Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.063
Filtrar
1.
Water Sci Technol ; 89(2): 454-469, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39219141

RESUMO

Nanofiltration (NF) has been used as the default sulfate removal process in platforms to treat seawater for water flooding. Seawater is generally pretreated by chlorination and cartridge filters to reduce fouling of the membranes; however, this pretreatment is insufficient to provide water quality high enough to maintain the productivity of the NF membranes. In this study, the performances of two different pretreatment routes were evaluated. Microfiltration (MF) was evaluated as a replacement for cartridge filters, and the advanced oxidation process UV/H2O2 was evaluated as an additional stage of pretreatment upstream of the cartridge filters. The permeability of the NF membranes after 12 h of seawater sulfate removal in a bench system was 4.4 L·h-1·m-2·bar-1 when the UV/H2O2 process was adopted as the pretreatment and 2.9 L·h-1·m-2·bar-1 when the MF process was adopted, compared to 1.6 L·h-1·m-2·bar-1 achieved for the pretreatment with the cartridge filter alone. These results indicate that NF membrane fouling was significantly higher when seawater was pretreated only by the cartridge filter in comparison to both proposed pretreatments. An economic analysis showed that both systems are economically viable and can potentially reduce the operational costs of the NF sulfate removal process on platforms.


Assuntos
Filtração , Água do Mar , Purificação da Água , Purificação da Água/métodos , Purificação da Água/instrumentação , Filtração/métodos , Filtração/instrumentação , Membranas Artificiais , Sulfatos/química , Nanotecnologia , Peróxido de Hidrogênio/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-39091064

RESUMO

Down-flow hanging sponge (DHS) reactors, employed in domestic wastewater treatment, have demonstrated efficacy in eliminating Escherichia coli and other potentially pathogenic bacteria. The aim of this study was to elucidate the mechanism of removal of E. coli by employing a cube-shaped polyurethane sponge carrier within a compact hanging reactor. An E. coli removal experiment was conducted on this prepared sponge. Escherichia. coli level was found to decrease by more than 2 logs after passing through five nutrient-restricted DHS sponges. Conversely, a newly introduced sponge did not exhibit a comparable reduction in E. coli level. Furthermore, under conditions of optimal nutritional status, the reduction in E. coli level was limited to 0.5 logs, underscoring the crucial role of nutrient restriction in achieving effective elimination. Analysis of the sponge-associated bacterial community revealed the presence of a type VI secretion system (T6SS), a competitive mechanism observed in bacteria. This finding suggests that T6SS might play a pivotal role in contributing to the observed decline in E. coli level.


Assuntos
Reatores Biológicos , Escherichia coli , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/microbiologia , Purificação da Água/métodos , Purificação da Água/instrumentação
4.
Water Sci Technol ; 90(3): 985-994, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39141046

RESUMO

The study analyses the performance of a pilot plant using a rotating hollow fibre (HF) membrane bioreactor system. The experiments evaluated the effect of operational parameters such as rotational speed, aeration strategies, and maintenance cleaning (MC) procedures on the efficiency of the system, in particular transmembrane pressure (TMP) and filtrate quality. The results indicate that the rotating membrane module reduces TMP increase and can operate for 48 days with satisfactory performance, even without aeration. This has the potential to significantly improve efficiency, resulting in significant energy savings. In addition, two MC methods, clean in air and clean in place, were tested and found to be efficient for weekly MC. It was observed that operating without aeration during colder seasons may not be effective. Therefore, adaptive strategies are needed to address seasonal temperature variations.


Assuntos
Reatores Biológicos , Membranas Artificiais , Pressão , Eliminação de Resíduos Líquidos/métodos , Eliminação de Resíduos Líquidos/instrumentação , Projetos Piloto , Purificação da Água/métodos , Purificação da Água/instrumentação
5.
J Environ Manage ; 365: 121525, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897085

RESUMO

As an important part of the membrane field, hollow fiber membranes (HFM) have been widely concerned by scholars. HFM fouling in the industrial application results in a reduction in its lifespan and an increase in cost. In recent years, various explorations on the HFM fouling control strategies have been carried out. In the current work, we critically review the influence of flow field characteristics in HFM-based bioreactor on membrane fouling control. The flow field characteristics mainly refer to the spatial and temporal variation of the related physical parameters. In the HFM field, the physical parameter mainly refers to the variation characteristics of the shear force, flow velocity and turbulence caused by hydraulics. The factors affecting the flow field characteristics will be discussed from three levels: the micro-flow field near the interface of membrane (micro-interface), the flow field around the membrane module and the reactor design related to flow field, which involves surface morphology, crossflow, aeration, fiber packing density, membrane vibration, structural design and other related parameters. The study of flow field characteristics and influencing factors in the HFM separation process will help to improve the performance of HFM in full-scale water treatment plants.


