Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 38(19): e9880, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39159996

RESUMO

RATIONALE: Isopsoralen (ISO), a quality control marker (Q-marker) in Psoraleae Fructus, is proven to present an obvious anti-osteoporosis effect. Until now, the metabolism and anti-osteoporosis mechanisms of ISO have not been fully elucidated, greatly restricting its drug development. METHODS: The metabolites of ISO in rats were profiled by using ultrahigh-performance liquid chromatography coupled with time-of-flight mass spectrometry. The potential anti-osteoporosis mechanism of ISO in vivo was predicted by using network pharmacology. RESULTS: A total of 15 metabolites were characterized in rats after ingestion of ISO (20 mg/kg/day, by gavage), including 2 in plasma, 12 in urine, 6 in feces, 1 in heart, 3 in liver, 1 in spleen, 1 in lung, 3 in kidney, and 2 in brain. The pharmacology network results showed that ISO and its metabolites could regulate AKT1, SRC, NFKB1, EGFR, MAPK3, etc., involved in the prolactin signaling pathway, ErbB signaling pathway, thyroid hormone pathway, and PI3K-Akt signaling pathway. CONCLUSIONS: This is the first time for revealing the in vivo metabolism features and potential anti-osteoporosis mechanism of ISO by metabolite profiling and network pharmacology, providing data for further verification of pharmacological mechanism.


Assuntos
Furocumarinas , Farmacologia em Rede , Psoralea , Ratos Sprague-Dawley , Animais , Furocumarinas/farmacologia , Furocumarinas/química , Psoralea/química , Ratos , Cromatografia Líquida de Alta Pressão/métodos , Masculino , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Controle de Qualidade , Biomarcadores/análise , Biomarcadores/metabolismo , Biomarcadores/urina , Frutas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Espectrometria de Massas/métodos , Conservadores da Densidade Óssea/farmacologia , Metaboloma/efeitos dos fármacos , Metabolômica/métodos
2.
Mol Biol Rep ; 51(1): 921, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158613

RESUMO

The emergence of chronic diseases, particularly cancers, cardiovascular, and bone disorders, presents a formidable challenge, as currently available synthetic drugs often result in significant side effects and incur higher costs. Phytoestrogen Bavachin, present in the Psoralea corylifolia L. plant, represents structural and functional similarity to mammalian estrogen and has recently attracted researchers for its medicinal properties. This review spotlighted the extraction methods, bioavailability and therapeutic interventions of Bavachin against diseases. Bavachin exerted estrogenic properties, demonstrating the ability to bind to estrogen receptors (ERs), mimicking the actions of human estrogen and initiating estrogen-responsive pathways. Bavachin delivered potent therapeutic ventures in abrogating chronic diseases, including cancer, neuronal, bone, cardiovascular, skin, lung, and liver disorders via targeting signaling transductions, managing calcium signaling, immune regulation, inflammation, apoptosis, and oxidative stress. In-silico analysis, including Gene ontology and pathway enrichment analysis, retrieved molecular targets of Bavachin, majorly cytochrome c oxidase (COX), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3), and ER, hypothesizing Bavachin's cellular mechanism in preventing crucial health ailments. Limitations of Bavachin were also summarized, evidenced by hepatotoxicity at specific dosage levels. In conclusion, Bavachin showed promising therapeutic efficacy in suppressing chronic diseases and can be considered as an adequate replacement for hormone replacement therapy, necessitating further investigations on its effectiveness, safety, and clinical outcomes.


Assuntos
Fitoestrógenos , Transdução de Sinais , Humanos , Fitoestrógenos/farmacologia , Fitoestrógenos/metabolismo , Fitoestrógenos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Doença Crônica/tratamento farmacológico , Animais , Psoralea/química , Receptores de Estrogênio/metabolismo , Gerenciamento Clínico
3.
Bioorg Chem ; 150: 107604, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38981209

