Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.020
Filtrar
1.
Braz J Biol ; 84: e278187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985058

RESUMO

Zatrephina lineata (Coleoptera: Chrysomelidae) is a phytophagous insect, mainly of plants of the genera Ipomoea and Mikania. The objective was to study the development, survival and to describe the life stages of Z. lineata fed on leaves of Ipomoea pes-caprae. Biological observations were made daily with the aid of a stereoscopic microscope and the instars of this insect identified by the exuvia left between one moulting and the next. The duration of development and survival of the egg, larva and pupa stages and the first, second, third, fourth and fifth instars and of the nymph stage of Z. lineata differed, but not between sexes of this insect. The duration of development of Z. lineata was longer in the larval stage and in the fifth instar, and its survival greater in the egg and pupa stages and in the first and fifth instars. Zatrephina lineata eggs, cream-colored, are ellipsoid and deposited in groups on the adaxial surface of older I. pes-caprae leaves. The larvae of this insect go through five instars, with the first three being gregarious with chemo-behavioral defenses. The exarated pupae of Z. lineata, light yellow in color and with an oval shape flattened dorsoventrally, attach to the abaxial surface of the I. pes-caprae leaves. The shape of adults of this insect is oval, straw yellow in color with lighter longitudinal stripes and females are slightly larger than males.


Assuntos
Besouros , Ipomoea , Larva , Folhas de Planta , Animais , Besouros/classificação , Besouros/crescimento & desenvolvimento , Masculino , Feminino , Folhas de Planta/parasitologia , Larva/crescimento & desenvolvimento , Ipomoea/parasitologia , Pupa/crescimento & desenvolvimento , Estágios do Ciclo de Vida/fisiologia
2.
Sci Rep ; 14(1): 15047, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951576

RESUMO

Pink bollworm (PBW) Pectinophora gossypiella is an important pest cotton worldwide. There are multiple factors which determines the occurrence and distribution of P. gossypiella across different cotton growing regions of the world, and one such key factor is 'temperature'. The aim was to analyze the life history traits of PBW across varying temperature conditions. We systematically explored the biological and demographic parameters of P. gossypiella at five distinct temperatures; 20, 25, 30, 35 and 40 ± 1 °C maintaining a photoperiod of LD 16:8 h. The results revealed that the total developmental period of PBW shortens with rising temperatures, and the highest larval survival rates were observed between 30 °C and 35 °C, reaching 86.66% and 80.67%, respectively. Moreover, significant impacts were observed as the pupal weight, percent mating success, and fecundity exhibited higher values at 30 °C and 35 °C. Conversely, percent egg hatching, larval survival, and adult emergence were notably lower at 20 °C and 40 °C, respectively. Adult longevity decreased with rising temperatures, with females outliving males across all treatments. Notably, thermal stress had a persistent effect on the F1 generation, significantly affecting immature stages (egg and larvae), while its impact on reproductive potential was minimal. These findings offer valuable insights for predicting the population dynamics of P. gossypiella at the field level and developing climate-resilient management strategies in cotton.


Assuntos
Larva , Temperatura , Animais , Larva/fisiologia , Feminino , Masculino , Gossypium/parasitologia , Lepidópteros/fisiologia , Lepidópteros/crescimento & desenvolvimento , Fertilidade/fisiologia , Mariposas/fisiologia , Mariposas/crescimento & desenvolvimento , Longevidade/fisiologia , Pupa/fisiologia , Pupa/crescimento & desenvolvimento
3.
Sci Rep ; 14(1): 15824, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982128

RESUMO

The family Sarcophagidae is very diverse in Brazil. Due to their living habits, they are the subject of many medical, veterinary, sanitary, and entomological studies. However, Sarcophagidae species are still poorly studied in forensic entomology, although they are frequently reported in carcasses and even human corpses. Thus, this study aims to identify and compare the developmental stages and intrapuparial morphological characteristics of Peckia (Euboettcheria) collusor to serve as an auxiliary tool in forensic entomology. The pupae collected after zero hour at 27 °C and 32 °C were sacrificed every three hours until the first 24 h and then every six hours until the emergence of the first adults, using 30 pupae each time, totaling 1560 for 27 °C and 1290 for 32 °C. The intrapuparial development time of this fly species under laboratory-controlled conditions was 288 h at 27 °C and 228 h at 32 °C. The 2820 pupae were analyzed according to temperature and classified into eight possible stages. This contributed to the selection of 16 key morphological characteristics to identify the age of the pupae. The identified intrapupal morphological characteristics have great potential to help researchers, experts, technical assistants, and forensic entomologists estimate the minimum post-mortem interval (minPMI) of cadavers.


