Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.870
Filtrar
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 717-723, 2024 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-38948284

RESUMO

Objective: The aim of this study is to explore the practical value of prenatal magnetic resonance imaging (MRI) in the assessment of congenital cystic lung disease in fetuses, to evaluate the relative size of the lesion and the status of lung development, and to make an attempt at utilizing the strength of MRI in post-processing to obtain assessment indicators of the size of the lesion and the status of lung development, with which predictions can be made for the prognosis that these fetuses may face after birth. We retrospectively collected and analyzed the data of fetuses diagnosed with congenital cystic lung disease. Prenatal ultrasound examination of these fetuses led to the diagnosis that they were suspected of having congenital cystic lung disease and the diagnosis was confirmed by subsequent prenatal MRI. The fetuses were followed up to track their condition at birth (postnatal respiratory distress, mechanical ventilation, etc.), whether the fetuses underwent surgical treatment, and the recovery of the fetuses after surgical treatment. The recovery of the fetuses was followed up to explore the feasibility of prenatal MRI examination to assess fetal congenital pulmonary cystic disease, and to preliminarily explore the predictive value of prenatal MRI for the prognosis of fetuses with congenital pulmonary cystic disease. Methods: MRI fetal images were collected from pregnant women who attended the West China Second University Hospital of Sichuan University between May 2018 and March 2023 and who were diagnosed with fetal congenital pulmonary cystic disease by prenatal ultrasound and subsequent MRI. Fetal MRI images of congenital cystic lung disease were post-processed to obtain the fetal lung lesion volume, the fetal affected lung volume, the healthy lung volume, and the fetal head circumference measurements. The signal intensity of both lungs and livers, the lesion volume/the affected lung volume, the lesion volume/total lung volume, the cystic volume ratio (CVR), and the bilateral lung-liver signal intensity ratio were measured. The feasibility and value of MRI post-processing acquisition indexes for evaluating the prognosis of fetuses with congenital cystic lung disease were further analyzed by combining the follow-up results obtained 6 months after the birth of the fetus. Logistic regression models were used to quantify the differences in maternal age, gestational week at the time of MRI, CVR, and bilateral lung-to-liver signal intensity ratio, and to assess whether these metrics correlate with poor prognosis. Receiver operating characteristic (ROC) curves were used to assess the value of the parameters obtained by MRI calculations alone and in combination with multiple metrics for predicting poor prognosis after birth. Results: We collected a total of 67 cases of fetuses diagnosed with congenital cystic lung disease by fetal MRI between May 2018 and March 2023, and excluded 6 cases with no normal lung tissue in the affected lungs, 11 cases of fetal induction, and 3 cases of loss of pregnancy. In the end, 47 cases of fetuses with congenital cystic lung disease were included, of which 30 cases had a good prognosis and 17 cases had a poor prognosis. The difference in the difference between the signal intensity ratios of the affected and healthy sides of the lungs and livers of the fetuses in the good prognosis group and that in the poor prognosis group was statistically significant (P<0.05), and the signal intensity ratio of the healthy side of the lungs and livers was higher than the signal intensity ratio of the affected side of the lungs and livers. Further analysis showed that CVR (odds ratio [OR]=1.058, 95% confidence interval [CI]: 1.014-1.104), and the difference between the lung-to-liver signal intensity ratios of the affected and healthy sides (OR=0.814, 95% CI: 0.700-0.947) were correlated with poor prognosis of birth in fetuses with congenital cystic lung disease. In addition, ROC curve analysis showed that the combined application of lesion volume/affected lung volume and the observed difference in the signal intensity ratio between the affected and healthy lungs and liver predicted the prognosis of children with congenital cystic lung disease more accurately than the single-parameter judgment did, with the area under the curve being 0.988, and the cut-off value being 0.33, which corresponded to a sensitivity of 100%, a specificity of 93.3%, and a 95% CI of 0.966-1.000. Conclusions: Based on the MRI of fetuses with congenital cystic lung disease, we obtained information on lesion volume, lesion volume/affected lung volume, lesion volume/total lung volume, CVR, and bilateral lung-to-liver signal intensity ratio difference, all of which showing some clinical value in predicting the poor prognosis in fetuses with congenital cystic lung disease. Furthermore, among the combined indexes, the lesion volume/affected lung volume and bilateral lung-to-liver signal intensity ratio difference are more effective predictors for the poor prognosis of fetuses with congenital cystic lung disease, and show better efficacy in predicting the poor prognosis of fetuses with congenital cystic lung disease. This provides a new and effective predictive method for further assessment of pulmonary lung development in fetuses with congenital cystic lung disease, and helps improve the assessment and prediction of the prognosis of fetuses with congenital cystic lung disease.


