismo , Pseudomonas syringae
15.
Nat Commun ; 15(1): 5102, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877009

RESUMO

Tomato (Solanum lycopersicum) is one of the world's most important food crops, and as such, its production needs to be protected from infectious diseases that can significantly reduce yield and quality. Here, we survey the effector-triggered immunity (ETI) landscape of tomato against the bacterial pathogen Pseudomonas syringae. We perform comprehensive ETI screens in five cultivated tomato varieties and two wild relatives, as well as an immunodiversity screen on a collection of 149 tomato varieties that includes both wild and cultivated varieties. The screens reveal a tomato ETI landscape that is more limited than what was previously found in the model plant Arabidopsis thaliana. We also demonstrate that ETI eliciting effectors can protect tomato against P. syringae infection when the effector is delivered by a non-virulent strain either prior to or simultaneously with a virulent strain. Overall, our findings provide a snapshot of the ETI landscape of tomatoes and demonstrate that ETI can be used as a biocontrol treatment to protect crop plants.


Assuntos
Doenças das Plantas , Imunidade Vegetal , Pseudomonas syringae , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/imunologia , Pseudomonas syringae/imunologia , Pseudomonas syringae/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Plantas/imunologia , Virulência , Regulação da Expressão Gênica de Plantas , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/imunologia
16.
Pestic Biochem Physiol ; 202: 105959, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879341

RESUMO

ε-Poly-l-lysine (ε-PL) is an effective antimicrobial peptide for controlling fungal plant diseases, exhibiting significant antifungal activity and safety. Despite its known efficacy, the potential of ε-PL in combating plant bacterial diseases remains underexplored. This study evaluated the effectiveness of ε-PL and its nanomaterial derivative in managing tomato bacterial spot disease caused by Pseudomonas syringae pv. tomato. Results indicated that ε-PL substantially inhibited the growth of Pseudomonas syringae pv. tomato. Additionally, when ε-PL was loaded onto attapulgite (encoded as ATT@PL), its antibacterial effect was significantly enhanced. Notably, the antibacterial efficiency of ATT@PL containing 18.80 µg/mL ε-PL was even close to that of 100 µg/mL pure ε-PL. Further molecular study results showed that, ATT@PL stimulated the antioxidant system and the salicylic acid signaling pathway in tomatoes, bolstering the plants disease resistance. Importantly, the nanocomposite demonstrated no negative effects on both seed germination and plant growth, indicating its safety and aligning with sustainable agricultural practices. This study not only confirmed the effectiveness of ε-PL in controlling tomato bacterial spot disease, but also introduced an innovative high antibacterial efficiency ε-PL composite with good bio-safety. This strategy we believe can also be used in improving other bio-pesticides, and has high applicability in agriculture practice.


Assuntos
Antibacterianos , Doenças das Plantas , Polilisina , Pseudomonas syringae , Compostos de Silício , Solanum lycopersicum , Pseudomonas syringae/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Polilisina/farmacologia , Polilisina/química , Antibacterianos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Compostos de Silício/farmacologia , Compostos de Silício/química , Compostos de Magnésio
17.
PLoS One ; 19(6): e0297124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38833485

RESUMO

In this research, a high-throughput RNA sequencing-based transcriptome analysis technique (RNA-Seq) was used to evaluate differentially expressed genes (DEGs) in the wild type Arabidopsis seedlings in response to AtPep1, a well-known peptide representing an endogenous damage-associated molecular pattern (DAMP), and flg22, a well-known microbe-associated molecular pattern (MAMP). We compared and dissected the global transcriptional landscape of Arabidopsis thaliana in response to AtPep1 and flg22 and could identify shared and unique DEGs in response to these elicitors. We found that while a remarkable number of flg22 up-regulated genes were also induced by AtPep1, 256 genes were exclusively up-regulated in response to flg22, and 328 were exclusively up-regulated in response to AtPep1. Furthermore, among down-regulated DEGs upon flg22 treatment, 107 genes were exclusively down-regulated by flg22 treatment, while 411 genes were exclusively down-regulated by AtPep1. We found a number of hitherto overlooked genes to be induced upon treatment with either flg22 or with AtPep1, indicating their possible involvement general pathways in innate immunity. Here, we characterized two of them, namely PP2-B13 and ACLP1. pp2-b13 and aclp1 mutants showed increased susceptibility to infection by the virulent pathogen Pseudomonas syringae DC3000 and its mutant Pst DC3000 hrcC (lacking the type III secretion system), as evidenced by increased proliferation of the two pathogens in planta. Further, we present evidence that the aclp1 mutant is deficient in ethylene production upon flg22 treatment, while the pp2-b13 mutant is deficient in the production of reactive oxygen species (ROS). The results from this research provide new information for a better understanding of the immune system in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal/genética , RNA-Seq/métodos , Pseudomonas syringae/patogenicidade , Perfilação da Expressão Gênica , Reconhecimento da Imunidade Inata
18.
Microb Biotechnol ; 17(6): e14507, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38884488

