Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.696
Filtrar
1.
Biol Pharm Bull ; 47(7): 1282-1287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38987177

RESUMO

Assay systems for evaluating compound protein-binding affinities are essential for developing agonists and/or antagonists. Targeting individual members of a protein family can be extremely important and for this reason it is critical to have methods for evaluating selectivity. We have previously reported a fluorescence recovery assay that employs a fluorescein-labelled probe to determine IC50 values of ATP-competitive type 1 inhibitors of polo-like kinase 1 (Plk1). This probe is based on the potent Plk1 inhibitor BI2536 [fluorescein isothiocyanate (FITC)-polyethylene glycol (PEG)-lysine (Lys) (BI2536) 1]. Herein, we extend this approach to the highly homologous Plk2 and Plk3 members of this kinase family. Our results suggest that this assay system is suitable for evaluating binding affinities against Plk2 and Plk3 as well as Plk1. The new methodology represents the first example of evaluating N-terminal catalytic kinase domain (KD) affinities of Plk2 and Plk3. It represents a simple and cost-effective alternative to traditional kinase assays to explore the KD-binding compounds against Plk2 and Plk3 as well as Plk1.


Assuntos
Proteínas de Ciclo Celular , Quinase 1 Polo-Like , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Humanos , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Fluorescência , Quinases Polo-Like , Pteridinas , Proteínas Supressoras de Tumor
2.
Anal Methods ; 16(27): 4607-4618, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38920251

RESUMO

Pteridines are important low molecular weight biomarkers used in the diagnostics of inflammation, oxidative stress, phenylketonuria, cancer, etc. In this experimental study, we present a simple and selective approach to determine pteridines (pterin, leucopterin and folic acid) and nucleobase guanine concentration using luminescent gold clusters stabilized by aromatic amino acids. We synthesized several new gold clusters (AA-Au NCs) stabilized by various aromatic amino acids - 3,4-dihydroxy-L-phenylalanine (DOPA), L-tryptophan (Trp), L-tyrosine (Tyr) and L-phenylalanine (Phe), emitting in the violet-green spectral range. Their luminescence appeared to be sensitive to the presence of pterin, leucopterin, folic acid and guanine depending on the stabilizing matrix. Thus, a facile and cost-effective approach for the detection of pteridines is proposed. AA-Au NC-based sensors work according to "turn-off" and "turn-on" mechanisms. The possible physical origins of their luminescence quenching and enhancement are discussed.


Assuntos
Ouro , Pterinas , Pterinas/química , Ouro/química , Medições Luminescentes/métodos , Guanina/química , Luminescência , Aminoácidos/química , Pteridinas/química , Nanopartículas Metálicas/química
3.
J Virol ; 98(6): e0043424, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38690875

RESUMO

The globally reemerging respiratory pathogen enterovirus D68 (EV-D68) is implicated in outbreaks of severe respiratory illness and associated with acute flaccid myelitis. However, there remains a lack of effective treatments for EV-D68 infection. In this work, we found that the host Toll-like receptor 7 (TLR7) proteins, which function as powerful innate immune sensors, were selectively elevated in expression in response to EV-D68 infection. Subsequently, we investigated the impact of Vesatolimod (GS-9620), a Toll-like receptor 7 agonist, on EV-D68 replication. Our findings revealed that EV-D68 infection resulted in increased mRNA levels of TLR7. Treatment with Vesatolimod significantly inhibited EV-D68 replication [half maximal effective concentration (EC50) = 0.1427 µM] without inducing significant cytotoxicity at virucidal concentrations. Although Vesatolimod exhibited limited impact on EV-D68 attachment, it suppressed RNA replication and viral protein synthesis after virus entry. Vesatolimod broadly inhibited the replication of circulating isolated strains of EV-D68. Furthermore, our findings demonstrated that treatment with Vesatolimod conferred resistance to both respiratory and neural cells against EV-D68 infection. Overall, these results present a promising strategy for drug development by pharmacologically activating TLR7 to initiate an antiviral state in EV-D68-infected cells selectively.IMPORTANCEConventional strategies for antiviral drug development primarily focus on directly targeting viral proteases or key components, as well as host proteins involved in viral replication. In this study, based on our intriguing discovery that enterovirus D68 (EV-D68) infection specifically upregulates the expression of immune sensor Toll-like receptor 7 (TLR7) protein, which is either absent or expressed at low levels in respiratory cells, we propose a potential antiviral approach utilizing TLR7 agonists to activate EV-D68-infected cells into an anti-viral defense state. Notably, our findings demonstrate that pharmacological activation of TLR7 effectively suppresses EV-D68 replication in respiratory tract cells through a TLR7/MyD88-dependent mechanism. This study not only presents a promising drug candidate and target against EV-D68 dissemination but also highlights the potential to exploit unique alterations in cellular innate immune responses induced by viral infections, selectively inducing a defensive state in infected cells while safeguarding uninfected normal cells from potential adverse effects associated with therapeutic interventions.