Assuntos
Pulmão , Imageamento por Ressonância Magnética , Diagnóstico Pré-Natal , Humanos , Feminino , Imageamento por Ressonância Magnética/métodos , Gravidez , Prognóstico , Diagnóstico Pré-Natal/métodos , Estudos Retrospectivos , Pulmão/diagnóstico por imagem , Pulmão/embriologia , Pulmão/patologia , Malformação Adenomatoide Cística Congênita do Pulmão/diagnóstico por imagem , Doenças Fetais/diagnóstico por imagem , Cistos/diagnóstico por imagem , Cistos/congênito , Ultrassonografia Pré-Natal/métodos
2.
Nat Commun ; 15(1): 5898, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003323

RESUMO

Studying human fetal lungs can inform how developmental defects and disease states alter the function of the lungs. Here, we sequenced >150,000 single cells from 19 healthy human pseudoglandular fetal lung tissues ranging between gestational weeks 10-19. We capture dynamic developmental trajectories from progenitor cells that express abundant levels of the cystic fibrosis conductance transmembrane regulator (CFTR). These cells give rise to multiple specialized epithelial cell types. Combined with spatial transcriptomics, we show temporal regulation of key signalling pathways that may drive the temporal and spatial emergence of specialized epithelial cells including ciliated and pulmonary neuroendocrine cells. Finally, we show that human pluripotent stem cell-derived fetal lung models contain CFTR-expressing progenitor cells that capture similar lineage developmental trajectories as identified in the native tissue. Overall, this study provides a comprehensive single-cell atlas of the developing human lung, outlining the temporal and spatial complexities of cell lineage development and benchmarks fetal lung cultures from human pluripotent stem cell differentiations to similar developmental window.


Assuntos
Diferenciação Celular , Regulador de Condutância Transmembrana em Fibrose Cística , Células Epiteliais , Feto , Pulmão , Humanos , Pulmão/embriologia , Pulmão/citologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feto/citologia , Feto/embriologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Plasticidade Celular , Linhagem da Célula , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Análise de Célula Única , Transcriptoma , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais
3.
Dev Biol ; 515: 92-101, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39029571

RESUMO

Congenital lung malformations are fatal at birth in their severe forms. Prevention and early intervention of these birth defects require a comprehensive understanding of the molecular mechanisms of lung development. We find that the loss of inturned (Intu), a cilia and planar polarity effector gene, severely disrupts growth and branching morphogenesis of the mouse embryonic lungs. Consistent with our previous results indicating an important role for Intu in ciliogenesis and hedgehog (Hh) signaling, we find greatly reduced number of primary cilia in both the epithelial and mesenchymal tissues of the lungs. We also find significantly reduced expression of Gli1 and Ptch1, direct targets of Hh signaling, suggesting disruption of cilia-dependent Hh signaling in Intu mutant lungs. An agonist of the Hh pathway activator, smoothened, increases Hh target gene expression and tubulogenesis in explanted wild type, but not Intu mutant, lungs, suggesting impaired Hh signaling response underlying lung morphogenetic defects in Intu mutants. Furthermore, removing both Gli2 and Intu completely abolishes branching morphogenesis of the lung, strongly supporting a mechanism by which Intu regulates lung growth and patterning through cilia-dependent Hh signaling. Moreover, a transcriptomics analysis identifies around 200 differentially expressed genes (DEGs) in Intu mutant lungs, including known Hh target genes Gli1, Ptch1/2 and Hhip. Genes involved in muscle differentiation and function are highly enriched among the DEGs, consistent with an important role of Hh signaling in airway smooth muscle differentiation. In addition, we find that the difference in gene expression between the left and right lungs diminishes in Intu mutants, suggesting an important role of Intu in asymmetrical growth and patterning of the mouse lungs.


Assuntos
Cílios , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog , Pulmão , Transdução de Sinais , Animais , Camundongos , Padronização Corporal/genética , Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Pulmão/embriologia , Pulmão/metabolismo , Morfogênese/genética , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética
4.
Curr Top Dev Biol ; 160: 65-86, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38937031

RESUMO

Morphogenesis is a physical process that sculpts the final functional forms of tissues and organs. Remarkably, the lungs of terrestrial vertebrates vary dramatically in form across species, despite providing the same function of transporting oxygen and carbon dioxide. These divergent forms arise from distinct physical processes through which the epithelium of the embryonic lung responds to the mechanical properties of its surrounding mesenchymal microenvironment. Here we compare the physical processes that guide folding of the lung epithelium in mammals, birds, and reptiles, and suggest a conceptual framework that reconciles how conserved molecular signaling generates divergent mechanical forces across these species.