Assuntos
Entomologia Forense , Pupa , Sarcofagídeos , Animais , Sarcofagídeos/crescimento & desenvolvimento , Pupa/crescimento & desenvolvimento , Temperatura , Brasil , Cadáver , Humanos
4.
J Insect Physiol ; 156: 104665, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38906458

RESUMO

The dopaminergic system is involved in caste-specific behaviors in eusocial bumble bees. However, little is known about how the caste differences in dopaminergic system are formed during pupal stages in the brains of bumble bees. Thus, we investigated the levels of dopamine-related substances and expression of genes encoding enzymes involved in dopamine synthesis and metabolism, dopamine receptors, and a dopamine transporter in the brain of female Bombus ignitus. The levels of dopamine and dopamine-related substances in the brain were significantly higher in gynes than in workers from the late pupal stage to emergence, but the dynamics were similar between the castes. The relative expression levels of genes encoding enzymes involved in dopamine synthesis (BigTh and BigDdc) and dopamine metabolism (BigNat) increased significantly from pupal stage to emergence, but there were no differences in the relative expression levels of these genes between castes. A similar pattern was seen in the relative expression levels of four dopamine receptor genes (BigDop1, BigDop2, BigDop3, and BigDopEcR) and a dopamine transporter gene (BigDat). Compared with the honey bee Apis mellifera, the caste-specific dopaminergic system in the bumble bee is less differentiated, which might reflect the degree of behavioral specialization in these two species.


Assuntos
Encéfalo , Proteínas da Membrana Plasmática de Transporte de Dopamina , Dopamina , Receptores Dopaminérgicos , Animais , Abelhas/metabolismo , Abelhas/genética , Abelhas/crescimento & desenvolvimento , Dopamina/metabolismo , Feminino , Receptores Dopaminérgicos/metabolismo , Receptores Dopaminérgicos/genética , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Pupa/genética
5.
J Exp Biol ; 227(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38873724

RESUMO

Endothermic, flying insects are capable of some of the highest recorded metabolic rates. This high aerobic demand is made possible by the insect's tracheal system, which supplies the flight muscles with oxygen. Many studies focus on metabolic responses to acute changes in oxygen to test the limits of the insect flight metabolic system, with some flying insects exhibiting oxygen limitation in flight metabolism. These acute studies do not account for possible changes induced by developmental phenotypic plasticity in response to chronic changes in oxygen levels. The endothermic moth Manduca sexta is a model organism that is easy to raise and exhibits a high thorax temperature during flight (∼40°C). In this study, we examined the effects of developmental oxygen exposure during the larval, pupal and adult stages on the adult moth's aerobic performance. We measured flight critical oxygen partial pressure (Pcrit-), thorax temperature and thermoregulating metabolic rate to understand the extent of developmental plasticity as well as effects of developmental oxygen levels on endothermic capacity. We found that developing in hypoxia (10% oxygen) decreased thermoregulating thorax temperature when compared with moths raised in normoxia or hyperoxia (30% oxygen), when moths were warming up in atmospheres with 21-30% oxygen. In addition, moths raised in hypoxia had lower critical oxygen levels when flying. These results suggest that chronic developmental exposure to hypoxia affects the adult metabolic phenotype and potentially has implications for thermoregulatory and flight behavior.


Assuntos
Regulação da Temperatura Corporal , Voo Animal , Larva , Manduca , Oxigênio , Animais , Manduca/fisiologia , Manduca/crescimento & desenvolvimento , Voo Animal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Oxigênio/metabolismo , Larva/fisiologia , Larva/crescimento & desenvolvimento , Pupa/crescimento & desenvolvimento , Pupa/fisiologia
6.
J Vector Borne Dis ; 61(2): 243-252, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38922659

RESUMO

BACKGROUND OBJECTIVES: The range of Aedes albopictus, the most important vector mosquito in Western Eurasia is growing due to climate change. However, it is not known how it will influence the habitats occupied by the species and its environmental fitness within its future range. METHODS: To study this question, the habitat characteristic of the mosquito was investigated for 2081-2100. RESULTS: The models suggest a notable future spread of the mosquito in the direction of Northern Europe and the parallel northward and westward shift of the southern and eastern potential occurrences of the mosquito. The models suggest a notable increase in generation numbers in the warmest quarter, which can reach 4-5 generations in the peri-Mediterranean region. However, both the joint survival rate of larvae and pupae and the number of survival days of adults in the warmest quarter exhibit decreasing values, as does the potential disappearance of the mosquito in the southern regions of Europe and Asia Minor, along with the growing atmospheric CO2 concentration-based scenarios. INTERPRETATION CONCLUSION: While in 1970-2000 Aedes albopictus mainly occupied the hot and warm summer temperate regions of Europe, the species will inhabit dominantly the cool summer temperate (oceanic) and the humid continental climate territories of North and North-Eastern Europe in 2081-2100.