Assuntos
Antivirais , Enterovirus Humano D , Receptor 7 Toll-Like , Replicação Viral , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/metabolismo , Humanos , Replicação Viral/efeitos dos fármacos , Enterovirus Humano D/efeitos dos fármacos , Antivirais/farmacologia , Indóis/farmacologia , Infecções por Enterovirus/virologia , Imunidade Inata/efeitos dos fármacos , Linhagem Celular , Internalização do Vírus/efeitos dos fármacos , Pteridinas
4.
J Med Chem ; 67(11): 8609-8629, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38780468

RESUMO

Vaccinia-related kinase 1 (VRK1) and the δ and ε isoforms of casein kinase 1 (CK1) are linked to various disease-relevant pathways. However, the lack of tool compounds for these kinases has significantly hampered our understanding of their cellular functions and therapeutic potential. Here, we describe the structure-based development of potent inhibitors of VRK1, a kinase highly expressed in various tumor types and crucial for cell proliferation and genome integrity. Kinome-wide profiling revealed that our compounds also inhibit CK1δ and CK1ε. We demonstrate that dihydropteridinones 35 and 36 mimic the cellular outcomes of VRK1 depletion. Complementary studies with existing CK1δ and CK1ε inhibitors suggest that these kinases may play overlapping roles in cell proliferation and genome instability. Together, our findings highlight the potential of VRK1 inhibition in treating p53-deficient tumors and possibly enhancing the efficacy of existing cancer therapies that target DNA stability or cell division.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Pteridinas , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Pteridinas/farmacologia , Pteridinas/química , Pteridinas/síntese química , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Caseína Quinase Idelta/antagonistas & inibidores , Caseína Quinase Idelta/metabolismo , Caseína Quinase 1 épsilon/antagonistas & inibidores , Caseína Quinase 1 épsilon/metabolismo , Linhagem Celular Tumoral
5.
J Inherit Metab Dis ; 47(4): 598-623, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38627985

RESUMO

Sulfite intoxication is the hallmark of four ultrarare disorders that are caused by impaired sulfite oxidase activity due to genetic defects in the synthesis of the molybdenum cofactor or of the apoenzyme sulfite oxidase. Delays on the diagnosis of these disorders are common and have been caused by their unspecific presentation of acute neonatal encephalopathy with high early mortality, followed by the evolution of dystonic cerebral palsy and also by the lack of easily available and reliable diagnostic tests. There is significant variation in survival and in the quality of symptomatic management of affected children. One of the four disorders, molybdenum cofactor deficiency type A (MoCD-A) has recently become amenable to causal treatment with synthetic cPMP (fosdenopterin). The evidence base for the rational use of cPMP is very limited. This prompted the formulation of these clinical guidelines to facilitate diagnosis and support the management of patients. The guidelines were developed by experts in diagnosis and treatment of sulfite intoxication disorders. It reflects expert consensus opinion and evidence from a systematic literature search.


Assuntos
Erros Inatos do Metabolismo dos Metais , Sulfito Oxidase , Humanos , Recém-Nascido , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Coenzimas/deficiência , Consenso , Erros Inatos do Metabolismo dos Metais/diagnóstico , Erros Inatos do Metabolismo dos Metais/terapia , Metaloproteínas/deficiência , Cofatores de Molibdênio , Pteridinas , Sulfito Oxidase/deficiência , Sulfito Oxidase/genética
6.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119731, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631442