RESUMO

Nineteen flavonoids were isolated from the fruits of Psoralea corylifolia L., including a novel flavanol (3) and three novel isoflavones (12-14). Their chemical structures were unequivocally determined through comprehensive spectral data analysis. The anti-proliferative effect of the isolated flavonoids was assessed in vitro using the MTT assay. Molecular docking and ELISA were employed to determine the inhibitory effects of the active compounds on ALK5. Isobavachalcone was found to inhibit TGF-ß1 induced EMT in A549 cells by Wound healing assay and Transwell chamber assay. Immunofluorescence assay and Western blot assay showed that IBC could inhibit cytoskeleton rearrangement, reduce the phosphorylation of ALK5, ERK, and Smad, down-regulate Snail expression, and up-regulate E-cadherin expression in TGF-ß1 induced A549 cells, thereby exerting the potential inhibitory effects on epithelial-mesenchymal transition (EMT) process in A549 cells. The findings presented herein establish a fundamental basis for investigating the anti-proliferative and anti-metastatic properties of psoralen flavonoids in human non-small cell lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Transição Epitelial-Mesenquimal , Flavonoides , Frutas , Neoplasias Pulmonares , Simulação de Acoplamento Molecular , Psoralea , Humanos , Células A549 , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Flavonoides/farmacologia , Flavonoides/química , Flavonoides/isolamento & purificação , Frutas/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Estrutura Molecular , Psoralea/química , Receptor do Fator de Crescimento Transformador beta Tipo I , Relação Estrutura-Atividade , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Isoflavonas/química , Isoflavonas/isolamento & purificação , Isoflavonas/farmacologia
4.
Chem Biol Interact ; 400: 111133, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38969277

RESUMO

Psoraleae Fructus (PF, Psoralea corylifolia L.), a traditional medicine with a long history of application, is widely used clinically for the treatment of various diseases. However, the reports of PF-related adverse reactions, such as hepatotoxicity, phototoxic dermatitis, and allergy, are increasing year by year, with liver injury being the mostly common. Our previous studies have demonstrated that PF and its preparations can cause liver injury in lipopolysaccharide (LPS)-mediated susceptibility mouse model, but the mechanism of PF-related liver injury is unclear. In this study, we showed that PF and bavachinin, a major component of PF, can directly induce the expression of caspase-1 and interleukin-1ß (IL-1ß), indicating that PF and bavachinin can directly triggered the activation of inflammasome. Furthermore, pretreatment with NLR family pyrin domain-containing 3 (NLRP3), NLR family CARD domain containing 4 (NLRC4) or absent in melanoma 2 (AIM2) inflammasome inhibitors, containing MCC950, ODN TTAGGG (ODN) and carnosol, all significantly reversed bavachinin-induced inflammasome activation. Mechanistically, bavachinin dose-dependently promote Gasdermin D (GSDMD) post-shear activation and then induce mitochondrial reactive oxygen species (mtROS) production and this effect is markedly inhibited by pretreatment with N-Acetylcysteine amide (NAC). In addition, combination treatment of LPS and bavachinin significantly induced liver injury in mice, but not LPS or bavachinin alone, and transcriptome analysis further validated these results. Thus, PF and bavachinin can induce the activation of inflammasome by promoting GSDMD cleavage and cause hepatotoxicity in mice. Therefore, PF, bavachinin, and PF-related preparations should be avoided in patients with inflammasome activation-associated diseases.


Assuntos
Inflamassomos , Proteínas de Ligação a Fosfato , Psoralea , Piroptose , Animais , Piroptose/efeitos dos fármacos , Camundongos , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Psoralea/química , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Camundongos Endogâmicos C57BL , Lipopolissacarídeos/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Flavonoides/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 1/metabolismo , Interleucina-1beta/metabolismo , Gasderminas
5.
J Asian Nat Prod Res ; 26(9): 1106-1114, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38753588

RESUMO

Gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter required for excitation/inhibition balance is synthesized by the glutamic acid decarboxylases (GADs) in GABAergic neurons. The levels and activity of GADs are strongly correlated with GABA and neural transmission. Dysregulation of GADs and GABA is associated with various neurological disorders. The study used psoralidin, found in the seeds of Psoralea corylifolia, to investigate its effect on GAD levels and regulatory mechanisms in primary cortical neurons. Psoralidin reduced GAD67 through transcriptional regulation. The reduction was not mediated by the N-methyl-D-aspartate receptor. Additionally, psoralidin attenuated the formation of inhibitory synapses in primary hippocampal neurons.