Assuntos
Aedes , Mudança Climática , Ecossistema , Mosquitos Vetores , Aedes/fisiologia , Aedes/crescimento & desenvolvimento , Animais , Europa (Continente) , Ásia , Mosquitos Vetores/fisiologia , Mosquitos Vetores/crescimento & desenvolvimento , Larva/fisiologia , Larva/crescimento & desenvolvimento , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Estações do Ano
7.
Elife ; 132024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905123

RESUMO

The brain is consisted of diverse neurons arising from a limited number of neural stem cells. Drosophila neural stem cells called neuroblasts (NBs) produces specific neural lineages of various lineage sizes depending on their location in the brain. In the Drosophila visual processing centre - the optic lobes (OLs), medulla NBs derived from the neuroepithelium (NE) give rise to neurons and glia cells of the medulla cortex. The timing and the mechanisms responsible for the cessation of medulla NBs are so far not known. In this study, we show that the termination of medulla NBs during early pupal development is determined by the exhaustion of the NE stem cell pool. Hence, altering NE-NB transition during larval neurogenesis disrupts the timely termination of medulla NBs. Medulla NBs terminate neurogenesis via a combination of apoptosis, terminal symmetric division via Prospero, and a switch to gliogenesis via Glial Cell Missing (Gcm); however, these processes occur independently of each other. We also show that temporal progression of the medulla NBs is mostly not required for their termination. As the Drosophila OL shares a similar mode of division with mammalian neurogenesis, understanding when and how these progenitors cease proliferation during development can have important implications for mammalian brain size determination and regulation of its overall function.


Every cell in the body can be traced back to a stem cell. For instance, most cells in the adult brains of fruit flies come from a type of stem cell known as a neuroblast. This includes neurons and glial cells (which support and protect neurons) in the optic lobe, the part of the brain that processes visual information. The numbers of neurons and glia in the optic lobe are tightly regulated such that when the right numbers are reached, the neuroblasts stop making more and are terminated. But how and when this occurs is poorly understood. To investigate, Nguyen and Cheng studied when neuroblasts disappear in the optic lobe over the course of development. This revealed that the number of neuroblasts dropped drastically 12 to 18 hours after the fruit fly larvae developed in to pupae, and were completely gone by 30 hours in to pupae life. Further experiments revealed that the timing of this decrease is influenced by neuroepithelium cells, the pool of stem cells that generate neuroblasts during the early stages of development. Nguyen and Cheng found that speeding up this transition so that neuroblasts arise from the neuroepithelium earlier, led neuroblasts to disappear faster from the optic lobe; whereas delaying the transition caused neuroblasts to persist for much longer. Thus, the time at which neuroblasts are born determines when they are terminated. Furthermore, Nguyen and Cheng showed that the neuroblasts were lost through a combination of means. This includes dying via a process called apoptosis, dividing to form two mature neurons, or switching to a glial cell fate. These findings provide a deeper understanding of the mechanisms regulating stem cell pools and their conversion to different cell types, a process that is crucial to the proper development of the brain. How cells divide to form the optic lobe of fruit flies is similar to how new neurons arise in the mammalian brain. Understanding how and when stem cells in the fruit fly brain stop proliferating could therefore provide new insights in to the development of the human brain.


Assuntos
Apoptose , Diferenciação Celular , Proteínas de Drosophila , Células-Tronco Neurais , Células Neuroepiteliais , Neurogênese , Animais , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/citologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Neurogênese/fisiologia , Células Neuroepiteliais/fisiologia , Células Neuroepiteliais/citologia , Neuroglia/fisiologia , Neuroglia/citologia , Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/fisiologia , Drosophila melanogaster/citologia , Lobo Óptico de Animais não Mamíferos/citologia , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Pupa/crescimento & desenvolvimento , Proteínas de Ligação a DNA , Fatores de Transcrição
8.
Environ Sci Pollut Res Int ; 31(25): 37366-37375, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38772995