RESUMO

Molybdenum cofactor (Moco) biosynthesis is a complex process that involves the coordinated function of several proteins. In the recent years it has become evident that the availability of Fe-S clusters play an important role for the biosynthesis of Moco. First, the MoaA protein binds two [4Fe-4S] clusters per monomer. Second, the expression of the moaABCDE and moeAB operons is regulated by FNR, which senses the availability of oxygen via a functional [4Fe-4S] cluster. Finally, the conversion of cyclic pyranopterin monophosphate to molybdopterin requires the availability of the L-cysteine desulfurase IscS, which is an enzyme involved in the transfer of sulfur to various acceptor proteins with a main role in the assembly of Fe-S clusters. In this review, we dissect the dependence of the production of active molybdoenzymes in detail, starting from the regulation of gene expression and further explaining sulfur delivery and Fe-S cluster insertion into target enzymes. Further, Fe-S cluster assembly is also linked to iron availability. While the abundance of selected molybdoenzymes is largely decreased under iron-limiting conditions, we explain that the expression of the genes is dependent on an active FNR protein. FNR is a very important transcription factor that represents the master-switch for the expression of target genes in response to anaerobiosis. Moco biosynthesis is further directly dependent on the presence of ArcA and also on an active Fur protein.


Assuntos
Coenzimas , Proteínas Ferro-Enxofre , Metaloproteínas , Cofatores de Molibdênio , Pteridinas , Metaloproteínas/metabolismo , Metaloproteínas/genética , Metaloproteínas/biossíntese , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética , Coenzimas/metabolismo , Coenzimas/biossíntese , Coenzimas/genética , Pteridinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Ferro/metabolismo , Enxofre/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Liases de Carbono-Enxofre/metabolismo , Liases de Carbono-Enxofre/genética , Regulação Bacteriana da Expressão Gênica , Óperon , Isomerases
7.
Eur J Pharmacol ; 972: 176558, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38614382

RESUMO

Inhibitors of polo-like kinase (PLK) are currently being evaluated as anticancer drugs. However, the molecular mechanism of PLK inhibitor-induced cell death is not fully understood. In this study, we found that GW843682X and BI2536, two inhibitors of PLK1, significantly induced cell death in multiple type cells. The induction of cell death was related to the preferring expression of PLK1. However, in human umbilical vascular endothelial cells (HUVEC) and human colorectal carcinoma cells, which expressed higher levels of both PLK1 and PLK2, PLK1 inhibitors induced very low levels of cell death. Clinical analysis reveals PLK1 presence in 26 of 30 NPC tumor tissues. In in vivo NPC lung metastasis nude mouse models, PLK1 inhibitors decreased NPC progress. Mechanistically, the PLK1 inhibitor did not activate p53, and the cell death was not reversed by p53 inhibition. Moreover, PLK1 inhibitor-induced cell death was PARP- and caspase-independent. Although PLK1 inhibitors induced down-regulation of calpain inhibitor calpastatin and calpain was activated by PLK1 inhibition, calpain blocking did not reverse cell death induced by PLK1 inhibitors, suggesting the non-involvement of calpain. Surprisingly, we found that PLK1 inhibitors induced the activation of proteasome, and the treatment of cells with PLK1 inhibitors reduced the levels of ubiquitinated proteins. And proteasome inhibitors reversed cell death induced by PLK1 inhibitors in various cell types in which PLK1 was preferentially expressed. Moreover, PLK1 inhibition reversed the degradation of proteins including p53, caspase 8, PARP and calpastatin. These results suggest that the activation of proteasome is critical for cell death induced by PLK1 inhibition.


Assuntos
Proteínas de Ciclo Celular , Morte Celular , Quinase 1 Polo-Like , Complexo de Endopeptidases do Proteassoma , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Humanos , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Morte Celular/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Camundongos Nus , Pteridinas/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Calpaína/antagonistas & inibidores , Calpaína/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/farmacologia
8.
J Cancer Res Ther ; 20(2): 570-577, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38687926

RESUMO

OBJECTIVE: This study aimed to investigate BVD-523 (ulixertinib), an adenosine triphosphate (ATP)-dependent extracellular signal-regulated kinases 1/2 inhibitor, for its antitumor potential in thyroid cancer. MATERIALS AND METHODS: Ten thyroid cancer cell lines known to carry mitogen-activated protein kinase (MAPK)-activated mutations, including v-Raf murine sarcoma viral oncogene homolog B (BRAF) and rat sarcoma virus (RAS) mutations, were examined. Cells were exposed to a 10-fold concentration gradient ranging from 0 to 3000 nM for 5 days. The half-inhibitory concentration was determined using the Cell Counting Kit-8 assay. Following BVD-523 treatment, cell cycle analysis was conducted using flow cytometry. In addition, the impact of BVD-523 on extracellular signal-regulated kinase (ERK)- dependent ribosomal S6 kinase (RSK) activation and the expression of cell cycle markers were assessed through western blot analysis. RESULTS: BVD-523 significantly inhibited thyroid cancer cell proliferation and induced G1/S cell cycle arrest dose-dependently. Notably, cell lines carrying MAPK mutations, especially those with the BRAF V600E mutation, exhibited heightened sensitivity to BVD-523's antitumor effects. Furthermore, BVD-523 suppressed cyclin D1 and phosphorylated retinoblastoma protein expression, and it robustly increased p27 levels in an RSK-independent manner. CONCLUSION: This study reveals the potent antitumor activity of BVD-523 against thyroid cancer cells bearing MAPK-activating mutations, offering promise for treating aggressive forms of thyroid cancer.