Assuntos
Reatores Biológicos , Membranas Artificiais , Purificação da Água/métodos , Purificação da Água/instrumentação
6.
Sci Rep ; 14(1): 14240, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902342

RESUMO

Pharmaceutical pollutants, a group of emerging contaminants, have attracted outstanding attention in recent years, and their removal from aquatic environments has been addressed. In the current study, a new sponge-based moving bed biofilm reactor (MBBR) was developed to remove chemical oxygen demand (COD) and the pharmaceutical compound Ibuprofen (IBU). A 30-L pilot scale MBBR was constructed, which was continuously fed from the effluent of the first clarifier of the Southern Tehran wastewater treatment plant. The controlled operational parameters were pH in the natural range, Dissolved Oxygen of 1.5-2 mg/L, average suspended mixed liquor suspended solids (MLSS), and mixed liquor volatile suspended solids (MLVSS) of 1.68 ± 0.1 g/L and 1.48 ± 0.1 g/L, respectively. The effect of hydraulic retention time (HRT) (5 h, 10 h, 15 h), filling ratio (10%, 20%, 30%), and initial IBU concentration (2 mg/L, 5 mg/L, 10 mg/L) on removal efficiencies was assessed. The findings of this study revealed a COD removal efficiency ranging from 48.9 to 96.7%, with the best removal efficiency observed at an HRT of 10 h, a filling ratio of 20%, and an initial IBU concentration of 2 mg/L. Simultaneously, the IBU removal rate ranged from 25 to 92.7%, with the highest removal efficiency observed under the same HRT and filling ratio, albeit with an initial IBU concentration of 5 mg/L. An extension of HRT from 5 to 10 h significantly improved both COD and IBU removal. However, further extension from 10 to 15 h slightly enhanced the removal efficiency of COD and IBU, and even in some cases, removal efficiency decreased. Based on the obtained results, 20% of the filling ratio was chosen as the optimum state. Increasing the initial concentration of IBU from 2 to 5 mg/L generally improved COD and IBU removal, whereas an increase from 5 to 10 mg/L caused a decline in COD and IBU removal. This study also optimized the reactor's efficiency for COD and IBU removal by using response surface methodology (RSM) with independent variables of HRT, filling ratio, and initial IBU concentration. In this regard, the quadratic model was found to be significant. Utilizing the central composite design (CCD), the optimal operating parameters at an HRT of 10 h, a filling ratio of 21%, and an initial IBU concentration of 3 mg/L were pinpointed, achieving the highest COD and IBU removal efficiencies. The present study demonstrated that sponge-based MBBR stands out as a promising technology for COD and IBU removal.


Assuntos
Biofilmes , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Ibuprofeno , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/análise , Ibuprofeno/isolamento & purificação , Purificação da Água/métodos , Purificação da Água/instrumentação , Eliminação de Resíduos Líquidos/métodos , Animais
7.
Water Sci Technol ; 89(11): 3035-3046, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877629

RESUMO

This study examines the impact of incorporating a mobile bed into a membrane bioreactor (MBR) system on the treatment efficiency of dairy industry effluents. Initially, a conventional MBR system was operated for 60 days, followed by a modification that included a support material and ran for another 60 days under identical conditions. Performance was evaluated based on the removal efficiencies for soluble chemical oxygen demand (CODs), phenolic compounds, and oils and greases (OG), alongside measurements of solid content, dissolved oxygen, temperature, mixed liquor pH, and transmembrane pressure (TMP). The introduction of the mobile bed led to an increase in removal efficiencies for COD and phenolic compounds from 94.4 and 92.7% to 98 and 94.4%, respectively, marking statistically significant improvements (p < 0.05), while OG removal remained the same in both strategies (87.7%) (p > 0.05). Moreover, the modified system showed a more stable TMP profile, reducing the need for cleaning interventions compared to the conventional system, which experienced a notable TMP increase requiring cleaning at a 0.6 bar threshold. The findings suggest that integrating a mobile bed into MBR systems significantly enhances the treatment of dairy effluents, presenting an interesting solution for the upgrade of this type of system.