Assuntos
Pulmão , Morfogênese , Vertebrados , Animais , Pulmão/embriologia , Pulmão/crescimento & desenvolvimento , Vertebrados/embriologia , Humanos
5.
Elife ; 122024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856718

RESUMO

Abnormal lung development can cause congenital pulmonary cysts, the mechanisms of which remain largely unknown. Although the cystic lesions are believed to result directly from disrupted airway epithelial cell growth, the extent to which developmental defects in lung mesenchymal cells contribute to abnormal airway epithelial cell growth and subsequent cystic lesions has not been thoroughly examined. In the present study using genetic mouse models, we dissected the roles of bone morphogenetic protein (BMP) receptor 1a (Bmpr1a)-mediated BMP signaling in lung mesenchyme during prenatal lung development and discovered that abrogation of mesenchymal Bmpr1a disrupted normal lung branching morphogenesis, leading to the formation of prenatal pulmonary cystic lesions. Severe deficiency of airway smooth muscle cells and subepithelial elastin fibers were found in the cystic airways of the mesenchymal Bmpr1a knockout lungs. In addition, ectopic mesenchymal expression of BMP ligands and airway epithelial perturbation of the Sox2-Sox9 proximal-distal axis were detected in the mesenchymal Bmpr1a knockout lungs. However, deletion of Smad1/5, two major BMP signaling downstream effectors, from the lung mesenchyme did not phenocopy the cystic abnormalities observed in the mesenchymal Bmpr1a knockout lungs, suggesting that a Smad-independent mechanism contributes to prenatal pulmonary cystic lesions. These findings reveal for the first time the role of mesenchymal BMP signaling in lung development and a potential pathogenic mechanism underlying congenital pulmonary cysts.


Congenital disorders are medical conditions that are present from birth. Although many congenital disorders are rare, they can have a severe impact on the quality of life of those affected. For example, congenital pulmonary airway malformation (CPAM) is a rare congenital disorder that occurs in around 1 out of every 25,000 pregnancies. In CPAM, abnormal, fluid-filled sac-like pockets of tissue, known as cysts, form within the lungs of unborn babies. After birth, these cysts become air-filled and do not behave like normal lung tissue and stop a baby's lungs from working properly. In severe cases, babies with CPAM need surgery immediately after birth. We still do not understand exactly what the underlying causes of CPAM might be. CPAM is not considered to be hereditary ­ that is, it does not appear to be passed down in families ­ nor is it obviously linked to any environmental factors. CPAM is also very difficult to study, because researchers cannot access tissue samples during the critical early stages of the disease. To overcome these difficulties, Luo et al. wanted to find a way to study CPAM in the laboratory. First, they developed a non-human animal 'model' that naturally forms CPAM-like lung cysts, using genetically modified mice where the gene for the signaling molecule Bmpr1a had been deleted in lung cells. Normally, Bmpr1a is part of a set of the molecular instructions, collectively termed BMP signaling, which guide healthy lung development early in life. However, mouse embryos lacking Bmpr1a developed abnormal lung cysts that were similar to those found in CPAM patients, suggesting that problems with BMP signalling might also trigger CPAM in humans. Luo et al. also identified several other genes in the Bmpr1a-deficient mouse lungs that had abnormal patterns of activity. All these genes were known to be controlled by BMP signaling, and to play a role in the development and organisation of lung tissue. This suggests that when these genes are not controlled properly, they could drive formation of CPAM cysts when BMP signaling is compromised. This work is a significant advance in the tools available to study CPAM. Luo et al.'s results also shed new light on the molecular mechanisms underpinning this rare disorder. In the future, Luo et al. hope this knowledge will help us develop better treatments for CPAM, or even help to prevent it altogether.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I , Pulmão , Mesoderma , Camundongos Knockout , Transdução de Sinais , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/deficiência , Camundongos , Pulmão/embriologia , Pulmão/metabolismo , Pulmão/patologia , Mesoderma/embriologia , Mesoderma/metabolismo , Cistos/metabolismo , Cistos/patologia , Cistos/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Pneumopatias/metabolismo , Pneumopatias/patologia , Pneumopatias/genética , Modelos Animais de Doenças
6.
Early Hum Dev ; 194: 106047, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38851106