Assuntos
Aminopiridinas , Proliferação de Células , Pirróis , Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Pteridinas/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Antineoplásicos/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Mutação , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
9.
Sci Rep ; 14(1): 9440, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658799

RESUMO

Although previous studies have examined the signaling pathway involved in melanogenesis through which ultraviolet (UV) or α-melanocyte-stimulating hormones (α-MSH) stimuli act as key inducers to produce melanin at the stratum basal layer of the epidermis, the signaling pathway regulating melanogenesis is still controversial. This study reports that α-MSH, not UVA and UVB, acted as a major stimulus of melanogenesis in B16F10 melanoma cells. Signaling pathway analysis using gene knockdown technology and chemical inhibitors, the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK)/p90 ribosomal S6 kinase 2 (RSK2) played an important role in melanogenesis. Unexpectedly, LY294002, a PI3K inhibitor, increased melanogenesis without UV or α-MSH stimulation, suggesting that the PI3K/AKT signaling pathway may not be a major signaling pathway for melanogenesis. Chemical inhibition of the MEKs/ERKs/RSK2 signaling pathway using U0126 or BI-D1870 suppressed melanogenesis by stimulation of UVA or α-MSH stimulation, or both. In particular, the genetic depletion of RSK2 or constitutive active (CA)-RSK2 overexpression showed that RSK2 plays a key role in melanogenesis. Interestingly, forkhead box protein O4 (FOXO4) was phosphorylated by RSK2, resulting in the increase of FOXO4's transactivation activity. Notably, the FOXO4 mutant harboring serine-to-alanine replacement at the phosphorylation sites totally abrogated the transactivation activity and reduced melanin production, indicating that RSK2-mediated FOXO4 activity plays a key role in melanogenesis. Furthermore, kaempferol, a flavonoid inhibiting the RSK2 activity, suppressed melanogenesis. In addition, FOXO4-wt overexpression showed that FOXO4 enhance melanin synthesis. Overall, the RSK2-FOXO4 signaling pathway plays a key role in modulating melanogenesis.


Assuntos
Melaninas , Pteridinas , Proteínas Quinases S6 Ribossômicas 90-kDa , Transdução de Sinais , alfa-MSH , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Melaninas/biossíntese , Melaninas/metabolismo , Animais , alfa-MSH/metabolismo , alfa-MSH/farmacologia , Camundongos , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Raios Ultravioleta , Morfolinas/farmacologia , Cromonas/farmacologia , Nitrilas/farmacologia , Butadienos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Melanoma Experimental/metabolismo , Melanogênese
10.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466135

RESUMO

In the animal kingdom, sexually dimorphic color variation is a widespread phenomenon that significantly influences survival and reproductive success. However, the genetic underpinnings of this variation remain inadequately understood. Our investigation into sexually dimorphic color variation in the desert-dwelling Guinan population of the toad-headed agamid lizard (Phrynocephalus putjatai) utilized a multidisciplinary approach, encompassing phenotypic, ultrastructural, biochemical, genomic analyses, and behavioral experiments. Our findings unveil the association between distinct skin colorations and varying levels of carotenoid and pteridine pigments. The red coloration in males is determined by a genomic region on chromosome 14, housing four pigmentation genes: BCO2 and three 6-pyruvoyltetrahydropterin synthases. A Guinan population-specific nonsynonymous single nucleotide polymorphism in BCO2 is predicted to alter the electrostatic potential within the binding domain of the BCO2-ß-carotene complex, influencing their interaction. Additionally, the gene MAP7 on chromosome 2 emerges as a potential contributor to the blue coloration in subadults and adult females. Sex-specific expression patterns point to steroid hormone-associated genes (SULT2B1 and SRD5A2) as potential upstream regulators influencing sexually dimorphic coloration. Visual modeling and field experiments support the potential selective advantages of vibrant coloration in desert environments. This implies that natural selection, potentially coupled with assortative mating, might have played a role in fixing color alleles, contributing to prevalence in the local desert habitat. This study provides novel insights into the genetic basis of carotenoid and pteridine-based color variation, shedding light on the evolution of sexually dimorphic coloration in animals. Moreover, it advances our understanding of the driving forces behind such intricate coloration patterns.