RESUMO

Pathogens resistant to classical control strategies pose a significant threat to crop yield, with seeds being a major transmission route. Bacteriophages, viruses targeting bacteria, offer an environmentally sustainable biocontrol solution. In this study, we isolated and characterized two novel phages, Athelas and Alfirin, which infect Pseudomonas syringae and Agrobacterium fabrum, respectively, and included the recently published Pfeifenkraut phage infecting Xanthomonas translucens. Using a simple immersion method, phages coated onto seeds successfully lysed bacteria post air-drying. The seed coat mucilage (SCM), a polysaccharide-polymer matrix exuded by seeds, plays a critical role in phage binding. Seeds with removed mucilage formed five to 10 times less lysis zones compared to those with mucilage. The podovirus Athelas showed the highest mucilage dependency. Phages from the Autographiviridae family also depended on mucilage for seed adhesion. Comparative analysis of Arabidopsis SCM mutants suggested the diffusible cellulose as a key component for phage binding. Long-term activity tests demonstrated high phage stability on seed surfaces and significantly increasing seedling survival rates in the presence of pathogens. Using non-virulent host strains enhanced phage presence on seeds but also has potential limitations. These findings highlight phage-based interventions as promising, sustainable strategies for combating pathogen resistance and improving crop yield.


Assuntos
Arabidopsis , Bacteriófagos , Doenças das Plantas , Pseudomonas syringae , Sementes , Sementes/microbiologia , Sementes/virologia , Pseudomonas syringae/virologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Bacteriófagos/fisiologia , Bacteriófagos/genética , Arabidopsis/virologia , Arabidopsis/microbiologia , Xanthomonas/virologia , Mucilagem Vegetal/metabolismo , Mucilagem Vegetal/química , Agentes de Controle Biológico , Ligação Viral
19.
Microb Biotechnol ; 17(6): e14489, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864499

RESUMO

Treating plant bacterial diseases is notoriously difficult because of the lack of available antimicrobials. Pseudomonas syringae pathovar syringae (Pss) is a major pathogen of cherry (Prunus avium) causing bacterial canker of the stem, leaf and fruit, impacting productivity and leading to a loss of trees. In an attempt to find a treatment for this disease, naturally occurring bacteriophage (phage) that specifically target Pss is being investigated as a biocontrol strategy. However, before using them as a biocontrol treatment, it is important to both understand their efficacy in reducing the bacterial population and determine if the bacterial pathogens can evolve resistance to evade phage infection. To investigate this, killing curve assays of five MR phages targeting Pss showed that phage resistance rapidly emerges in vitro, even when using a cocktail of the five phages together. To gain insight to the changes occurring, Pss colonies were collected three times during a 66-h killing curve assay and separately, Pss and phage were also coevolved over 10 generations, enabling the measurement of genomic and fitness changes in bacterial populations. Pss evolved resistance to phages through modifications in lipopolysaccharide (LPS) synthesis pathways. Bacterial fitness (growth) and virulence were affected in only a few mutants. Deletion of LPS-associated genes suggested that LPS was the main target receptor for all five MR phages. Later generations of coevolved phages from the coevolution experiment were more potent at reducing the bacterial density and when used with wild-type phages could reduce the emergence of phage-resistant mutants. This study shows that understanding the genetic mechanisms of bacterial pathogen resistance to phages is important for helping to design a more effective approach to kill the bacteria while minimizing the opportunity for phage resistance to manifest.


Assuntos
Doenças das Plantas , Pseudomonas syringae , Pseudomonas syringae/virologia , Pseudomonas syringae/genética , Doenças das Plantas/microbiologia , Fagos de Pseudomonas/genética , Fagos de Pseudomonas/fisiologia , Bacteriófagos/genética , Bacteriófagos/fisiologia
20.
Plant J ; 119(4): 1920-1936, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38924321

RESUMO

Photorespiratory serine hydroxymethyltransferases (SHMTs) are important enzymes of cellular one-carbon metabolism. In this study, we investigated the potential role of SHMT6 in Arabidopsis thaliana. We found that SHMT6 is localized in the nucleus and expressed in different tissues during development. Interestingly SHMT6 is inducible in response to avirulent, virulent Pseudomonas syringae and to Fusarium oxysporum infection. Overexpression of SHMT6 leads to larger flowers, siliques, seeds, roots, and consequently an enhanced overall biomass. This enhanced growth was accompanied by increased stomatal conductance and photosynthetic capacity as well as ATP, protein, and chlorophyll levels. By contrast, a shmt6 knockout mutant displayed reduced growth. When challenged with Pseudomonas syringae pv tomato (Pst) DC3000 expressing AvrRpm1, SHMT6 overexpression lines displayed a clear hypersensitive response which was characterized by enhanced electrolyte leakage and reduced bacterial growth. In response to virulent Pst DC3000, the shmt6 mutant developed severe disease symptoms and becomes very susceptible, whereas SHMT6 overexpression lines showed enhanced resistance with increased expression of defense pathway associated genes. In response to Fusarium oxysporum, overexpression lines showed a reduction in symptoms. Moreover, SHMT6 overexpression lead to enhanced production of ethylene and lignin, which are important components of the defense response. Collectively, our data revealed that SHMT6 plays an important role in development and defense against pathogens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Resistência à Doença , Etilenos , Fusarium , Glicina Hidroximetiltransferase , Lignina , Doenças das Plantas , Pseudomonas syringae , Arabidopsis/genética , Arabidopsis/microbiologia , Etilenos/metabolismo , Lignina/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Pseudomonas syringae/fisiologia , Fusarium/fisiologia , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...