RESUMO

Recently, much research has been oriented towards the influence of different food wastes and agricultural by-products on the final larval biomass and chemical composition of the insect species Hermetia illucens L. (Diptera: Stratiomyidae). However, there is a gap in the literature regarding the possible relationship between the feeding substrate of H. illucens larvae and chitin. In this context, in the present study, larvae of H. illucens derived from two populations (i.e., UNIPI and UTH), were reared on different diets composed of fruits, vegetables, and meat. Based on the results, the larval survival was high for all diets tested. Larval growth in terms of weight gain, larval length, and feed conversion ratio (FCR) depended on the composition of each diet. The chitin and chitosan composition of larvae, reared on different substrates, did not reveal significant differences. Given the fact that the feeding substrate represent a significant cost in the industrial production of insects, its correlation with a high value product (i.e. chitosan) is important. On the other hand, as the prepupal stage of H. illucens is currently used as animal feed, the metabolization of chitin by farmed animals when the larvae or prepupae were offered as feed could have adverse effects. Thus, depending on the final product that is to be produced, industries could benefit from the establishment of a suitable diet.


Assuntos
Ração Animal , Quitina , Quitosana , Dieta , Dípteros , Larva , Pupa , Animais , Larva/crescimento & desenvolvimento , Pupa/crescimento & desenvolvimento
9.
J Med Entomol ; 61(4): 995-1000, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38704584

RESUMO

Control of African animal trypanosomosis is implemented through an integrated control strategy, with the sterile insect technique (SIT) as one of its components. The SIT requires mass rearing of tsetse fly colonies using an in vitro feeding system. The exposure of blood at 37 °C on heating plates over time can have an impact on the quality of fly productivity. In this study, we investigated the survival and fecundity of adult tsetse flies fed at 37 °C on 8 blood exposure times ranging from 30 min to 4 h with increments of 30 min (treatment 1, flies were fed 30 min after exposure to blood at 37 °C; treatment 2, 1 h and so on until treatment 8 [4 h after]) in order to determine the optimal exposure time. In addition, bacterial growth in blood from each treatment was assessed by agar culture at 37 °C for 72 h. The results showed that the adult female survival rates were similar regardless of the treatment. For males, only those of treatment 1 (30 min) showed a marginal lower survival than those of treatments 7 and 8 fed after 3 h 30 min and 4 h of blood exposure, respectively. Over the 4-h interval of blood exposure at 37 °C, the results showed that the number of pupae produced per initial female and pupal weight tended to increase with exposure time, but the differences were not significant. We discuss the implications of these results on tsetse mass rearing for the SIT program.


Assuntos
Moscas Tsé-Tsé , Animais , Moscas Tsé-Tsé/fisiologia , Feminino , Masculino , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Sangue , Fatores de Tempo , Fertilidade , Controle de Insetos/métodos , Comportamento Alimentar , Temperatura , Longevidade
10.
BMC Biol ; 22(1): 111, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741075

RESUMO

BACKGROUND: Juvenile hormones (JH) play crucial role in regulating development and reproduction in insects. The most common form of JH is JH III, derived from MF through epoxidation by CYP15 enzymes. However, in the higher dipterans, such as the fruitfly, Drosophila melanogaster, a bis-epoxide form of JHB3, accounted most of the JH detected. Moreover, these higher dipterans have lost the CYP15 gene from their genomes. As a result, the identity of the P450 epoxidase in the JH biosynthesis pathway in higher dipterans remains unknown. RESULTS: In this study, we show that Cyp6g2 serves as the major JH epoxidase responsible for the biosynthesis of JHB3 and JH III in D. melanogaster. The Cyp6g2 is predominantly expressed in the corpus allatum (CA), concurring with the expression pattern of jhamt, another well-studied gene that is crucial in the last steps of JH biosynthesis. Mutation in Cyp6g2 leads to severe disruptions in larval-pupal metamorphosis and exhibits reproductive deficiencies, exceeding those seen in jhamt mutants. Notably, Cyp6g2-/-::jhamt2 double mutants all died at the pupal stage but could be rescued through the topical application of JH analogs. JH titer analyses revealed that both Cyp6g2-/- mutant and jhamt2 mutant lacking JHB3 and JH III, while overexpression of Cyp6g2 or jhamt caused a significant increase in JHB3 and JH III titer. CONCLUSIONS: These findings collectively established that Cyp6g2 as the major JH epoxidase in the higher dipterans and laid the groundwork for the further understanding of JH biosynthesis. Moreover, these findings pave the way for developing specific Cyp6g2 inhibitors as insect growth regulators or insecticides.