RESUMO

BACKGROUND: Neonatal chest-Xray (CXR)s are commonly performed as a first line investigation for the evaluation of respiratory complications. Although lung area derived from CXRs correlates well with functional assessments of the neonatal lung, it is not currently utilised in clinical practice, partly due to the lack of reference ranges for CXR-derived lung area in healthy neonates. Advanced MR techniques now enable direct evaluation of both fetal pulmonary volume and area. This study therefore aims to generate reference ranges for pulmonary volume and area in uncomplicated pregnancies, evaluate the correlation between prenatal pulmonary volume and area, as well as to assess the agreement between antenatal MRI-derived and neonatal CXR-derived pulmonary area in a cohort of fetuses that delivered shortly after the antenatal MRI investigation. METHODS: Fetal MRI datasets were retrospectively analysed from uncomplicated term pregnancies and a preterm cohort that delivered within 72 h of the fetal MRI. All examinations included T2 weighted single-shot turbo spin echo images in multiple planes. In-house pipelines were applied to correct for fetal motion using deformable slice-to-volume reconstruction. An MRI-derived lung area was manually segmented from the average intensity projection (AIP) images generated. Postnatal lung area in the preterm cohort was measured from neonatal CXRs within 24 h of delivery. Pearson correlation coefficient was used to correlate MRI-derived lung volume and area. A two-way absolute agreement was performed between the MRI-derived AIP lung area and CXR-derived lung area. RESULTS: Datasets from 180 controls and 10 preterm fetuses were suitable for analysis. Mean gestational age at MRI was 28.6 ± 4.2 weeks for controls and 28.7 ± 2.7 weeks for preterm neonates. MRI-derived lung area correlated strongly with lung volumes (p < 0.001). MRI-derived lung area had good agreement with the neonatal CXR-derived lung area in the preterm cohort [both lungs = 0.982]. CONCLUSION: MRI-derived pulmonary area correlates well with absolute pulmonary volume and there is good correlation between MRI-derived pulmonary area and postnatal CXR-derived lung area when delivery occurs within a few days of the MRI examination. This may indicate that fetal MRI derived lung area may prove to be useful reference ranges for pulmonary areas derived from CXRs obtained in the perinatal period.


Assuntos
Pulmão , Imageamento por Ressonância Magnética , Humanos , Pulmão/diagnóstico por imagem , Pulmão/embriologia , Imageamento por Ressonância Magnética/métodos , Feminino , Gravidez , Recém-Nascido , Medidas de Volume Pulmonar/métodos , Estudos Retrospectivos
7.
Arterioscler Thromb Vasc Biol ; 44(8): 1784-1798, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38868942

RESUMO

BACKGROUND: The chromatin-remodeling enzymes BRG1 (brahma-related gene 1) and CHD4 (chromodomain helicase DNA-binding protein 4) independently regulate the transcription of genes critical for vascular development, but their coordinated impact on vessels in late-stage embryos has not been explored. METHODS: In this study, we genetically deleted endothelial Brg1 and Chd4 in mixed background mice (Brg1fl/fl;Chd4fl/fl;VE-Cadherin-Cre), and littermates that were negative for Cre recombinase were used as controls. Tissues were analyzed by immunostaining, immunoblot, and flow cytometry. Quantitative reverse transcription polymerase chain reaction was used to determine gene expression, and chromatin immunoprecipitation revealed gene targets of BRG1 and CHD4 in cultured endothelial cells. RESULTS: We found Brg1/Chd4 double mutants grew normally but died soon after birth with small and compact lungs. Despite having normal cellular composition, distal air sacs of the mutant lungs displayed diminished ECM (extracellular matrix) components and TGFß (transforming growth factor-ß) signaling, which typically promotes ECM synthesis. Transcripts for collagen- and elastin-related genes and the TGFß ligand Tgfb1 were decreased in mutant lung endothelial cells, but genetic deletion of endothelial Tgfb1 failed to recapitulate the small lungs and ECM defects seen in Brg1/Chd4 mutants. We instead found several ECM genes to be direct targets of BRG1 and CHD4 in cultured endothelial cells. CONCLUSIONS: Collectively, our data highlight essential roles for endothelial chromatin-remodeling enzymes in promoting ECM deposition in the distal lung tissue during the saccular stage of embryonic lung development.