Assuntos
Lagartos , Pigmentação da Pele , Animais , Feminino , Masculino , Lagartos/genética , Carotenoides/metabolismo , Pteridinas , Reprodução , Pigmentação/genética , Cor
11.
Ecotoxicol Environ Saf ; 274: 116177, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461573

RESUMO

Triphenyltin (TPT) is a typical persistent organic pollutant whose occurrence in coral reef ecosystems may threaten the survival of reef fishes. In this study, a brightly colored representative reef fish, Amphiprion ocellaris was used to explore the effects of TPT at environmental levels (1, 10, and 100 ng/L) on skin pigment synthesis. After the fish were exposed to TPT for 60 days, the skin became darker, owing to an increase in the relative area of black stripes, a decrease in orange color values while an increase in brown color values, and an increase in the number of melanocytes in the orange part of the skin tissues. To explore the mechanisms by which TPT induces darker body coloration, the enzymatic activity and gene expression levels of the members of melanocortin system that affect melanin synthesis were evaluated. Leptin levels and lepr expression were found to be increased after TPT exposure, which likely contributed to the increase found in pomc expression and α-melanocyte-stimulating hormone (α-MSH) levels. Then Tyr activity and mc1r, tyr, tyrp1, mitf, and dct were upregulated, ultimately increasing melanin levels. Importantly, RT-qPCR results were consistent with the transcriptome analysis of trends in lepr and pomc expression. Because the orange color values decreased, pterin levels and the pteridine metabolic pathway were also evaluated. The results showed that TPT induced BH4 levels and spr, xdh, and gch1 expression associated with pteridine synthesis decreased, ultimately decreasing the colored pterin content (sepiapterin). We conclude that TPT exposure interferes with the melanocortin system and pteridine metabolic pathway to increase melanin and decrease colored pterin levels, leading to darker body coloration in A. ocellaris. Given the importance of body coloration for the survival and reproduction of reef fishes, studies on the effects of pollutants (others alongside TPT) on body coloration are of high priority.


Assuntos
Melanocortinas , Compostos Orgânicos de Estanho , Perciformes , Animais , Pró-Opiomelanocortina , Ecossistema , Melaninas/genética , Pteridinas , Peixes/genética , Perciformes/genética , Pterinas , Redes e Vias Metabólicas
12.
J Pharm Biomed Anal ; 243: 116072, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38437786

RESUMO

AIM: Type 1 diabetes (T1D) and its complications are known to be associated with oxidative stress. Pteridine derivatives and indoleamine 2,3-dioxygenase (IDO) activity can be used as biomarkers in the evaluation of oxidative stress. In this study, our aim is to compare the concentrations of serum and urinary pteridine derivatives, as well as serum IDO activity, in children and adolescents diagnosed with T1D and those in a healthy control group. METHOD: A cross-sectional study was performed and included 93 patients with T1D and 71 healthy children. Serum and urine biopterin, neopterin, monapterin, pterin, isoxanthopterin, and pterin-6-carboxylic acid (6PTC) and serum tryptophan and kynurenine levels were analyzed and compared with healthy controls. High-performance liquid chromatography was used for the analysis of pteridine derivatives, tryptophan, and kynurenine. Xanthine oxidase (XO) activity, a marker of oxidative stress, was defined by measurement of serum and urine isoxanthopterin. As an indicator of indolamine 2,3-dioxygenase (IDO) activity, the ratio of serum kynurenine/tryptophan was used. RESULTS: Serum isoxanthopterin and tryptophan concentrations were increased, and serum 6PTC concentration was decreased in children with T1D (p=0.01, p=0.021, p<0.001, respectively). In children with T1D, IDO activity was not different from healthy controls (p>0.05). Serum neopterin level and duration of diabetes were weakly correlated (p=0.045, r=0.209); urine neopterin/creatinine and isoxanthopterin/creatinine levels were weakly correlated with HbA1c levels (p=0.005, r=0.305; p=0.021, r=0.249, respectively). Urine pterin/creatinine level negatively correlated with body mass index-SDS. (p=0.015, r=-0.208). CONCLUSION: We found for the first time that isoxanthopterin levels increased and 6PTC levels decreased in children and adolescents with T1D. Elevated isoxanthopterin levels suggest that the XO activity is increased in TID. Increased XO activity may be an indicator of vascular complications reflecting T1D-related endothelial dysfunction.