Assuntos
Cumarínicos , Glutamato Descarboxilase , Sinapses , Animais , Glutamato Descarboxilase/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Cumarínicos/farmacologia , Cumarínicos/química , Estrutura Molecular , Hipocampo/metabolismo , Ácido gama-Aminobutírico/farmacologia , Ácido gama-Aminobutírico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Psoralea/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Benzofuranos
6.
J Ethnopharmacol ; 329: 118130, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565407

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Psoraleae Fructus (Bu Gu Zhi) is the fruit of Psoralea corylifolia L. (PCL) and has been used for centuries in traditional Chinese medicine formulas to treat osteoporosis (OP). A new drug called "BX" has been developed from PCL, but its mechanism for treating OP is not yet fully understood. AIM OF THE STUDY: To explore the mechanism of action of BX in the treatment of ovariectomy-induced OP based function-oriented multi-omics analysis of gut microbiota (GM) and metabolites. MATERIALS AND METHODS: C57BL/6 mice were bilaterally ovariectomized to replicate the OP model. The therapeutic efficacy of BX was evaluated by bone parameters (BMD, BV/TV, Tb.N, Tb.Sp), hematoxylin and eosin (H&E) staining results, and determination of bone formation markers procollagen type Ⅰ amino-terminal peptide (PⅠNP) and bone-specific alkaline phosphatase (BALP). Serum and fecal metabolomics and high-throughput 16S rDNA sequencing were performed to evaluate effects on endogenous metabolites and GM. In addition, an enzyme-based functional correlation algorithm (EBFC) algorithm was used to investigate functional correlations between GM and metabolites. RESULTS: BX improved OP in OVX mice by increasing BMD, BV/TV, serum PⅠNP, BALP, and improving Tb.N and Tb.Sp. A total of 59 differential metabolites were identified, and 9 metabolic pathways, including arachidonic acid metabolism, glycerophospholipid metabolism, purine metabolism, and tryptophan metabolism, were found to be involved in the progression of OP. EBFC analysis results revealed that the enzymes related to purine and tryptophan metabolism, which are from Lachnospiraceae_NK4A136_group, Blautia, Rs-E47_termite_group, UCG-009, and Clostridia_UCG-014, were identified as the intrinsic link between GM and metabolites. CONCLUSIONS: The regulation of GM and restoration of metabolic disorders may be the mechanisms of action of BX in alleviating OP. This research provides insights into the function-oriented mechanism discovery of traditional Chinese medicine in the treatment of OP.


Assuntos
Cumarínicos , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Osteoporose , Ovariectomia , Psoralea , Animais , Psoralea/química , Feminino , Osteoporose/tratamento farmacológico , Cumarínicos/farmacologia , Cumarínicos/isolamento & purificação , Cumarínicos/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Densidade Óssea/efeitos dos fármacos , Metabolômica , Modelos Animais de Doenças , Frutas , Multiômica
7.
J Ethnopharmacol ; 329: 118142, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583730

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Psoralea corylifolia L. (Fabaceae) is a traditional medicinal herb used to treat various diseases, including kidney disease, asthma, psoriasis and vitiligo. AIM OF THE STUDY: To explore the antibacterial activity of Psoralea corylifolia L. and its bioactive components against Mycobacterium abscessus (M. abscessus). MATERIALS AND METHODS: Ultra high performance liquid chromatography was utilized to analyze the bioactive fractions and compounds present in 30%, 60%, and 90% ethanol extracts of Psoralea corylifolia L.. The antibacterial effects of Psoralea corylifolia L. and potential active ingredients were determined by minimum inhibitory concentration (MIC). The bactericidal activity of the active ingredient isobavachalcone was evaluated and then scanning electron microscopy was used to explore the bactericidal mechanism of isobavachalcone. RESULTS: The 90% ethanol extracts of Psoralea corylifolia L. showed significant antibacterial activity against M. abscessus, with an MIC of 156 µg/mL. Isobavachalcone was identified as the bioactive ingredient, and testing of 118 clinical isolates of M. abscessus indicated their MICs ranged from 2 to 16 µg/mL, with an average MIC of 8 µg/mL. Furthermore, the minimum bactericidal concentration/MIC ratio and the time-kill test indicated rapid bactericidal activity of isobavachalcone against M. abscessus. Finally, we found that the bactericidal mechanism of isobavachalcone involved damage to the bacterial cell membrane, causing wrinkled and sunken cell surface and a noticeable reduction in bacterial length. CONCLUSION: Psoralea corylifolia L. ethanol extracts as well as its active component isobavachalcone show promising antimicrobial activity against M. abscessus.