Assuntos
Reatores Biológicos , Indústria de Laticínios , Membranas Artificiais , Eliminação de Resíduos Líquidos , Indústria de Laticínios/métodos , Eliminação de Resíduos Líquidos/métodos , Eliminação de Resíduos Líquidos/instrumentação , Análise da Demanda Biológica de Oxigênio , Purificação da Água/métodos , Purificação da Água/instrumentação
8.
Water Sci Technol ; 89(11): 2991-3006, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877626

RESUMO

Recent decades have seen a shortage of water, which has led scientists to concentrate on solar desalination technologies. The present study examines the solar water desalination system with inclined steps, while considering various phase change materials (PCMs). The findings suggest that the incorporation of PCM generally enhances the productivity of the solar desalination system. Additionally, the combination of nanoparticles has been used to PCM, which is a popular technique utilized nowadays to improve the efficiency of these systems. The current investigation involves the transient modeling of a solar water desalination system, utilizing energy conservation equations. The equations were solved using the Runge-Kutta technique of the ODE23s order. The temperatures of the salt water, the absorbent plate of the glass cover, and the PCM were calculated at each time. Without a phase changer, the rate at which fresh water is produced is around 5.15 kg/m2·h. The corresponding mass flow rates of paraffin, n-PCM I, n-PCM III, n-PCM II, and stearic acid are 22.9, 28.9, 5.9, 11.9, and 73 kg/m2·h. PCMs, with the exception of stearic acid, exhibit similar energy efficiency up to an ambient temperature of around 29°. However, at temperatures over 29°, n-PCM II outperforms other PCM.


Assuntos
Nanoestruturas , Luz Solar , Purificação da Água , Purificação da Água/métodos , Purificação da Água/instrumentação , Nanoestruturas/química , Temperatura
9.
Water Sci Technol ; 89(11): 3079-3092, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877631

RESUMO

Granular activated carbon (GAC) filtration is a commonly used method for advanced wastewater treatment. Filters can be operated continuously or discontinuously, with continuous operation not requiring feed flow interruption for backwashing and circulation (B/C). This study investigated the influence of B/C on the effluent quality of continuous filters. Two continuous GAC filters were operated for 1.5 years, with analysis of dissolved substances and particulate matter in the influent and effluent. The results indicated that various B/C modes had no impact on the removal of dissolved organic carbon and organic micropollutants (OMP), achieving an OMP removal of over 70% after 5,600 treated bed volumes (m3 treated wastewater per m3 GAC). However, it was evident that continuous B/C over 2-4 h resulted in increased turbidity, total suspended solids over 30 mg/L and total phosphorus concentrations of 1.3 mg/L in the filter effluent. Additionally, the study demonstrated that longer and more intensive B/C processes resulted in GAC size degradation with AC concentrations of up to 6.9 mg/L in the filter effluent, along with a change in GAC particle size. Furthermore, the importance of pre-filtration in reducing particulate matter in the filter influent and decreasing hydraulic head loss could be demonstrated.


Assuntos
Carvão Vegetal , Filtração , Filtração/métodos , Filtração/instrumentação , Carvão Vegetal/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Purificação da Água/instrumentação , Poluentes Químicos da Água/química , Carbono/química , Tamanho da Partícula , Fósforo/química , Fósforo/análise
10.
J Water Health ; 22(6): 967-977, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38935449

RESUMO

The anaerobic membrane bioreactor (AnMBR) is a promising technology for not only water reclamation but also virus removal; however, the virus removal efficiency of AnMBR has not been fully investigated. Additionally, the removal efficiency estimation requires datasets of virus concentration in influent and effluent, but its monitoring is not easy to perform for practical operation because the virus quantification process is generally time-consuming and requires specialized equipment and trained personnel. Therefore, in this study, we aimed to identify the key, monitorable variables in AnMBR and establish the data-driven models using the selected variables to predict virus removal efficiency. We monitored operational and environmental conditions of AnMBR in Sendai, Japan and measured virus concentration once a week for six months. Spearman's rank correlation analysis revealed that the pH values of influent and mixed liquor suspended solids (MLSS) were strongly correlated with the log reduction value of pepper mild mottle virus, indicating that electrostatic interactions played a dominant role in AnMBR virus removal. Among the candidate models, the random forest model using selected variables including influent and MLSS pH outperformed the others. This study has demonstrated the potential of AnMBR as a viable option for municipal wastewater reclamation with high microbial safety.