Assuntos
Sistema Enzimático do Citocromo P-450 , Drosophila melanogaster , Hormônios Juvenis , Animais , Corpora Allata/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Hormônios Juvenis/biossíntese , Hormônios Juvenis/metabolismo , Larva/crescimento & desenvolvimento , Larva/genética , Metamorfose Biológica/genética , Oxirredutases , Pupa/crescimento & desenvolvimento , Pupa/genética , Pupa/metabolismo
11.
J Econ Entomol ; 117(3): 1152-1163, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38691142

RESUMO

The grape berry moth, Paralobesia viteana (Clemens), is an important pest of cultivated grapes in eastern North America. Damage is caused directly by larval feeding of grape clusters and indirectly by increasing fruit susceptibility to fungal and bacterial pathogens. Despite the impact of grape berry moth on grapes being widely recognized, there is a lack of understanding of the influence that different grape cultivars may have on grape berry moth development, reproduction, and population dynamics. In this study, we constructed age-stage 2-sex life tables for grape berry moth fed on 5 grape cultivars: Concord, Niagara, Riesling, Chambourcin, and Vidal, to examine the effects of diet on insect population development, survival, reproduction, and demographic parameters such as net reproductive rate, intrinsic rate of increase, finite rate of increase, and mean generation time. Our findings reveal that grape cultivar significantly influenced the neonate wandering period, larval developmental time, adult and female longevity, pupal weight, adult preoviposition period, oviposition period, mean generation time, age-stage-specific life expectancy, and reproductive value of P. viteana. However, diet type did not affect grape berry moth total fecundity or other demographic parameters. The highest female reproductive value was observed at 30-40 days of age, indicating that control tactics implemented during this time frame would have the greatest impact on reducing population increase. This study provides critical information on the effects of different grape cultivars on grape berry moth development, reproduction, and demography. These insights could lead to the development of management strategies that improve pest control and reduce economic losses in vineyards.


Assuntos
Larva , Tábuas de Vida , Mariposas , Pupa , Vitis , Animais , Mariposas/crescimento & desenvolvimento , Mariposas/fisiologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Feminino , Masculino , Pupa/crescimento & desenvolvimento , Longevidade , Dieta , Reprodução , Características de História de Vida
12.
Poult Sci ; 103(7): 103812, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735098

RESUMO

The present experiment was conducted to test the effect of a 4% defatted silkworm (Bombyx mori) pupae meal (SWM) incorporation into chickens' diets at different growth phases on meat quality characteristics and sensory traits. Ninety ROSS 308 day-old male broiler chickens were randomly assigned to 3 dietary groups, with 5 replicated pens/diet: the first group received a control (C) diet throughout the growing period of 42 d, the second group received a diet with 4% SWM (SWM1) during the starter phase (1-10 d) and the C diet up to slaughter, whereas the third group was fed the C diet during the starter phase and 4% SWM during the grower and finisher phases (SWM2). Diets were isonitrogenous and isoenergy, and birds had free access to feed and water throughout the experimental trial. At 42 d of age, 15 chickens/treatment were slaughtered at a commercial abattoir. Fatty acid (FA) and amino acid (AA) profiles and contents of meat, as well as its oxidative status, were determined in both breast and leg meat cuts. Also, a descriptive sensory analysis was performed on breast meat by trained panelists. Results highlighted that the SWM2 treatment increased the n-3 proportion and content in both breast and leg meat, thereby improving the omega-6/omega-3 (n-6/n-3) ratio in both cuts (P < 0.001). However, the dietary treatment had no significant effect on the oxidative status of either breast or leg meat (P > 0.05). The SWM had a limited impact on overall sensory traits of breast meat, but it contributed to improve meat tenderness in SWM-fed chickens (P < 0.01). Furthermore, SWM1 meat exhibited higher juiciness (P < 0.05) and off flavor intensity (P < 0.05) compared to the control meat. Overall, the present experiment indicated that defatted SWM holds promise as an alternative ingredient in chicken rations, ensuring satisfactory meat quality. Furthermore, administering SWM during the grower-finisher phase demonstrated beneficial effects on meat healthiness, ultimately enhancing n-3 fatty acids content and reducing the n-6/n-3 ratio.