Assuntos
Diabetes Mellitus Tipo 1 , Triptofano , Xantopterina , Criança , Adolescente , Humanos , Cinurenina/metabolismo , Neopterina , Creatinina , Estudos Transversais , Pteridinas
13.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 4883-4894, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38165424

RESUMO

A common approach to cancer therapy is the combination of a natural product with chemotherapy to overcome sustained cell proliferation and chemotherapy resistance obstacles. Diosgenin (DG) is a phytosteroidal saponin that is naturally present in a vast number of plants and has been shown to exert anti-cancer activities against several tumor cells. Herein, we assessed the chemo-modulatory effects of DG on volasertib (Vola) as a polo-like kinase 1 (PLK1) inhibitor and doxorubicin (DOX) in hepatocellular carcinoma (HCC) cell lines. DOX and Vola were applied to two human HCC cell lines (HepG2 and Huh-7) alone or in combination with DG. The cell viability was determined, and gene expressions of PLK1, PCNA, P53, caspase-3, and PARP1 were evaluated by RT-qPCR. Moreover, apoptosis induction was determined by measuring active caspase-3 level using ELISA method. DG enhanced the anticancer effects of Vola and DOX. Moreover, DG enhanced Vola- and DOX-induced cell death by downregulating the expressions of PLK1 and PCNA, elevating the expressions of P53 and active caspase-3. DG showed promising chemo-modulatory effects to Vola and DOX against HCC that may be attributed partly to the downregulation of PLK1 and PCNA, upregulation of tumor suppressor protein P53, and apoptosis induction. Thus, DG combination with chemotherapy may be a promising treatment approach for HCC.


Assuntos
Apoptose , Carcinoma Hepatocelular , Proteínas de Ciclo Celular , Diosgenina , Doxorrubicina , Sinergismo Farmacológico , Neoplasias Hepáticas , Quinase 1 Polo-Like , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Pteridinas , Humanos , Doxorrubicina/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Pteridinas/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Diosgenina/farmacologia , Diosgenina/análogos & derivados , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Proteína Supressora de Tumor p53/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Caspase 3/metabolismo , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos
14.
Sci Rep ; 13(1): 22171, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092798

RESUMO

Three types of luminescence have been reported in living organisms: bioluminescence (BL), ultraweak chemiluminescence and biofluorescence (FL). In millipedes, both BL and FL have been reported in Motyxia sequoiae and related Xystodesmidae species. Noteworthy, when walking at night with a UV lantern at the Biological Station of Highlands, I found three blue-fluorescent millipedes (Deltotaria brimleii, Deltotoria sp and Euryus orestes) that also displayed phosphorescence after turning off the UV source. The phosphorescence of the cuticle was in the green region (λmax = 525 nm). The phosphorescence remained associated with cuticle and pellets, but frozen fluorescent supernatants, also displayed phosphorescence. The fluorescent compounds extracted from the cuticles in water and methanol and separated by TLC, displayed fluorescence spectra similar to that of 6-pteridine carboxylic acid. In contrast to Motyxia sequoiae cuticle extracts, no bioluminescence was found in Deltatoria and Euryus extracts  in the presence of MgATP, but weak green chemiluminescence was detected with H2O2 and superoxide. The spectral overlapping of phosphorescence of these millipedes with the bioluminescence of Motyxia (~ 507 nm) and the intimate association of both types of luminescence with the cuticles, raises the possibility that bioluminescence in Motyxia may arise from chemiluminescence reactions preferentially generating triplet excited states instead of singlet states.