Assuntos
Reatores Biológicos , Membranas Artificiais , Reatores Biológicos/virologia , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/virologia , Projetos Piloto , Purificação da Água/métodos , Purificação da Água/instrumentação , Tobamovirus/isolamento & purificação , Japão
11.
Environ Res ; 252(Pt 3): 119053, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38714223

RESUMO

Water treatment is one of the most important issues for all walks of life around the world. The unique advantages of the solid-state power electronic pulses in water treatment make it attractive and promising in practical applications. The output voltage, rising time, repetition rate, and peak power of output pulses have a significant impact on the effectiveness of water treatment. Especially in pulse electric field treatment and pulse discharge treatment, the pulse with fast rising time achieves the advantage of generating plasma without corona, which can avoid water heating effect and greatly improve the efficiency of the pulse generator. High repetition rate can significantly reduce the peak power requirement of the pulse in water treatment application, making the equipment smaller and improving the power density. Therefore, the study developed a high-voltage high frequency sub-nanosecond pulse power generator (PPG) system for wastewater treatment. It adopts SiC DSRD (Drift Step Recovery Diode) solid-state switches and realize modular design, which can achieve high performance and can be flexible expanded according to the requirements of water treatment capacity. Finally, an expandable high-voltage PPG for water treatment is built. The output parameters of the PPG include output pulse voltage range from 1 to 5.28 kV, rise time <600 ps (20%-90%), repetition up to 1 MHz. The experiment results of PPG application for pulse discharge water treatment is presented. The results indicate that the proposed generator achieves high-efficiency degradation of 4-Chlorophenol (4-CP), which is one of the most common chlorophenol compounds in wastewater. From experiment, the homemade system can degrade 450 mL waste water containing 500 mg/L 4-CP in 35 min, with a degradation rate of 98%. Thereby, the requirement for electric field intensity decreased. Through the further quantitative analysis, the impact of frequency, voltage, and electrode spacing on the degradation effect of 4-CP is confirmed.


Assuntos
Purificação da Água , Purificação da Água/métodos , Purificação da Água/instrumentação , Poluentes Químicos da Água/análise , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Eliminação de Resíduos Líquidos/instrumentação , Eletricidade
12.
Environ Pollut ; 349: 123935, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599269

RESUMO

The presence of micropollutants and pathogens in sanitary wastewater and surface water is a growing concern that impacts public health, environmental balance and the maintenance of water supply services. To improve sanitary wastewater treatment, it is necessary to develop and improve sustainable technologies. Among the available options, microalgae-based systems stand out for their efficiency and generation of value-added byproducts. To study the impact of luminosity and the presence of micropollutants (13 selected) on the removal of E. coli and total coliforms from real anaerobically treated wastewater, a pilot flat-panel photobioreactor (50 L) was operated in batch mode in a tropical climate region. This is the first study to evaluate whether micropollutants interfere with coliform groups, considering a microalgae-based system and an experiment in a tropical climate region. E. coli had better removal (from 104 to 101 CFU 100 mL-1) than did total coliforms (from 104 to 103 CFU 100 mL-1). The removal of E. coli was more strongly linked to luminosity and temperature, while the removal of total coliforms was influenced by the presence of the selected micropollutants.