Assuntos
Ração Animal , Bombyx , Galinhas , Dieta , Carne , Animais , Galinhas/fisiologia , Galinhas/crescimento & desenvolvimento , Ração Animal/análise , Dieta/veterinária , Masculino , Carne/análise , Bombyx/química , Distribuição Aleatória , Pupa/crescimento & desenvolvimento , Fenômenos Fisiológicos da Nutrição Animal , Ácidos Graxos/análise , Ácidos Graxos/metabolismo
13.
J Insect Physiol ; 155: 104651, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763360

RESUMO

Hemolin, a member of the immunoglobulin superfamily, plays a crucial role in the immune responses of insects against pathogens. However, the innate immune response of Hemolin to baculovirus infection varies among different insects, and the antiviral effects of Hemolin in Hyphantria cunea (HcHemolin) remain poorly understood. Our results showed that HcHemolin was expressed throughout all developmental stages, with higher expressions observed during pupal and adult stages of H. cunea. Additionally, HcHemolin was expressed in reproductive and digestive organs. The expression levels of the HcHemolin were induced significantly following H. cunea nucleopolyhedrovirus (HcNPV) infection. The susceptibility of H. cunea larvae to HcNPV decreased upon silencing of HcHemolin, resulting in a 40% reduction in median lifespan compared to the control group. The relative growth rate (RGR), the relative efficiency of consumption rate (RCR), the efficiency of the conversion of ingested food (ECI), and efficiency of the conversion of digested food (ECD) of silenced H. cunea larvae were significantly lower than those of the control group. Immune challenge assays showed that the median lifespan of treated H. cunea larvae was two-fold longer than the control group after HcNPV and HcHemolin protein co-injection. Therefore, we propose that HcHemolin plays a crucial role in regulating the growth, development, and food utilization of H. cunea, as well as in the antiviral immune response against HcNPV. These findings provide implications for the development of targeted nucleic acid pesticides and novel strategies for pollution-free biological control synergists for HcNPV.


Assuntos
Proteínas de Insetos , Larva , Mariposas , Nucleopoliedrovírus , Animais , Nucleopoliedrovírus/fisiologia , Larva/imunologia , Larva/crescimento & desenvolvimento , Mariposas/imunologia , Mariposas/virologia , Mariposas/crescimento & desenvolvimento , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Imunidade Inata , Pupa/imunologia , Pupa/crescimento & desenvolvimento , Pupa/virologia , Imunoglobulinas
14.
Parasitol Res ; 123(5): 211, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748261

RESUMO

Ivermectin is one of the most widely used drugs for parasite control. Previous studies have shown a reduction in the abundance and diversity of "non-target" coprophilous organisms due to the presence of ivermectin (IVM) in bovine faecal matter (FM). Due to its breadth of behavioural habits, Calliphora vicina is a suitable dipteran species to evaluate the effects of IVM in FM. The aim of this work was to evaluate the effect of five concentrations of IVM in FM (3000, 300, 100, 30, and 3 ng/g) on the development of C. vicina. The following endpoints were evaluated: survival (between the first larval stage and emergence of new adults), larval development times to pupation and pupation times to adult, and adult emergence (% sex) and LC50. Sampling was performed from larval hatching at 60 and 120 min and at 3, 4, 5, and 12 h, and every 24 h specimens were weighed until pupae were observed. Data were analysed by ANOVA using a non-parametric Kruskal-Wallis test and as a function of elapsed development time and accumulated degree hours (ADH). Mortality at 3000 and 300 ng/g was 100% and 97%, respectively. There were statistically significant delays in adult emergence time (p = 0.0216) and in the ADH (p = 0.0431) between the control group (C) and 100 ng/g. The LC50 was determined at 5.6 ng/g. These results demonstrate the lethal and sub-lethal effects of IVM on C. vicina, while highlighting the usefulness of this species as a bioindicator for ecotoxicological studies.


Assuntos
Calliphoridae , Fezes , Ivermectina , Larva , Animais , Ivermectina/farmacologia , Calliphoridae/efeitos dos fármacos , Calliphoridae/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Fezes/parasitologia , Bovinos , Análise de Sobrevida , Pupa/efeitos dos fármacos , Pupa/crescimento & desenvolvimento , Feminino , Antiparasitários/farmacologia , Masculino , Dose Letal Mediana , Dípteros/efeitos dos fármacos , Dípteros/crescimento & desenvolvimento
15.
Microb Ecol ; 87(1): 70, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38740585