Assuntos
Montagem e Desmontagem da Cromatina , DNA Helicases , Células Endoteliais , Regulação da Expressão Gênica no Desenvolvimento , Pulmão , Proteínas Nucleares , Fatores de Transcrição , Animais , DNA Helicases/metabolismo , DNA Helicases/genética , DNA Helicases/deficiência , Pulmão/embriologia , Pulmão/metabolismo , Pulmão/enzimologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Células Endoteliais/metabolismo , Células Endoteliais/enzimologia , Camundongos Knockout , Transdução de Sinais , Matriz Extracelular/metabolismo , Camundongos , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos Endogâmicos C57BL , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Fenótipo , Humanos , Organogênese
8.
J Perinat Med ; 52(6): 633-637, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38788053

RESUMO

OBJECTIVES: Increased fetal lung heterogeneity has been associated with term fetal lungs in singleton gestations. The objective of this study was to determine if fetal lung heterogeneity index (HI) differs between twin and singleton fetuses in the late second and third trimesters. METHODS: Prospective cohort study of women with singleton and twin gestations with medically-indicated ultrasound examinations at 24 weeks of gestation onward. Grayscale transverse fetal lung images were obtained at the level of the four-chamber heart. A region of interest was selected in each fetal lung image. Fetal lung HI was determined with MATLAB software using a dithering technique with ultrasound image pixels transformed into a binary map form from which a dynamic range value was determined. HI averages and standard deviations were generated for twin and singleton fetuses from 24 weeks gestation onward. Two sample t-tests were used to compare the mean HI at each gestational week between singleton and twin fetuses. RESULTS: In total, 388 singleton and 478 twin images were analyzed. From 35 through 38 weeks of gestation a statistically significant divergence in mean HI was observed with higher means in singleton compared to twin fetuses. At 24 weeks of gestation there was a significantly higher HI in twin fetuses compared to singletons. No differences in fetal lung HI were observed between 25 and 34 weeks gestational age. CONCLUSIONS: Differences in fetal lung HI were observed when comparing twin and singleton fetuses. Further investigation is required to determine the potential clinical significance of these findings.


Assuntos
Pulmão , Gravidez de Gêmeos , Ultrassonografia Pré-Natal , Humanos , Feminino , Gravidez , Ultrassonografia Pré-Natal/métodos , Pulmão/diagnóstico por imagem , Pulmão/embriologia , Estudos Prospectivos , Adulto , Terceiro Trimestre da Gravidez , Idade Gestacional , Segundo Trimestre da Gravidez
9.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732272

RESUMO

Lung branching morphogenesis relies on intricate epithelial-mesenchymal interactions and signaling networks. Still, the interplay between signaling and energy metabolism in shaping embryonic lung development remains unexplored. Retinoic acid (RA) signaling influences lung proximal-distal patterning and branching morphogenesis, but its role as a metabolic modulator is unknown. Hence, this study investigates how RA signaling affects the metabolic profile of lung branching. We performed ex vivo lung explant culture of embryonic chicken lungs treated with DMSO, 1 µM RA, or 10 µM BMS493. Extracellular metabolite consumption/production was evaluated by using 1H-NMR spectroscopy. Mitochondrial respiration and biogenesis were also analyzed. Proliferation was assessed using an EdU-based assay. The expression of crucial metabolic/signaling components was examined through Western blot, qPCR, and in situ hybridization. RA signaling stimulation redirects glucose towards pyruvate and succinate production rather than to alanine or lactate. Inhibition of RA signaling reduces lung branching, resulting in a cystic-like phenotype while promoting mitochondrial function. Here, RA signaling emerges as a regulator of tissue proliferation and lactate dehydrogenase expression. Furthermore, RA governs fatty acid metabolism through an AMPK-dependent mechanism. These findings underscore RA's pivotal role in shaping lung metabolism during branching morphogenesis, contributing to our understanding of lung development and cystic-related lung disorders.


Assuntos
Metabolismo Energético , Pulmão , Morfogênese , Transdução de Sinais , Tretinoína , Animais , Tretinoína/metabolismo , Tretinoína/farmacologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/embriologia , Metabolismo Energético/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Embrião de Galinha , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Galinhas
10.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38738653

RESUMO

During alveologenesis, multiple mesenchymal cell types play crucial roles in maximising the lung surface area. In their study, David Ornitz and colleagues define the repertoire of lung fibroblasts, with a particular focus on alveolar myofibroblasts. To know more about their work, we spoke to the first author, Yongjun Yin, and the corresponding author, David Ornitz, Alumni Endowed Professor at the Department of Developmental Biology, Washington University School of Medicine, St. Louis.