Assuntos
Escherichia coli , Fotobiorreatores , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/microbiologia , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Luz , Enterobacteriaceae , Microalgas , Purificação da Água/métodos , Purificação da Água/instrumentação
13.
Environ Sci Pollut Res Int ; 31(18): 26984-26996, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499929

RESUMO

The ubiquity and impact of pharmaceuticals and pesticides, as well as their residues in environmental compartments, particularly in water, have raised human and environmental health concerns. This emphasizes the need of developing sustainable methods for their removal. Solar-driven photocatalytic degradation has emerged as a promising approach for the chemical decontamination of water, sparking intensive scientific research in this field. Advancements in photocatalytic materials have driven the need for solar reactors that efficiently integrate photocatalysts for real-world water treatment. This study reports preliminary results from the development and evaluation of a solar system for TiO2-based photocatalytic degradation of intermittently flowing water contaminated with doxycycline (DXC), sulfamethoxazole (SMX), dexamethasone (DXM), and carbendazim (CBZ). The system consisted of a Fresnel-type UV solar concentrator that focused on the opening and focal point of a parabolic trough concentrator, within which tubular quartz glass reactors were fixed. Concentric springs coated with TiO2, arranged one inside the other, were fixed inside the quartz reactors. The reactors are connected to a raw water tank at the inlet and a check valve at the outlet. Rotating wheels at the collector base enable solar tracking in two axes. The substances (SMX, DXC, and CBZ) were dissolved in dechlorinated tap water at a concentration of 1.0 mg/L, except DXM (0.8 mg/L). The water underwent sequential batch (~ 3 L each, without recirculation) processing with retention times of 15, 30, 60, 90, and 120 min. After 15 min, the degradation rates were as follows: DXC 87%, SMX 35.5%, DXM 32%, and CBZ 31.8%. The system processed 101 L of water daily, simultaneously removing 870, 355, 256, and 318 µg/L of DXC, SMX, DXM, and CBZ, respectively, showcasing its potential for real-world chemical water decontamination application. Further enhancements that enable continuous-flow operation and integrate highly effective adsorbents and photocatalytic materials can significantly enhance system performance.


Assuntos
Fotoquímica , Energia Solar , Poluentes Químicos da Água , Purificação da Água , Água , Catálise/efeitos da radiação , Água/química , Purificação da Água/instrumentação , Purificação da Água/métodos , Humanos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Doxiciclina/química , Doxiciclina/isolamento & purificação , Sulfametoxazol/química , Sulfametoxazol/isolamento & purificação , Dexametasona/química , Dexametasona/isolamento & purificação , Quartzo , Cromatografia , Temperatura , Fatores de Tempo , Animais , Abastecimento de Água
14.
Environ Res ; 250: 118487, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365055

RESUMO

With the increasing population worldwide more wastewater is created by human activities and discharged into the waterbodies. This is causing the contamination of aquatic bodies, thus disturbing the marine ecosystems. The rising population is also posing a challenge to meet the demands of fresh drinking water in the water-scarce regions of the world, where drinking water is made available to people by desalination process. The fouling of composite membranes remains a major challenge in water desalination. In this innovative study, we present a novel probabilistic approach to analyse and anticipate the predominant fouling mechanisms in the filtration process. Our establishment of a robust theoretical framework hinges upon the utilization of both the geometric law and the Hermia model, elucidating the concept of resistance in series (RIS). By manipulating the transmembrane pressure, we demonstrate effective management of permeate flux rate and overall product quality. Our investigations reveal a decrease in permeate flux in three distinct phases over time, with the final stage marked by a significant reduction due to the accumulation of a denser cake layer. Additionally, an increase in transmembrane pressure leads to a correlative rise in permeate flux, while also exerting negative effects such as membrane ruptures. Our study highlights the minimal immediate impact of the intermediate blocking mechanism (n = 1) on permeate flux, necessitating continuous monitoring for potential long-term effects. Additionally, we note a reduced membrane selectivity across all three fouling types (n = 0, n = 1.5, n = 2). Ultimately, our findings indicate that the membrane undergoes complete fouling with a probability of P = 0.9 in the presence of all three fouling mechanisms. This situation renders the membrane unable to produce water at its previous flow rate, resulting in a significant reduction in the desalination plant's productivity. I have demonstrated that higher pressure values notably correlate with increased permeate flux across all four membrane types. This correlation highlights the significant role of TMP in enhancing the production rate of purified water or desired substances through membrane filtration systems. Our innovative approach opens new perspectives for water desalination management and optimization, providing crucial insights into fouling mechanisms and proposing potential strategies to address associated challenges.