RESUMO

Stag beetles, recognized as common saproxylic insects, are valued for their vibrant coloration and distinctive morphology. These beetles play a crucial ecological role in decomposition and nutrient cycling, serving as a vital functional component in ecosystem functioning. Although previous studies have confirmed that stag beetles are predominantly fungivores, the fluctuations in their intestinal fungal communities at different developmental stages remain poorly understood. In the current study, high-throughput sequencing was employed to investigate the dynamic changes within intestinal fungal communities at various developmental stages in the stag beetle Dorcus hopei. Results showed that microbial diversity was higher during the larval stage than during the pupal and adult stages. Furthermore, significant differences were identified in the composition of the intestinal fungal communities across the larval, pupal, and adult stages, suggesting that developmental transitions may be crucial factors contributing to variations in fungal community composition and diversity. Dominant genera included Candida, Scheffersomyces, Phaeoacremonium, and Trichosporon. Functional predictions indicated a greater diversity and relative abundance of endosymbiotic fungi in the larval gut, suggesting a potential dependency of larvae on beneficial gut fungi for nutrient acquisition. Additionally, the application of abundance-based ß-null deviation and niche width analyses revealed that the adult gut exerted a stronger selection pressure on its fungal community, favoring certain taxa. This selection process culminates in a more robust co-occurrence network of fungal communities within the adult gut, thereby enhancing their adaptability to environmental fluctuations. This study advances our understanding of the intestinal fungal community structure in stag beetles, providing a crucial theoretical foundation for the development of saproxylic beetle resources, biomass energy utilization, plastic degradation strategies, and beetle conservation efforts.


Assuntos
Besouros , Fungos , Microbioma Gastrointestinal , Larva , Animais , Besouros/microbiologia , Besouros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/microbiologia , Fungos/genética , Fungos/classificação , Fungos/fisiologia , Pupa/crescimento & desenvolvimento , Pupa/microbiologia , Micobioma , Biodiversidade , Simbiose , Sequenciamento de Nucleotídeos em Larga Escala
16.
Sci Rep ; 14(1): 11208, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755232

RESUMO

The mechanisms that underlie senescence are not well understood in insects. Telomeres are conserved repetitive sequences at chromosome ends that protect DNA during replication. In many vertebrates, telomeres shorten during cell division and in response to stress and are often used as a cellular marker of senescence. However, little is known about telomere dynamics across the lifespan in invertebrates. We measured telomere length in larvae, prepupae, pupae, and adults of two species of solitary bees, Osmia lignaria and Megachile rotundata. Contrary to our predictions, telomere length was longer in later developmental stages in both O. lignaria and M. rotundata. Longer telomeres occurred after emergence from diapause, which is a physiological state with increased tolerance to stress. In O. lignaria, telomeres were longer in adults when they emerged following diapause. In M. rotundata, telomeres were longer in the pupal stage and subsequent adult stage, which occurs after prepupal diapause. In both species, telomere length did not change during the 8 months of diapause. Telomere length did not differ by mass similarly across species or sex. We also did not see a difference in telomere length after adult O. lignaria were exposed to a nutritional stress, nor did length change during their adult lifespan. Taken together, these results suggest that telomere dynamics in solitary bees differ from what is commonly reported in vertebrates and suggest that insect diapause may influence telomere dynamics.


Assuntos
Telômero , Animais , Abelhas/genética , Abelhas/fisiologia , Telômero/genética , Telômero/metabolismo , Pupa/crescimento & desenvolvimento , Pupa/genética , Feminino , Masculino , Homeostase do Telômero , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Diapausa/genética
17.
Sci Data ; 11(1): 557, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816378

RESUMO

Insect metamorphosis involves significant changes in insect internal structure and is thus a critical focus of entomological research. Investigating the morphological transformation of internal structures is vital to understanding the origins of adult insect organs. Beetles are among the most species-rich groups in insects, but the development and transformation of their internal organs have yet to be systematically documented. In this study, we have acquired a comprehensive dataset that includes 27 detailed whole-body tomographic image sets of Harmonia axyridis, spanning from the prepupal to the pupal stages. Utilizing this data, we have created intricate 3D models of key internal organs, encompassing the brain, ventral nerve cord, digestive and excretion systems, as well as the body wall muscles. These data documented the transformation process of these critical organs and correlations between the origin of adult and larval organs and can be used to enhance the understanding of holometabolous adult organ genesis and offers a valuable reference model for investigating complete metamorphosis in insects.