Assuntos
Biologia do Desenvolvimento , Humanos , História do Século XXI , Biologia do Desenvolvimento/história , História do Século XX , Pulmão/embriologia , Pulmão/metabolismo , Pulmão/citologia , Animais
11.
Dev Cell ; 59(10): 1302-1316.e5, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38569553

RESUMO

The planar cell polarity (PCP) complex is speculated to function in murine lung development, where branching morphogenesis generates an epithelial tree whose distal tips expand dramatically during sacculation. Here, we show that PCP is dispensable in the airway epithelium for sacculation. Rather, we find a Celsr1-independent role for the PCP component Vangl in the pulmonary mesenchyme: loss of Vangl1/2 inhibits mesenchymal thinning and expansion of the saccular epithelium. Further, loss of mesenchymal Wnt5a mimics sacculation defects observed in Vangl2-mutant lungs, implicating mesenchymal Wnt5a/Vangl signaling as a key regulator of late lung morphogenesis. A computational model predicts that sacculation requires a fluid mesenchymal compartment. Lineage-tracing and cell-shape analyses are consistent with the mesenchyme acting as a fluid tissue, suggesting that loss of Vangl1/2 impacts the ability of mesenchymal cells to exchange neighbors. Our data thus identify an explicit function for Vangl and the pulmonary mesenchyme in actively shaping the saccular epithelium.


Assuntos
Polaridade Celular , Pulmão , Mesoderma , Morfogênese , Proteínas do Tecido Nervoso , Animais , Mesoderma/metabolismo , Camundongos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/embriologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Transdução de Sinais , Organogênese/genética , Receptores Acoplados a Proteínas G
12.
J Perinat Med ; 52(5): 546-551, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38634775

RESUMO

OBJECTIVES: The failure of a fetus to develop to its full potential due to maternal or placental factors is known as intrauterine growth restriction (IUGR). Fetal head growth is usually preserved in that situation producing a potential discordance between head and body size. Our goal is to discover if IUGR has an impact on the prenatal ultrasound measurements taken to assess pulmonary development in congenital diaphragmatic hernia (CDH). METHODS: A retrospective chart review (IRB#2017-6361) was performed on all prenatally diagnosed CDH patients from 2007 to 2016. Patient demographics, fetal and neonatal anthropometric measurements, and fetal lung parameters were the main subjects of the data that were gathered. Fetal growth was assessed by the curves based on US data by Olsen et al. and by Peleg et al. Of 147 CDH patients, 19 (12.9 %) patients were diagnosed with IUGR before the 30th gestational week while there were 20 (13.6 %) patients after the 30th gestational week. RESULTS: Patients with IUGR and the observed-to-expected lung-to-head ratio (O/E LHR) less than 25 % had better survival rates both to discharge and date compared to non IUGR group (p=0.226, OR 2.25 95 % CI 0.60-1.08 and p=0.175, OR 2.40 95 % CI 0.66-1.17, respectively). Moreover, the ECMO need of the patients who had IUGR and O/E LHR less than 25 % was significantly less than the patients without IUGR (38.5 vs. 80.0 %, p=0.005). CONCLUSIONS: This study confirms that the intrauterine measurements to predict pulmonary hypoplasia in CDH patients are misleading in the presence of IUGR and cause an overestimation.


Assuntos
Retardo do Crescimento Fetal , Hérnias Diafragmáticas Congênitas , Pulmão , Ultrassonografia Pré-Natal , Humanos , Hérnias Diafragmáticas Congênitas/diagnóstico , Hérnias Diafragmáticas Congênitas/diagnóstico por imagem , Retardo do Crescimento Fetal/diagnóstico , Retardo do Crescimento Fetal/diagnóstico por imagem , Feminino , Ultrassonografia Pré-Natal/métodos , Estudos Retrospectivos , Gravidez , Pulmão/diagnóstico por imagem , Pulmão/embriologia , Recém-Nascido , Masculino , Adulto , Idade Gestacional
13.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674074

RESUMO

Plexiform lesions are a hallmark of pulmonary arterial hypertension (PAH) in humans and are proposed to stem from dysfunctional angioblasts. Broiler chickens (Gallus gallus) are highly susceptible to PAH, with plexiform-like lesions observed in newly hatched individuals. Here, we reported the emergence of plexiform-like lesions in the embryonic lungs of broiler chickens. Lung samples were collected from broiler chickens at embryonic day 20 (E20), hatch, and one-day-old, with PAH-resistant layer chickens as controls. Plexiform lesions consisting of CD133+/vascular endothelial growth factor receptor type-2 (VEGFR-2)+ angioblasts were exclusively observed in broiler embryos and sporadically in layer embryos. Distinct gene profiles of angiogenic factors were observed between the two strains, with impaired VEGF-A/VEGFR-2 signaling correlating with lesion development and reduced arteriogenesis. Pharmaceutical inhibition of VEGFR-2 resulted in enhanced lesion development in layer embryos. Moreover, broiler embryonic lungs displayed increased activation of HIF-1α and nuclear factor erythroid 2-related factor 2 (Nrf2), indicating a hypoxic state. Remarkably, we found a negative correlation between lung Nrf2 activation and VEGF-A and VEGFR-2 expression. In vitro studies indicated that Nrf2 overactivation restricted VEGF signaling in endothelial progenitor cells. The findings from broiler embryos suggest an association between plexiform lesion development and impaired VEGF system due to aberrant activation of Nrf2.