Assuntos
Filtração , Membranas Artificiais , Purificação da Água , Purificação da Água/métodos , Purificação da Água/instrumentação , Filtração/métodos , Filtração/instrumentação , Incrustação Biológica/prevenção & controle
15.
Food Environ Virol ; 16(2): 143-158, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38308001

RESUMO

Removal of pathogenic viruses from water resources is critically important for sanitation and public health. Nanotechnology is a promising technology for virus inactivation. In this paper, the effects of titanium dioxide (TiO2) anatase nanoparticles (NPs) on human adenovirus type 35 (HAdV-35) removal under static and dynamic (with agitation) batch conditions were comprehensively studied. Batch experiments were performed at room temperature (25 °C) with and without ambient light using three different initial virus concentrations. The virus inactivation experimental data were satisfactorily fitted with a pseudo-first-order expression with a time-dependent rate coefficient. The experimental results demonstrated that HAdV-35 sorption onto TiO2 NPs was favored with agitation under both ambient light and dark conditions. However, no distinct relationships between virus initial concentration and removal efficiency could be established from the experimental data.


Assuntos
Adenovírus Humanos , Nanopartículas , Titânio , Inativação de Vírus , Titânio/química , Titânio/farmacologia , Adenovírus Humanos/efeitos dos fármacos , Adenovírus Humanos/química , Adenovírus Humanos/fisiologia , Adenovírus Humanos/genética , Adsorção , Humanos , Inativação de Vírus/efeitos dos fármacos , Nanopartículas/química , Purificação da Água/métodos , Purificação da Água/instrumentação , Cinética
16.
Sci Rep ; 13(1): 9168, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280270

RESUMO

In the present paper, for the first time the ability of the porous biosilica originated from three marine diatom strains of 'Nanofrustulum spp.' viz. N. wachnickianum (SZCZCH193), N. shiloi (SZCZM1342), N. cf. shiloi (SZCZP1809), to eliminate MB from aqueous solutions was investigated. The highest biomass was achieved under silicate enrichment for N. wachnickianum and N. shiloi (0.98 g L-1 DW and 0.93 g L-1 DW respectively), and under 15 °C for N. cf. shiloi (2.2 g L-1 DW). The siliceous skeletons of the strains were purified with hydrogen peroxide and characterized by SEM, EDS, the N2 adsorption/desorption, XRD, TGA, and ATR-FTIR. The porous biosilica (20 mg DW) obtained from the strains i.e. SZCZCH193, SZCZM1342, SZCZP1809, showed efficiency in 77.6%, 96.8%, and 98.1% of 14 mg L-1 MB removal under pH 7 for 180 min, and the maximum adsorption capacity was calculated as 8.39, 19.02, and 15.17 mg g-1, respectively. Additionally, it was possible to increase the MB removal efficiency in alkaline (pH = 11) conditions up to 99.08% for SZCZP1809 after 120 min. Modelling revealed that the adsorption of MB follows Pseudo-first order, Bangham's pore diffusion and Sips isotherm models.


Assuntos
Diatomáceas , Azul de Metileno , Dióxido de Silício , Diatomáceas/química , Diatomáceas/crescimento & desenvolvimento , Dióxido de Silício/química , Dióxido de Silício/isolamento & purificação , Adsorção , Azul de Metileno/metabolismo , Concentração de Íons de Hidrogênio , Porosidade , Poluentes da Água/isolamento & purificação , Purificação da Água/instrumentação , Purificação da Água/métodos
17.
Chemosphere ; 323: 138285, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36868424

RESUMO

Anion exchange resin is responsible for removing harmful anionic contaminants in drinking water treatment, but it may become a significant source of precursors for disinfection byproducts (DBPs) by shedding material during application without proper pretreatment. Batch contact experiments were performed to investigate the dissolution of magnetic anion exchange resins and their contribution to organics and DBPs. Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) released from the resin were highly correlated with the dissolution conditions (contact time and pH), in which 0.7 mg/L DOC and 0.18 mg/L DON were distributed at exposure time of 2 h and pH 7. The formation potential of four DBPs in the shedding fraction was also revealed that trichloromethane (TCM), dichloroacetonitrile (DCAN), nitrosodimethylamine (NDMA), and dichloroacetamide (DCAcAm) concentrations could reach 21.4, 5.1, 12.1 µg/L, and 69.6 ng/L, respectively. Furthermore, the hydrophobic DOC that preferred to detach from the resin mainly originated from the residues of crosslinkers (divinylbenzene) and porogenic agents (straight-chain alkanes) detected by LC-OCD and GC-MS. Nevertheless, pre-cleaning inhibited the leaching of the resin, among which acid-base and ethanol treatments significantly lowered the concentration of leached organics, and formation potential of DBPs (TCM, DCAN, and DCAcAm) below 5 µg/L and NDMA dropped to 10 ng/L.