Assuntos
Artrópodes , Peróxido de Hidrogênio , Animais , Fluorescência , Luminescência , Pteridinas
15.
Molecules ; 28(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005256

RESUMO

The parasites Trypanosoma brucei (Tb) and Leishmania major (Lm) cause the tropical diseases sleeping sickness, nagana, and cutaneous leishmaniasis. Every year, millions of humans, as well as animals, living in tropical to subtropical climates fall victim to these illnesses' health threats. The parasites' frequent drug resistance and widely spread natural reservoirs heavily impede disease prevention and treatment. Due to pteridine auxotrophy, trypanosomatid parasites have developed a peculiar enzyme system consisting of dihydrofolate reductase-thymidylate synthase (DHFR-TS) and pteridine reductase 1 (PTR1) to support cell survival. Extending our previous studies, we conducted a comparative study of the T. brucei (TbDHFR, TbPTR1) and L. major (LmDHFR, LmPTR1) enzymes to identify lead structures with a dual inhibitory effect. A pharmacophore-based in silico screening of three natural product databases (approximately 4880 compounds) was performed to preselect possible inhibitors. Building on the in silico results, the inhibitory potential of promising compounds was verified in vitro against the recombinant DHFR and PTR1 of both parasites using spectrophotometric enzyme assays. Twelve compounds were identified as dual inhibitors against the Tb enzymes (0.2 µM < IC50 < 85.1 µM) and ten against the respective Lm enzymes (0.6 µM < IC50 < 84.5 µM). These highly promising results may represent the starting point for the future development of new leads and drugs utilizing the trypanosomatid pteridine metabolism as a target.


Assuntos
Leishmania major , Trypanosoma brucei brucei , Tripanossomíase Africana , Humanos , Animais , Tetra-Hidrofolato Desidrogenase/metabolismo , Pteridinas/química , Tripanossomíase Africana/tratamento farmacológico
16.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895036

RESUMO

Red coloration is considered an economically important trait in some fish species, including spotted scat, a marine aquaculture fish. Erythrophores are gradually covered by melanophores from the embryonic stage. Despite studies of black spot formation and melanophore coloration in the species, little is known about erythrophore development, which is responsible for red coloration. 1-phenyl 2-thiourea (PTU) is a tyrosinase inhibitor commonly used to inhibit melanogenesis and contribute to the visualization of embryonic development. In this study, spotted scat embryos were treated with 0.003% PTU from 0 to 72 h post fertilization (hpf) to inhibit melanin. Erythrophores were clearly observed during the embryonic stage from 14 to 72 hpf, showing an initial increase (14 to 36 hpf), followed by a gradual decrease (36 to 72 hpf). The number and size of erythrophores at 36 hpf were larger than those at 24 and 72 hpf. At 36 hpf, LC-MS and absorbance spectrophotometry revealed that the carotenoid content was eight times higher than the pteridine content, and ß-carotene and lutein were the main pigments related to red coloration in spotted scat larvae. Compared with their expression in the normal hatching group, rlbp1b, rbp1.1, and rpe65a related to retinol metabolism and soat2 and apoa1 related to steroid hormone biosynthesis and steroid biosynthesis were significantly up-regulated in the PTU group, and rh2 associated with phototransduction was significantly down-regulated. By qRT-PCR, the expression levels of genes involved in carotenoid metabolism (scarb1, plin6, plin2, apoda, bco1, and rep65a), pteridine synthesis (gch2), and chromatophore differentiation (slc2a15b and csf1ra) were significantly higher at 36 hpf than at 24 hpf and 72 hpf, except for bco1. These gene expression profiles were consistent with the developmental changes of erythrophores. These findings provide insights into pigment cell differentiation and gene function in the regulation of red coloration and contribute to selective breeding programs for ornamental aquatic animals.


Assuntos
Peixes , Perfilação da Expressão Gênica , Animais , Larva/genética , Peixes/genética , Carotenoides , Pteridinas , Esteroides
17.
Metab Brain Dis ; 38(8): 2645-2651, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688715

RESUMO

Inflammation is thought to be involved in the pathogenesis of autism spectrum disorder (ASD). Pteridine metabolites are biomarkers of inflammation that increase on immune system activation. In this study, we investigated the urinary pteridine metabolites in ASD patients as a possible biomarker for immune activation and inflammation. This observational, cross-sectional, prospective study collected urine samples from 212 patients with ASD and 68 age- and sex-matched healthy individuals. Urine neopterin (NE) and biopterin (BIO) levels were measured. Patients who had chronic disorders, active infection at the time of sampling, or high C-reactive protein levels were excluded. The urine NE and BIO concentrations were determined by high-performance liquid chromatography. The ratios of both NE and BIO to creatinine (CRE) were used to standardise the measurements. The NE/CRE and NE/BIO levels were significantly higher in ASD patients than controls. Univariate and multivariate models revealed a significant increase in NE/CRE and NE/BIO in ASD patients. There was a significant relationship between the NE/BIO [average area under the curve (AUC) = 0.717; range: 0.637-0.797] and NE/CRE (average AUC = 0.756; range: 0.684-0.828) ratios, which distinguished individuals with ASD from controls. The elevated NE/CRE and NE/BIO ratios suggest that inflammation and T cell-mediated immunity are involved in the pathophysiology of autism. NE/BIO could serve as a diagnostic inflammatory marker in the pathogenesis of ASD.