Assuntos
Galinhas , Pulmão , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Embrião de Galinha , Pulmão/metabolismo , Pulmão/embriologia , Pulmão/patologia , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética
14.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602479

RESUMO

Alveologenesis is the final stage of lung development in which the internal surface area of the lung is increased to facilitate efficient gas exchange in the mature organism. The first phase of alveologenesis involves the formation of septal ridges (secondary septae) and the second phase involves thinning of the alveolar septa. Within secondary septa, mesenchymal cells include a transient population of alveolar myofibroblasts (MyoFBs) and a stable but poorly described population of lipid-rich cells that have been referred to as lipofibroblasts or matrix fibroblasts (MatFBs). Using a unique Fgf18CreER lineage trace mouse line, cell sorting, single-cell RNA sequencing and primary cell culture, we have identified multiple subtypes of mesenchymal cells in the neonatal lung, including an immature progenitor cell that gives rise to mature MyoFB. We also show that the endogenous and targeted ROSA26 locus serves as a sensitive reporter for MyoFB maturation. These studies identify a MyoFB differentiation program that is distinct from other mesenchymal cell types and increases the known repertoire of mesenchymal cell types in the neonatal lung.


Assuntos
Animais Recém-Nascidos , Diferenciação Celular , Pulmão , Miofibroblastos , Animais , Miofibroblastos/metabolismo , Miofibroblastos/citologia , Camundongos , Pulmão/citologia , Pulmão/embriologia , Pulmão/metabolismo , Linhagem da Célula , Organogênese , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo
16.
Am J Respir Crit Care Med ; 210(2): 167-177, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38507610

RESUMO

Rationale: Recent efforts in bioengineering and embryonic stem cell (ESC) technology allowed the generation of ESC-derived mouse lung tissues in transgenic mice that were missing critical morphogenetic genes. Epithelial cell lineages were efficiently generated from ESC, but other cell types were mosaic. A complete contribution of donor ESCs to lung tissue has never been achieved. The mouse lung has never been generated in a rat. Objective: We sought to generate the mouse lung in a rat. Methods: Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 genome editing was used to disrupt the Nkx2-1 gene in rat one-cell zygotes. Interspecies mouse-rat chimeras were produced by injection of wild-type mouse ESCs into Nkx2-1-deficient rat embryos with lung agenesis. The contribution of mouse ESCs to the lung tissue was examined by immunostaining, flow cytometry, and single-cell RNA sequencing. Measurements and Main Results: Peripheral pulmonary and thyroid tissues were absent in rat embryos after CRISPR-Cas9-mediated disruption of the Nkx2-1 gene. Complementation of rat Nkx2-1-/- blastocysts with mouse ESCs restored pulmonary and thyroid structures in mouse-rat chimeras, leading to a near-99% contribution of ESCs to all respiratory cell lineages. Epithelial, endothelial, hematopoietic, and stromal cells in ESC-derived lungs were highly differentiated and exhibited lineage-specific gene signatures similar to those of respiratory cells from the normal mouse lung. Analysis of receptor-ligand interactions revealed normal signaling networks between mouse ESC-derived respiratory cells differentiated in a rat. Conclusions: A combination of CRISPR-Cas9 genome editing and blastocyst complementation was used to produce mouse lungs in rats, making an important step toward future generations of human lungs using large animals as "bioreactors."


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Pulmão , Animais , Ratos , Edição de Genes/métodos , Pulmão/embriologia , Camundongos , Fator Nuclear 1 de Tireoide/genética , Células-Tronco Embrionárias
18.
Pediatr Radiol ; 54(5): 715-724, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38285191