Assuntos
Resinas de Troca Aniônica , Técnicas de Química Analítica , Purificação da Água , Resinas de Troca Aniônica/química , Purificação da Água/instrumentação , Matéria Orgânica Dissolvida/análise , Matéria Orgânica Dissolvida/química , Clorofórmio/análise , Clorofórmio/química , Dimetilnitrosamina/análise , Dimetilnitrosamina/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos
19.
Environ Res ; 219: 115115, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36574794

RESUMO

The incorporation of a spacer among membranes has a major influence on fluid dynamics and performance metrics. Spacers create feed channels and operate as turbulence promoters to increase mixing and reduce concentration/temperature polarization effects. However, spacer geometry remains unoptimized, and studies continue to investigate a wide range of commercial and custom-made spacer designs. The in-depth discussion of the present systematic review seeks to discover the influence of Reynolds number or solution flowrate on flow hydrodynamics throughout a spacer-filled channel. A fast-flowing solution sweeping one membrane's surface first, then the neighboring membrane's surface produces good mixing action, which does not happen commonly at laminar solution flowrates. A sufficient flowrate can suppress the polarization layer, which may normally require the utilization of a simple feed channel rather than complex spacer configurations. When a recirculation eddy occurs, it disrupts the continuous flow and effectively curves the linear fluid courses. The higher the flowrate, the better the membrane performance, the higher the critical flux (or recovery rate), and the lower the inherent limitations of spacer design, spacer shadow effect, poor channel hydrodynamics, and high concentration polarization. In fact, critical flow achieves an acceptable balance between improving flow dynamics and reducing the related trade-offs, such as pressure losses and the occurrence of concentration polarization throughout the cell. If the necessary technical flowrate is not used, the real concentration potential for transport is relatively limited at low velocities than would be predicted based on bulk concentrations. Electrodialysis stack therefore may suffer from the dissociation of water molecules. Next studies should consider that applying a higher flowrate results in greater process efficiency, increased mass transfer potential at the membrane interface, and reduced stack thermal and electrical resistance, where pressure drop should always be indicated as a consequence of the spacer and circumstances used, rather than a problem.


Assuntos
Diálise , Membranas Artificiais , Purificação da Água , Hidrodinâmica , Purificação da Água/instrumentação , Purificação da Água/métodos , Salinidade , Diálise/instrumentação , Diálise/métodos , Eletroquímica/instrumentação , Eletroquímica/métodos
20.
Water Sci Technol ; 86(9): 2071-2088, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36378167

RESUMO

Suspended solids removal is a key performance measure for proprietary stormwater treatment devices. Various technologies are available, with manufacturers claiming hydrodynamic separators offer performance advantages. However, it is important to assess manufacturers' claims. Accordingly, this study seeks to compare the performance of proprietary devices, by applying dimensional analysis to third-party certification data and experimental data from uncertified devices, and to determine the accuracy of a single parameter estimation (Hazen or Péclet number) of removal efficiency. Statistical analysis indicates that device performance is well described by a single parameter estimation transitioning from Hazen (Nash-Sutcliffe coefficient = 0.81 and root mean square error = 5.1%) at low surface loading rates (SLR) in all technology types (high removal efficiency) to Péclet (Nash-Sutcliffe coefficient = 0.5 to 0.61 and root mean square error = 5.9% to 4.3%) at higher SLR (low removal efficiency) for hydrodynamic separators. This indicates that performance at low SLR is well explained by gravity separation in all technology types, whilst in hydrodynamic separators removal at high SLR is better explained by gravity separation plus advection. Consequently, when high (>80%) removal efficiency is required there is no performance advantage between technology types. However, when low (<50%) removal efficiency is required hydrodynamic separators offer a 33% increase in treatment area.


Assuntos
Purificação da Água , Humanos , Hidrodinâmica , Chuva , Purificação da Água/instrumentação , Purificação da Água/métodos , Abastecimento de Água , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...