Assuntos
Antibacterianos , Chalconas , Testes de Sensibilidade Microbiana , Mycobacterium abscessus , Extratos Vegetais , Psoralea , Psoralea/química , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Antibacterianos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Chalconas/farmacologia , Chalconas/isolamento & purificação , Mycobacterium abscessus/efeitos dos fármacos
8.
Chem Res Toxicol ; 37(5): 804-813, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38646980

RESUMO

With the increasing use of oral contraceptives and estrogen replacement therapy, the incidence of estrogen-induced cholestasis (EC) has tended to rise. Psoralen (P) and isopsoralen (IP) are the major bioactive components in Psoraleae Fructus, and their estrogen-like activities have already been recognized. Recent studies have also reported that ERK1/2 plays a critical role in EC in mice. This study aimed to investigate whether P and IP induce EC and reveal specific mechanisms. It was found that P and IP increased the expression of esr1, cyp19a1b and the levels of E2 and VTG at 80 µM in zebrafish larvae. Exemestane (Exe), an aromatase antagonist, blocked estrogen-like activities of P and IP. At the same time, P and IP induced cholestatic hepatotoxicity in zebrafish larvae with increasing liver fluorescence areas and bile flow inhibition rates. Further mechanistic analysis revealed that P and IP significantly decreased the expression of bile acids (BAs) synthesis genes cyp7a1 and cyp8b1, BAs transport genes abcb11b and slc10a1, and BAs receptor genes nr1h4 and nr0b2a. In addition, P and IP caused EC by increasing the level of phosphorylation of ERK1/2. The ERK1/2 antagonists GDC0994 and Exe both showed significant rescue effects in terms of cholestatic liver injury. In conclusion, we comprehensively studied the specific mechanisms of P- and IP-induced EC and speculated that ERK1/2 may represent an important therapeutic target for EC induced by phytoestrogens.


Assuntos
Colestase , Ficusina , Furocumarinas , Psoralea , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Colestase/induzido quimicamente , Colestase/metabolismo , Estrogênios/metabolismo , Estrogênios/farmacologia , Ficusina/farmacologia , Furocumarinas/farmacologia , Furocumarinas/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Psoralea/química , Peixe-Zebra
9.
J Asian Nat Prod Res ; 26(1): 120-129, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38509697

RESUMO

Three new monoterpene phenol dimers, bisbakuchiols V-X (1-3), and two bakuchiol ethers (4 and 5), along with four known compounds (6-9) were isolated from the fruits of Psoralea corylifolia. Their structures were elucidated based on extensive spectral analysis. The absolute configurations of 1, 2, 4, and 5 were specified by quantum chemical calculations of ECD spectra.


Assuntos
Fenol , Psoralea , Fenol/análise , Frutas/química , Psoralea/química , Monoterpenos , Estrutura Molecular , Fenóis/química
10.
Vet Parasitol ; 328: 110167, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518713

RESUMO

Tetrahymena piriformis belongs to the ciliated protists (ciliates), causing severe economic losses in aquaculture. Chemical drugs currently used usually have toxic side effects, and there is no specific drug against Tetrahymena. Therefore, it is an urgent need to identify new antiparasitic lead compounds. In the present study, the in vitro parasiticidal activity of ethyl acetate (EtOAc) extracts and water extracts from 22 selected traditional Chinese medicines (TCMs) were evaluated against T. piriformis. The EtOAc extract of P. corylifolia turned out to be the most active with the minimum parasiticidal concentration of 100 mg/L within 3 h. Thus, it was separated into 12 fractions by the first-dimensional (D1) normal phase liquid chromatography (NPLC), meanwhile combining with in vitro antiparasitic tests for activity tracking. Subsequently, 8 flavonoids were identified in the active fractions by the second-dimensional (D2) reverse phase liquid chromatography (RPLC) tandem high-resolution mass spectrometry. According to the results, 5 flavonoids were selected for in vitro antiparasitic test, of which isobavachalcone showed the minimum parasiticidal concentration of 3.125 mg/L in 2 h. Bathing treatment of infected guppies with isobavachalcone could significantly reduce the burden of T. piriformis, obtaining a 24-h median effective concentration (24-h EC50) value of 1.916 mg/L. And the concentration of isobavachalcone causing guppies to die within 24 h is 39 times than that of 24-h EC50. The results demonstrated that isobavachalcone has the potential to be developed into a novel commercial fish drug against T. piriformis.