RESUMO

BACKGROUND: The mediastinal shift angle is a new fetal magnetic resonance imaging (MRI) index that is reportedly correlated with postnatal survival in fetuses with congenital diaphragmatic hernia. However, its correlation in patients with congenital pulmonary airway malformation (CPAM) has not been assessed. OBJECTIVE: This study aimed to establish a normal range for the right/left mediastinal shift angles, to evaluate the mediastinal shift angle in fetuses with CPAM, to compare the mediastinal shift angle with the CPAM volume ratio, and to evaluate the predictive value of the mediastinal shift angle measurements. MATERIALS AND METHODS: To establish the normal range, we measured the mediastinal shift angle bilaterally in 124 fetuses without any lung abnormality (the control group). Subsequently, the mediastinal shift angle was measured in 32 fetuses pathologically diagnosed with CPAM. Moreover, the mediastinal shift angle and CPAM volume ratio were compared using fetal MRI. RESULTS: The mean values for the right/left mediastinal shift angles were 18.6°/26.3° and 39.2°/35.9° for control fetuses and fetuses with CPAM, respectively. The mediastinal shift angle and the CPAM volume ratio showed a positive statistical correlation. The area under the curve demonstrated high discriminatory accuracy for the mediastinal shift angle (0.76). CONCLUSION: The mediastinal shift angle has potential to replace the CPAM volume ratio for evaluating the severity of CPAM in fetal MRI.


Assuntos
Imageamento por Ressonância Magnética , Diagnóstico Pré-Natal , Humanos , Feminino , Imageamento por Ressonância Magnética/métodos , Diagnóstico Pré-Natal/métodos , Gravidez , Mediastino/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Pulmão/anormalidades , Pulmão/embriologia , Malformação Adenomatoide Cística Congênita do Pulmão/diagnóstico por imagem , Valores de Referência , Estudos Retrospectivos
19.
Pediatr Res ; 95(6): 1410-1411, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38263448

RESUMO

Uteroplacental insufficiency (UPI) is a major cause of fetal growth restriction (FGR). Leptin, an adipokine, has been shown to play a vital role in fetal organogenesis. There is evidence reporting leptin deficiency in preterm and growth-restricted fetuses. In this issue of Pediatric Research, Yuliana et al. report leptin expression and lung development in UPI-induced FGR rats. UPI-induced FGR rats expressed decreased lung leptin and had impaired lung development, as shown by decreased surface area and lung volume. They also found a significant association between lung radial alveolar count, serum leptin, von Willebrand factor, and specific metabolites on metabolomic analyses. Previous studies on leptin supplementation in vivo have been associated with improvement in lung maturation; supporting the evidence, that leptin improves lung growth and development in FGR and may have future therapeutic potential in the improvement of respiratory outcomes in these infants. Future studies to support evidence of this association in humans are warranted.


Assuntos
Retardo do Crescimento Fetal , Leptina , Pulmão , Insuficiência Placentária , Animais , Feminino , Humanos , Gravidez , Ratos , Desenvolvimento Fetal , Retardo do Crescimento Fetal/metabolismo , Leptina/metabolismo , Pulmão/embriologia , Pulmão/metabolismo , Insuficiência Placentária/metabolismo
20.
J Anat ; 244(1): 159-169, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37602519

RESUMO

The symmetry of the right and left bronchi, proposed in a previous comparative anatomical study as the basic model of the mammalian bronchial tree, was examined to determine if it applied to the embryonic human bronchial tree. Imaging data of 41 human embryo specimens at Carnegie stages (CS) 16-23 (equivalent to 6-8 weeks after fertilization) belonging to the Kyoto collection were obtained using phase-contrast X-ray computed tomography. Three-dimensional bronchial trees were then reconstructed from these images. Bronchi branching from both main bronchi were labeled as dorsal, ventral, medial, or lateral systems based on the branching position with numbering starting cranially. The length from the tracheal bifurcation to the branching point of the labeled bronchus was measured, and the right-to-left ratio of the same labeled bronchus in both lungs was calculated. In both lungs, the human embryonic bronchial tree showed symmetry with an alternating pattern of dorsal and lateral systems up to segmental bronchus B9 as the basic shape, with a more peripheral variation. This pattern is similar to that described in adult human lungs. Bronchial length increased with the CS in all labeled bronchi, whereas the right-to-left ratio was constant at approximately 1.0. The data demonstrated that the prototype of the human adult bronchial branching structure is formed and maintained in the embryonic stage. The morphology and branching position of all lobar bronchi and B6, B8, B9, and the subsegmental bronchus of B10 may be genetically determined. On the other hand, no common structures between individual embryos were found in the peripheral branches after the subsegmental bronchus of B10, suggesting that branch formation in this region is influenced more by environmental factors than by genetic factors.


Assuntos
Brônquios , Pulmão , Adulto , Animais , Humanos , Brônquios/anatomia & histologia , Brônquios/diagnóstico por imagem , Brônquios/embriologia , Pulmão/anatomia & histologia , Pulmão/diagnóstico por imagem , Pulmão/embriologia , Tomografia Computadorizada por Raios X/métodos , Traqueia/anatomia & histologia , Traqueia/diagnóstico por imagem , Traqueia/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...