Assuntos
Besouros , Metamorfose Biológica , Microtomografia por Raio-X , Animais , Besouros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Pupa/crescimento & desenvolvimento
18.
J Econ Entomol ; 117(3): 800-808, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38572760

RESUMO

Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae), a highly destructive pest in Asia, poses a significant threat to maize production by causing substantial yield losses. However, there is a lack of information regarding the impact of temperature variations on its population dynamics and the age-stage and two-sex life table. This study aimed to investigate the impact of 4 temperatures (20 °C, 24 °C, 28 °C, 32 °C) on the development, reproduction, and survival of O. furnacalis under controlled laboratory conditions. Our results revealed that O. furnacalis successfully developed, survived, and laid eggs across the tested temperatures (20-32 °C). The shortest developmental duration for all immature stages was observed at 32 °C. Conversely, increasing temperatures led to decreased longevity. Among the temperatures tested, 28 °C proved to be optimal for O. furnacalis, exhibiting the highest intrinsic rate of increase, finite rate of increase, and net reproductive rate. Our findings indicate that O. furnacalis thrives within a wide temperature range of 20-32 °C, with 28 °C being the most favorable for reproduction. These insights are crucial for predicting population dynamics under diverse climatic conditions and developing effective control strategies against O. furnacalis. This study enhances our understanding of O. furnacalis' life-history traits and provides valuable information for targeted pest management approaches.


Assuntos
Larva , Tábuas de Vida , Mariposas , Temperatura , Animais , Mariposas/crescimento & desenvolvimento , Mariposas/fisiologia , Feminino , Masculino , Larva/crescimento & desenvolvimento , Larva/fisiologia , Dinâmica Populacional , Longevidade , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Reprodução , Características de História de Vida
19.
J Econ Entomol ; 117(3): 696-704, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38592125

RESUMO

Given the rapid spread and potential harm caused by the small hive beetle, Aethina tumida (Coleoptera: Nitidulidae) in China, it has become imperative to comprehend the developmental biology of this invasive species. Currently, there is limited knowledge regarding the impact of A. tumida female oviposition site preference on larval growth and development. To examine this, we investigated the ovipositional preference of adult female A. tumida on bee pupae, beebread, banana, and honey through a free choice test. Furthermore, we assessed the impact of these food resources on offspring performance, which included larval development time, survival, wandering larvae weight, emerged adult body mass, reproduction, and juvenile hormone titer. Our results showed that A. tumida females exhibited a strong preference for ovipositing on bee pupae compared to other diets, while showing reluctance toward honey. Moreover, A. tumida larvae that were fed on bee pupae displayed accelerated growth compared to those fed on other diets. Furthermore, A. tumida fed on bee pupae exhibited higher weights for wandering larvae, and emerged adult, increased pupation rates, enhanced fecundity and fertility, as well as a larger number of unilateral ovarioles during the larval stage when compared to those fed on other diets. Overall, the results indicate that the oviposition preferences of A. tumida females are adaptive, as their choices can enhance the fitness of their offspring. This finding aligns broadly with the hypothesis of oviposition preference and larval performance. This study can provide a foundation for the development of attractants aimed at promoting the oviposition of the A. tumida adults.


Assuntos
Besouros , Larva , Oviposição , Pupa , Animais , Besouros/crescimento & desenvolvimento , Besouros/fisiologia , Feminino , Larva/crescimento & desenvolvimento , Larva/fisiologia , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Abelhas/fisiologia , Musa
20.
J Econ Entomol ; 117(3): 762-771, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38625052

RESUMO

In this study, we compared the growth, development, and fecundity of Arma chinensis (Fallou) reared on pupae of the geometrid Ectropis grisescens Warren fed on tea shoots during different seasons of the year. The raw data on life history were analyzed using the age-stage, 2-sex life table. When reared on spring or winter geometrid pupae, the duration of the immature stage of A. chinensis was significantly longer than in those produced during the summer or autumn. The survival rate of immature A. chinensis reared on autumn geometrid pupae was significantly lower compared to other treatments. Reproductive diapause was observed in adult A. chinensis reared on winter geometrid pupae. The adult preoviposition period (APOP), total preoviposition period (TPOP), and total longevity were significantly longer in A. chinensis reared on winter pupae than in the other treatments. The fecundity of A. chinensis reared on spring geometrid pupae was significantly lower than in the other treatments. The higher intrinsic rate of increase of the A. chinensis reared on summer pupae (r = 0.0966 day-1) and autumn pupae (r = 0.0983 day-1) resulted in higher fecundity, shorter immature duration, and shorter TPOP compared to the winter and spring populations. These findings can be utilized to enhance and sustain biological control of E. grisescens in tea plantations.


Assuntos
Mariposas , Pupa , Estações do Ano , Animais , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Mariposas/crescimento & desenvolvimento , Mariposas/fisiologia , Masculino , Feminino , Camellia sinensis , Heterópteros/fisiologia , Heterópteros/crescimento & desenvolvimento , Fertilidade , Controle Biológico de Vetores , Longevidade , Brotos de Planta/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...