Assuntos
Transtorno do Espectro Autista , Biopterinas , Humanos , Neopterina , Estudos Transversais , Estudos Prospectivos , Pteridinas/urina , Biomarcadores/urina , Inflamação
18.
Commun Biol ; 6(1): 801, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532778

RESUMO

Molybdenum (Mo) as essential micronutrient for plants, acts as active component of molybdenum cofactor (Moco). Core metabolic processes like nitrate assimilation or abscisic-acid biosynthesis rely on Moco-dependent enzymes. Although a family of molybdate transport proteins (MOT1) is known to date in Arabidopsis, molybdate homeostasis remained unclear. Here we report a second family of molybdate transporters (MOT2) playing key roles in molybdate distribution and usage. KO phenotype-analyses, cellular and organ-specific localization, and connection to Moco-biosynthesis enzymes via protein-protein interaction suggest involvement in cellular import of molybdate in leaves and reproductive organs. Furthermore, we detected a glutathione-molybdate complex, which reveals how vacuolar storage is maintained. A putative Golgi S-adenosyl-methionine transport function was reported recently for the MOT2-family. Here, we propose a moonlighting function, since clear evidence of molybdate transport was found in a yeast-system. Our characterization of the MOT2-family and the detection of a glutathione-molybdate complex unveil the plant-wide way of molybdate.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Molibdênio/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Pteridinas , Homeostase
19.
Protein Sci ; 32(9): e4753, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37572332

RESUMO

Within the cell, the trace element molybdenum (Mo) is only biologically active when complexed either within the nitrogenase-specific FeMo cofactor or within the molybdenum cofactor (Moco). Moco consists of an organic part, called molybdopterin (MPT) and an inorganic part, that is, the Mo-center. The enzyme which catalyzes the Mo-center formation is the molybdenum insertase (Mo-insertase). Mo-insertases consist of two functional domains called G- and E-domain. The G-domain catalyzes the formation of adenylated MPT (MPT-AMP), which is the substrate for the E-domain, that catalyzes the actual molybdate insertion reaction. Though the functions of E- and G-domain have been elucidated to great structural and mechanistic detail, their combined function is poorly characterized. In this work, we describe a structural model of the eukaryotic Mo-insertase Cnx1 complex that was generated based on cross-linking mass spectrometry combined with computational modeling. We revealed Cnx1 to form an asymmetric hexameric complex which allows the E- and G-domain active sites to align in a catalytic productive orientation toward each other.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Metaloproteínas , Proteínas de Arabidopsis/química , Calnexina/química , Calnexina/metabolismo , Arabidopsis/química , Molibdênio/metabolismo , Coenzimas/química , Metaloproteínas/química , Pteridinas/química
20.
Molecules ; 28(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37513211

RESUMO

Mo/W-containing formate dehydrogenases (FDH) catalyzes the reversible oxidation of formate to carbon dioxide at their molybdenum or tungsten active sites. The metal-containing FDHs are members of the dimethylsulfoxide reductase family of mononuclear molybdenum cofactor (Moco)- or tungsten cofactor (Wco)-containing enzymes. In these enzymes, the active site in the oxidized state comprises a Mo or W atom present in the bis-Moco, which is coordinated by the two dithiolene groups from the two MGD moieties, a protein-derived SeCys or Cys, and a sixth ligand that is now accepted as being a sulfido group. SeCys-containing enzymes have a generally higher turnover number than Cys-containing enzymes. The analogous chemical properties of W and Mo, the similar active sites of W- and Mo-containing enzymes, and the fact that W can replace Mo in some enzymes have led to the conclusion that Mo- and W-containing FDHs have the same reaction mechanism. Details of the catalytic mechanism of metal-containing formate dehydrogenases are still not completely understood and have been discussed here.


Assuntos
Formiato Desidrogenases , Metaloproteínas , Formiato Desidrogenases/metabolismo , Oxirredução , Metaloproteínas/química , Molibdênio/química , Domínio Catalítico , Pteridinas/química , Coenzimas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...