Assuntos
Infecções por Cilióforos , Doenças dos Peixes , Flavonoides , Poecilia , Psoralea , Animais , Flavonoides/farmacologia , Flavonoides/química , Poecilia/parasitologia , Doenças dos Peixes/parasitologia , Doenças dos Peixes/tratamento farmacológico , Infecções por Cilióforos/veterinária , Infecções por Cilióforos/tratamento farmacológico , Infecções por Cilióforos/parasitologia , Psoralea/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antiparasitários/farmacologia , Antiparasitários/química
11.
Sci Rep ; 14(1): 1696, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242895

RESUMO

Psoraleae Fructus (PF) is a widely-used herb with diverse pharmacological activities, while its related hepatic injuries have aroused public concerns. In this work, a systematic approach based on RNA sequencing (RNA-seq), high-content screening (HCS) and molecular docking was developed to investigate the potential mechanism and identify major phytochemicals contributed to PF-induced hepatotoxicity. Animal experiments proved oral administration of PF water extracts disturbed lipid metabolism and promoted hepatic injuries by suppressing fatty acid and cholesterol catabolism. RNA-seq combined with KEGG enrichment analysis identified mitochondrial oxidative phosphorylation (OXPHOS) as the potential key pathway. Further experiments validated PF caused mitochondrial structure damage, mtDNA depletion and inhibited expressions of genes engaged in OXPHOS. By detecting mitochondrial membrane potential and mitochondrial superoxide, HCS identified bavachin, isobavachalcone, bakuchiol and psoralidin as most potent mitotoxic compounds in PF. Moreover, molecular docking confirmed the potential binding patterns and strong binding affinity of the critical compounds with mitochondrial respiratory complex. This study unveiled the underlying mechanism and phytochemicals in PF-induced liver injuries from the view of mitochondrial dysfunction.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Psoralea , Animais , Medicamentos de Ervas Chinesas/química , Simulação de Acoplamento Molecular , Psoralea/química , RNA-Seq , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Compostos Fitoquímicos/farmacologia
12.
Bol. latinoam. Caribe plantas med. aromát ; 12(4): 338-345, jul. 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-724327

RESUMO

Otholobium glandulosum (L.) J.W. Grimes (= Psoralea glandulosa L.) (Fabaceae) is a resinous bush that grows in Chile. The chemical composition of its resinous exudate was determined for the first time. Three meroterpenic: bakuchiol (8), 3-hydroxybakuchiol (11), 12-hydroxyisobakuchiol (12) and a new compound kuchiol (13) were isolated and their structures were determined. The antioxidant activity of the terpenic compounds and resin was evaluated using the bleaching of DPPH radical, Ferric Reducing Antioxidant Power (FRAP) and Total Reactive Antioxidant Properties (TRAP) assays.


Otholobium glandulosum (L.) J.W. Grimes (= Psoralea glandulosa L.) (Fabaceae) es un arbusto resinoso que crece en Chile. La composición química de su exudado resinoso fue determinada por primera vez. Tres meroterpenos: bakuchiol (8), 3-hidroxibakuchiol (11), 12-hidroxiisobakuchiol (12) y un nuevo compuesto kuchiol (13) fueron aislados y sus estructuras fueron determinadas espectroscópicamente. La actividad antioxidante de los compuestos terpénicos y la resina se evaluó mediante tres métodos antioxidantes DPPH, Poder Reductor de Hierro III (FRAP) y Capacidad Antioxidante Total (TRAP).


Assuntos
Antioxidantes/farmacologia , Psoralea/química , Resinas Vegetais/farmacologia , Resinas Vegetais/química , Terpenos/análise , Chile , Cromatografia Gasosa-Espectrometria de Massas , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...